芯片行业里的台积电

芯片行业里的台积电

芯片行业里的台积电

?任正非、马云、马化腾都是各自领域响当当的人物,基本上随便讲几句话(当然马化腾不大爱演讲),就有无数人花式顶礼膜拜,360度无死角解读。三位牛人的粉丝口下留情,勿喷,他们三人都是优秀的企业家,但在张忠谋面前,还算不得顶尖人物。

?

?

?2017年台积电的营业收入为2087亿元人民币,大约只有华为的34.6%(华为当年营收为6036亿元),只比阿里多504.27亿元人民币(阿里当年营收为1582.73亿元),落后腾讯290.6亿人民币(腾讯当年营收为2377.6亿元),看起来不大起眼是不是?

?

?

?但在最关键的经营指标净利润方面,四家企业高下立现。2017年,华为净利润475亿元,净利润率7.9%;阿里当年净利润578.71亿元,净利润率36.6%;腾讯净利润715.1亿元,净利润率30.1%。

?

?

?

?在大家眼里,阿里、腾讯和华为是这样的,很强大是不是?

?

?

【完整版】2020-2025年中国汽车半导体芯片行业可持续发展战略制定与实施研究报告

(二零一二年十二月) 2020-2025年中国汽车半导体芯片行业可持续发展战略制定与实施研究报告 可落地执行的实战解决方案 让每个人都能成为 战略专家 管理专家 行业专家 ……

报告目录 第一章企业可持续发展战略概述 (9) 第一节汽车半导体芯片行业可持续发展战略研究报告简介 (9) 第二节企业可持续发展战略的重要性及意义 (10) 一、是决定企业经营活动成败的关键性因素 (10) 二、是实现企业快速、健康、持续发展的需要 (11) 三、是企业目标得以实现的重要保证 (11) 四、是企业长久地高效发展的重要基础 (11) 五、是企业及其所有企业员工的行动纲领 (11) 六、是企业扩展市场、高效持续发展的有效途径 (12) 七、是执行层行动的指南 (12) 第三节制定实施企业可持续发展战略的作用 (12) 一、有助于企业准确判断外在危机和机遇 (12) 二、有助于明确企业核心竞争力 (13) 三、有利于提升企业的持久竞争力 (13) 四、有助于企业找准市场定位 (13) 五、有助于企业内部控制、管理与执行 (13) 六、有助于优化资源,实现资源价值最大化 (14) 七、有助于增强企业的凝聚力和向心力 (14) 八、有助于优化整合企业人力资源,提高企业效率 (14) 第四节企业可持续发展战略的特性 (15) 一、全局性 (15) 二、纲领性 (15) 三、长远性 (15) 四、导向性 (15) 五、保证性 (15) 六、超前性 (16) 七、竞争性 (16) 八、稳定性 (16) 九、风险性 (16) 第二章市场调研:2018-2019年中国汽车半导体芯片行业市场深度调研 (17) 第一节汽车半导体芯片概述 (17) 第二节汽车半导体发展概况 (17) 一、汽车半导体的定义及前景 (17) 二、汽车半导体的市场竞争特点 (18) 三、汽车半导体的企业特征 (18) 四、受环保驱动的新能源汽车市场是刚需 (19) 第三节全球汽车半导体市场规模 (19) 一、全球汽车半导体市场规模 (19) 二、汽车半导体主要细分市场规模 (20) 第四节2019-2025年我国汽车半导体芯片行业发展前景及趋势预测 (23) 一、汽车半导体的历史性机遇 (23)

半导体材料的发展现状与趋势

半导体材料与器件发展趋势总结 材料是人类社会发展的物质基础与先导。每一种重大新材料的发现和应用都把人类支配自然的能力提高到一个全新的高度。材料已成为人类发晨的里程碑。本世纪中期单晶硅材料和半导体晶体管的发明及其硅集成电路的研究成功,导致了电子工业大革命。使微电子技术和计算机技术得到飞速发展。从20世纪70年代的初期,石英光纤材料和光学纤维的研制成功,以及GaAs等Ⅲ-Ⅴ族化合物的材料的研制成功与半导体激光器的发明,使光纤通信成为可能,目前光纤已四通八达。我们知道,每一束光纤,可以传输成千上万甚至上百万路电话,这与激光器的发明以及石英光纤材料、光纤技术的发展是密不可分的。超晶格概念的提出MBE、MOCVD先进生长技术发展和完善以及超品格量子阱材料包括一维量子线、零维量子点材料的研制成功。彻底改变了光电器件的设计思想。使半导体器件的设计与制造从过去的杂质工程发展到能带工程。出现了以“电学特性和光学特性的剪裁”为特征的新范畴,使人类跨入到以量子效应为基础和低维结构为特征的固态量子器件和电路的新时代,并极有可能触发新的技术革命。半导体微电子和光电子材料已成为21世纪信息社会的二大支柱高技术产业的基础材料。它的发展对高速计算、大容量信息通信、存储、处理、电子对抗、武器装备的微型化与智能化和国民经济的发展以及国家的安全等都具有非常重要的意义。 一、几种重要的半导体材料的发展现状与趋势 1.硅单晶材料 硅单晶材料是现代半导体器件、集成电路和微电子工业的基础。目前微电子的器件和电路,其中有90%到95%都是用硅材料来制作的。那么随着硅单晶材料的进一步发展,还存在着一些问题亟待解决。硅单晶材料是从石英的坩埚里面拉出来的,它用石墨作为加热器。所以,来自石英里的二氧化硅中氧以及加热器的碳的污染,使硅材料里面包含着大量的过饱和氧和碳杂质。过饱和氧的污染,随着硅单晶直径的增大,长度的加长,它的分布也变得不均匀;这就是说材料的均匀性就会遇到问题。杂质和缺陷分布的不均匀,会使硅材料在进一步提高电路集成度应用的时候遇到困难。特别是过饱和的氧,在器件和电路的制作过程中,它要发生沉淀,沉淀时的体积要增大,会导致缺陷产生,这将直接影响器件和电路的性能。因此,为了克服这个困难,满足超大规模集成电路的集成度的进一步提高,人们不得不采用硅外延片,就是说在硅的衬底上外延生长的硅薄膜。这样,可以有效地避免氧和碳等杂质的污染,同时也会提高材料的纯度以及掺杂的均匀性。利用外延方法,还可以获得界面非常陡、过渡区非常窄的结,这样对功率器件的研制和集成电路集成度进一步提高都是非常有好处的。这种材料现在的研究现状是6英寸的硅外延片已用于工业的生产,8英寸的硅外延片,也正在从实验室走向工业生产;更大直径的外延设备也正在研制过程中。 除此之外,还有一些大功率器件,一些抗辐照的器件和电路等,也需要高纯区熔硅单晶。区熔硅单晶与直拉硅单晶拉制条件是不一样的,它在生长时,不与石英容器接触,材料的纯度可以很高;利用这种材料,采用中子掺杂的办法,制成N或P型材料,用于大功率器件及电路的研制,特别是在空间用的抗辐照器件和电路方面,它有着很好的应用前景。当然还有以硅材料为基础的SOI材料,也就是半导体/氧化物/绝缘体之意,这种材料在空间得到了广泛的应用。总之,从提高集成电路的成品率,降低成本来看的话,增大硅单晶的直径,仍然是一个大趋势;因为,只有材料的直径增大,电路的成本才会下降。我们知道硅技术有个摩尔定律,每隔18个月它的集成度就翻一番,它的价格就掉一半,价格下降是同硅的直径的增大密切相关的。在一个大圆片上跟一个小圆片上,工艺加工条件相同,但出的芯片数量则不同;所以说,增大硅的直径,仍然是硅单晶材料发展的一个大趋势。那我们从提高硅的

半导体芯片行业全梳理(附股)

半导体芯片行业全梳理(附股) 去年开始,半导体芯片行业得到了资金的认可,直到现 在,仍有很多上市公司被持续爆炒。在信息技术高速发展的今天,大数据是资源,堪比新经济的石油;5G 是道路,决定信息的传输速度;芯片是核心,是数据分析的大脑。不管 是工业互联网、人工智能、虚拟现实、影音娱乐、汽车数码, 新产业的发展都要围绕这三个行业进行,所以大数据、5G 和半导体芯片是工业4.0 的根基,是所有新兴行业的根本。 今天聊半导体!长期以来,我国集成电路产业都是逆差,严重依赖国外进口,每年进口芯片超2000 亿美元。2014 年9 月,千亿规模的国家集成电路产业基金(以下简称“大基金”) 成立,扮演着产业扶持与财务投资的双重角色。目前大基金已成为11 家A 股上市公司的股东,而且大基金还将参与多家公司的增发而获得股权。大基金代表国家集成电路产业的发展方向,其投资的上市公司值得投资者关注,下面梳理 大基金持股A 股公司情况。国科微:持股15.79% ,二股东;三安光电、兆易创新、通富微电、北斗星通:持股超10% ;长电科技:9.54% 晶方科技:9.32% 北方华创:7.5% 长川科技:7.5%纳斯达:4.29% 同时,大基金将参与长电科技、通 富微电、万盛股份、景嘉微、雅克科技、耐威科技的增发, 增发完成后,大基金持股情况如下:长电科技:19% 通富微

电:15.7% 万盛股份:7.41%雅克科技:5.73%此外大基金 还投资了华天科技的子公司,入股士兰微生产线,与巨化股关注,但半导体到底是怎样的一个行业,我们简单梳理一下。 份合作发展电子化学材料。大基金加持的A 股公司可以重点 半导体分为四类产品,分别是集成电路、光电子器件、分立器件和传感器。其中规模最大的是集成电路,市场规模达到 2,753 亿美元,占半导体市场的81% ,所以有时大家会把半导体行业跟集成电路混为一谈。从半导体产业链上下游来看:半导体产业链上中下游全梳理:上游:IC设计、半导体材料、半导体设备一、IC 设计重点关注:兆易创新:国内存储器及 MCU 芯片产业的龙头企业,主营业务存储芯片是国家战略支持的IC 细分方向。大基金战略入股,公司将成为国家存储器战略落地的产业平台之一。韦尔股份:模拟芯片龙头。 公司是国内鲜有的同时具备强大半导体设计和IC 分销实力的公司,业务模式独特。公司主营业务为半导体分立器件、电源管理IC 等半导体这些产品广泛应用于移动通信、车载电子、安防、网络通信、家用电器等领域。国科微:公司是国家高新技术企业和经工业和信息化部认定的集成电路设计企业,长期致力于大规模集成电路的设计、研发及销售。 在广播电视芯片市场,公司长期保持直播卫星市场的龙头地位,占有绝对的市场份额。弘信电子:高速成长的国内柔性印制电路板 (FPC )龙头。公司当前主营FPC 研发、设计、

半导体材料的发展现状与趋势

半导体材料的发展现状与趋势

半导体材料与器件发展趋势总结 材料是人类社会发展的物质基础与先导。每一种重大新材料的发现和应用都把人类支配自然的能力提高到一个全新的高度。材料已成为人类发晨的里程碑。本世纪中期单晶硅材料和半导体晶体管的发明及其硅集成电路的研究成功,导致了电子工业大革命。使微电子技术和计算机技术得到飞速发展。从20世纪70年代的初期,石英光纤材料和光学纤维的研制成功,以及GaAs 等Ⅲ-Ⅴ族化合物的材料的研制成功与半导体激光器的发明,使光纤通信成为可能,目前光纤已四通八达。我们知道,每一束光纤,可以传输成千上万甚至上百万路电话,这与激光器的发明以及石英光纤材料、光纤技术的发展是密不可分的。超晶格概念的提出MBE、MOCVD先进生长技术发展和完善以及超品格量子阱材料包括一维量子线、零维量子点材料的研制成功。彻底改变了光电器件的设计思想。使半导体器件的设计与制造从过去的杂质工程发展到能带工程。出现了以“电学特性和光学特性的剪裁”为特征的新范畴,使人类跨入到以量子效应为基础和低维结构

的制作过程中,它要发生沉淀,沉淀时的体积要增大,会导致缺陷产生,这将直接影响器件和电路的性能。因此,为了克服这个困难,满足超大规模集成电路的集成度的进一步提高,人们不得不采用硅外延片,就是说在硅的衬底上外延生长的硅薄膜。这样,可以有效地避免氧和碳等杂质的污染,同时也会提高材料的纯度以及掺杂的均匀性。利用外延方法,还可以获得界面非常陡、过渡区非常窄的结,这样对功率器件的研制和集成电路集成度进一步提高都是非常有好处的。这种材料现在的研究现状是6英寸的硅外延片已用于工业的生产,8英寸的硅外延片,也正在从实验室走向工业生产;更大直径的外延设备也正在研制过程中。 除此之外,还有一些大功率器件,一些抗辐照的器件和电路等,也需要高纯区熔硅单晶。区熔硅单晶与直拉硅单晶拉制条件是不一样的,它在生长时,不与石英容器接触,材料的纯度可以很高;利用这种材料,采用中子掺杂的办法,制成N或P型材料,用于大功率器件及电路的研制,特别是在空间用的抗辐照器件和电路方面,

半导体工业的发展概况(上)

半导体工业的发展概况(上) 1 半导体硅工业的发展 随着社会的发展,直到20世纪时,世人才发现硅具有半导体的性质。这些性质包括其电阻率随着温度的增加而递减、光电效应、热电效应、磁电效应、霍尔效应及其与金属接触的整流效应等。 继硅晶体管发明之后,虽然可利用乔赫拉斯基法来制备硅单晶体,但是由于直拉(CZ)法生长的硅单晶,因由于使用的石英坩埚会受到硅熔体的侵蚀而增加氧的沾污。为了获得高纯度的硅单晶体,1956年HenryTheurer发明了区熔法(FZ)[6]。区熔法因没有使用石英坩埚容器,故不存在氧污染的问题。之后,在1958年由于DashFI发明了一种五位错单晶生长法,才使得生长优质大直径硅单晶技术得到了不断发展。1958年,Kilby(基尔比)在美国德州仪器公司发明了集成电路[8],奠定了信息时代到来的基础。第一代IC(集成电路)问世后,半导体工业迅速得到了发展,晶片上的电子元器件的密度和复杂性,也就从小规模集成电路(SSI)向中规模集成电路(MSB、大规模集成电路(LSB、超大规模集成电路(VLSI)、甚大规模集成电路(ULSI)不断地发展。集成电路的应用范围相当广泛,按不同的用途集成电路的分类见图1所示”。

以硅材料为主的半导体专用材料已是电子信息产业最重要的基础、功能材料,在国民经济和军事工业中占有很重要的地位。全世界的半导体器件中有95%以上是用硅材料制成,其中85%的集成电路也是由硅材料制成。 2 国外半导体工业发展动态 随着IC工艺、技术的不断发展,硅单晶的直径尺寸越做越大,40多年来,小于中200mm的硅单晶片已经进入商业生产应用的水平,中300mm 的硅单晶抛光片也已在特征尺寸线宽小于0.13μm的IC器件工艺中得到了广泛应用,并已进入了研制、生产的阶段,中400mm的硅单晶也进入了开发、研究的阶段。纳米电子技术必将成为今后研究和发展的方向。 2.1 硅集成电路发展现状 制备集成电路用的硅单晶直径研制发展历史见表1所示。

中国功率半导体行业研究-行业概况、发展概况

中国功率半导体行业研究-行业概况、发展概况 1、半导体行业概况 (1)全球半导体行业发展概况 半导体是电子产品的核心,信息产业的基石。半导体行业具有下游应用广泛、生产技术工序多、产品种类多、技术更新换代快、投资高、风险大等特点,全球半导体行业具有一定的周期性,景气周期与宏观经济、下游应用需求以及自身产能库存等因素密切相关。 根据全球半导体贸易统计组织,全球半导体行业2018年市场规模达到4,688亿美元,较2017年增长约13.7%。过去五年,随着智能手机、平板电脑为代表的新兴消费电子市场的快速发展,以及汽车电子、工业控制、物联网等科技产业的兴起,强力带动了整个半导体行业规模迅速增长。

资料来源:全球半导体贸易统计组织 全球半导体贸易统计组织数据显示,2018年美国半导体行业市场规模约为1,030亿美元,占全球市场的21.97%;欧洲半导体行业市场规模约为430亿美元,约占全球市场的9.16%。亚太地区半导体行业近年来发展迅速,已成为全球最大的半导体市场。亚太地区(除日本外)市场规模达2,829亿美元,已占据全球市场60.34%的市场份额,中国大陆地区是近年来全球半导体市场增速最快的地区之一。 数据来源:全球半导体贸易统计组织 目前全球半导体产业呈现由头部厂商所主导的态势,2018年前十大半导体厂商销售收入占比达到了59.3%,前十大半导体厂商的销售额2018年较2017年平均增长率高达18.5%,市场份额较为集中,行业马太效应显著。

数据来源:Gartner (2)中国半导体行业发展概况 中国本土半导体行业起步较晚。但在政策支持、市场拉动及资本推动等因素合力下,中国半导体行业不断发展。步入21世纪以来,中国半导体产业市场规模得到快速增长。2018年,中国半导体产业市场规模达6,531亿元,比上年增长20.7%。2013-2018年中国半导体市场规模的复合增长率达21.09%,显著高于同期世界半导体市场的增速。

半导体设备行业发展研究-半导体行业发展状况

半导体设备行业发展研究-半导体行业发展状况 半导体被称为制造业皇冠上的明珠,半导体产业是信息技术产业的核心,是支撑经济社会发展和保障国家安全的战略性、基础性和先导性产业,其技术水平和发展规模已成为衡量一个国家产业竞争力和综合国力的重要标志之一。作为“工业粮食”,半导体芯片被广泛地应用于计算机、消费类电子、网络通信、汽车电子、物联网等产业,是绝大多数电子设备的核心组成部分。根据国际货币基金组织测算,每1 美元半导体芯片的产值可带动相关电子信息产业10 美元产值, 并带来100 美元的GDP,这种100 倍价值链的放大效应奠定了芯片行业在国民 经济中的重要地位。 作为半导体产业的核心,集成电路占据半导体行业规模的八成以上,其细分领域包括逻辑电路、存储器、微处理器和模拟电路等四类。从产业链的角度看,以集成电路为代表的半导体产品被广泛用于消费电子、通讯、工业自动化等下游电子信息产业中,同时也受到下游终端应用结构发展的推动,下游应用是半导体产业发展的核心驱动力。 半导体产业链

(一)半导体行业发展状况 1、全球半导体产业状况 (1)全球半导体市场规模保持稳定增长 伴随全球信息化、网络化和知识经济的迅速发展以及半导体下游应用领域的不断拓展,近年来全球半导体销售额保持稳定增长。根据世界半导体贸易统计协会(WSTS)统计数据,全球半导体销售额由2010 年的2,983.15 亿美元增长至 2018 年的4,687.78 亿美元,年复合增长率达5.81%。 2010-2018 年全球半导体销售额及增长率 数据来源:WSTS 从产品类型看,半导体主要由集成电路、光电子器件、分立器件和传感器

功率半导体器件封装技术的新趋势分析

科学技术创新2019.30 功率半导体器件封装技术的新趋势分析 刘乐 (国家知识产权局专利局电学部, 北京100088)现代功率半导体器件的封装,主要朝着小体积和大功率的方 向不断发展,通过这种技术上的升级, 可以显著减低功率半导体硅片与散热器之间的热阻,保障整个输出功率, 可以达到最大,并对接处的阻抗进行数值分析,全面提高功率半导体器件的通流能力。 1功率半导体封装技术要点 功率半导体在目前的换流电路中, 对一些杂散电感,处理能力较差,提高封装技术的应用效果, 可以显著降低这种杂感电感,从而使得功率半导体的阻断电压得到最充分的利用。 1.1绝缘电压控制 封装技术要满足目前功率半导体运行过程当中,面临的绝缘 电压情况,尽可能的降低功率半导体封装的体积, 实现结构设计上的紧凑性,避免绝缘电压的存在, 影响功率半导体阻断的具体运行情况,延长功率半导体器件的使用寿命, 降低咱电感应现象,对于电路的危害[1]。 1.2skiip 技术应用 这种技术最早是在中等功率的半导体元器件封装当中应用,在目前逐,渐向大功率半导体元器件封装技术当中发展。技术人员可以通过半导体封装当中的铲车和牵引仪器,对于热压力进行整 合分析。并且通过直接连接方式, 应用相关陶瓷基片,对于散热器进行优化升级。(1)通过这种设计形式,可以去除掉封装过程当中 的铜底板,从而进一步的压缩整个元器件封装的体积, 提高结构设计的紧凑性。(2)应用这种技术,还可以对于封装过程当中半导体 元器件的汇流排和辅助连接器件, 进行一体式封压,从而全面提高陶瓷基片的控制功能。(3)运用这种焊接方式, 焊料的浪费可以大大的降低。(4)由于底板的去除,整个功率半导体元器件的热阻会 显著的减少。 1.3损耗分析 半导体元器件封装过程当中,硅的损耗是造成散热器温差控 制效果较差的主要原因,通过这种skiip 控制模块的运行方式, 可以将整个散热器运行的温度,下降3-7℃。(1)这种运行方式可以 显著降低整个半导体元件的热阻效应, 基本上可以降低10%左右。(2)同时,由于体积的减少,底板元件去除, 整个陶瓷基片与半导体元件之间,铜底板的连接焊料也就不复存在。(3)技术人员还可以 通过材料系数的相关调整,对于封装过程当中的膨胀系数,进行定量分析,避免传统的封装方式造成半导体元件的热疲劳现象。 1.4机械应力改进 在铲车之类牵引应用的过程当中,skiip 这种封装技术运行非 常可靠。目前这种技术已经具有了比较标准化的发展结构, 可以通过单元式的连续空留方式,与半导体元件的电路, 以及外壳,进行优化的连接,从而形成一个三相桥结构, 不仅可以驱动标准感应电机连续运行,还可以通过独立交流的方式, 与DBC 陶瓷片的基本元器件,进行组合连接, 形成一个控制模组。通过这种封装方式的改进,每个半导体元件封装过程当中的 半桥电感, 最低只有15nh 。而且运用这种方式,功率半导体封装过程当中各个元件上的电流分布更加的均匀, 也就是说,不必再对电流的额定值,进行差异化分析,就可以完成整个单元的分装作业。 2新一代skiip 技术发展2.1新一代skiip 技术原理 新一代skiip 技术,正在朝着总成本优化设计的角度进行发 展,通过这种散热器温度传感的高度智能化控制, 技术人员可以对功率半导体封装过程当中的相电流和直电流,进行智能传感与压 力控制,通过这种集成驱动方式, 可以很好的保护封装过程当中的相应开关损耗,从而通过脉冲测试等等, 随时了解到半导体元器件运行过程当中的热阻值[2] 。 脉冲数值Q 会随着时间的变化而变化,对硅的散失情况进行系统求和,就可以更好的对脉冲数值进行定量分析。方便进行数据检验与数据校核,全面提高整个功率半导体封装过程当中的安全效应,避免元件损坏,提高整个元器件的使用寿命。 2.2沟槽型原包结构 新一代的skiip 组件模块采用第三代芯片, 这种芯片对于电流密度的调节优化作用非常的显著, 可以通过双单元封装模块,对于功率半导体封装过程当中的电流电压传感器,进行一体化的数据 把控。在这种双单元封装模式之下, 电流的输出水平可以从传统的200安提高到400安,有效数值增加20%,连续传输功率上升70%,设备达到最高电流密度的时间下降150%。 2.3陶瓷材料的优化选择 为了适应这种新型的skiip 组件模块技术,要选择优级的氮化 铝陶瓷材料,这种基本原漆片可以保证skiip 封装过程当中, 三相桥模块运行有效,可以提供强大的驱动力, 保障标准电机的正常运行。对于输出功率进行相应的调节, 通过这种标准化的驱动能力,提升整个基本元件的输出功率,一般来说,密度可以上升70%以 上,这种系统优化改进不仅可以增加单元硅片的有效控制面积, 还可以避免散热器安装过程当中传统难点问题,实现机械层面与电气层面的相应兼容。 2.4成套顶装配双单元组件 在进行封装模块优化的过程当中,可以通过这种双单元封装模块的工艺改造,为最终的设备安装与测试流程提供便利。 第一,通过数据更新,将这种装配与测试环节系统分布下来, 通过精细化的封装驱动器控制,进行磨牙和弹簧压得相应调节。 这种skiip 相应驱动器,可以在不同的元件之间进行转换, 从而全面改善模块的可靠性,并且降低封装技术需要的设备成本。摘要:功率半导体体积较小、输出功率非常大,在现代制造行业当中有着非常广泛的应用, 对其封装技术进行讨论,有利于全面提高功率半导体器件应用的有效性。基于此,本文主要分析功率半导体器件封装当中的关键技术, 并结合具体的器件封装发展情况,分析这种封装技术的新趋势。 关键词:功率半导体;器件封装技术; 新趋势中图分类号:TN305文献标识码:A 文章编号:2096-4390(2019)30-0194-02(转下页) 194--

半导体行业发展趋势分析

半导体行业发展趋势分析 新型计算架构浪潮推动,中国半导体产业弯道超车机会来临

核心观点: ●2018,半导体市场供需两旺,中国市场迎弯道超车机遇 需求端新市场新应用推动行业成长:1)比特币市场的火爆带动矿机需求快速增加,ASIC 芯片矿机凭借设计简单,成本低,算力强大等优势被大量采用。国内ASIC 矿机芯片厂商比特大陆、嘉楠耘智、亿邦股份自身业绩高增长的同时,其制造与封测环节供应商订单快速增长。2)汽车电子、人工智能、物联网渐行渐近,带动行业成长。供给端国内建厂潮加剧全球半导体行业资本开支增长,上游确定性受益。 ● 1 月半导体行情冰火两重天 A 股市场:18 年1 月以来(至1 月26 日)申万半导体指数下跌9.03%,半导体板块跑输电子行业5.9 个百分点,跑输上证综指16.59 个百分点,跑 输沪深300 指数17.72 个百分点;其中制造(-5.59%)>封装(-5.64%)> 分立器件(-5.66%)>存储器(-5.85%)>设计(-7.34%)>设备(-9.57%)> 材料(-11.17%);估值大幅回落。海外市场:费城半导体指数上涨6.79%,创历史新高,首次超过2001 年最高值;矿机及人工智能带动GPU 需求量增长,英伟达作为全球GPU 龙头深度受益,1 月以来(至1 月26 日)股价上涨22.14%;设备龙头整体上涨。 ●12 月北美半导体设备销售额创历史新高,存储芯片价格平稳波动 根据WSTS 统计,11 月全球半导体销售额达376.9 亿美金,同比增长21.5%,环比增长1.6%,创历史新高。其中北美地区半导体11 月销售额87.7 亿美金,同比增长40.2%,环比增长2.6%,是全球半导体销售额增长最快区域。分版块看,12 月北美半导体设备销售额23.88 亿美金,同比增长27.7%,环比增长16.35%,创历史新高;存储芯片价格1 月以来(至1 月26 日)价格 波动。 ●投资建议 我们认为国内IC 产业进入加速发展时期,由市场到核“芯”突破这一准则不断延续,从智能手机领域起步,未来有望在人工智能、汽车电子、5G、物联网等新兴市场实现加速追赶。本月重点推荐卡位新兴应用市场,业绩快速成长的华天科技、长电科技,建议关注通富微电;同时下游资本开支扩张带给上游设备领域的投资机会,建议关注北方华创、长川科技。

SiC功率半导体器件技术发展现状及市场前景

SiC功率半导体器件技术发展现状及市场前景 近年来,Si功率器件结构设计和制造工艺日趋完善,已经接近其材料特性决定的理论极限,依靠Si器件继续完善来提高装置与系统性能的潜力十分有限。本文首先介绍了SiC功率半导体器件技术发展现状及市场前景,其次阐述了SiC功率器件发展中存在的问题,最后介绍了SiC功率半导体器件的突破。 SiC功率半导体器件技术发展现状1、碳化硅功率二极管 碳化硅功率二极管有三种类型:肖特基二极管(SBD)、PiN二极管和结势垒控制肖特基二极管(JBS)。由于存在肖特基势垒,SBD具有较低的结势垒高度。因此,SBD具有低正向电压的优势。SiC SBD的出现将SBD的应用范围从250 V提高到了1200 V。同时,其高温特性好,从室温到由管壳限定的175℃,反向漏电流几乎没有增加。在3 kV以上的整流器应用领域,SiC PiN和SiC JBS二极管由于比Si整流器具有更高的击穿电压、更快的开关速度以及更小的体积和更轻的重量而备受关注。 2、单极型功率晶体管,碳化硅功率MOSFET器件 硅功率MOSFET器件具有理想的栅极电阻、高速的开关性能、低导通电阻和高稳定性。在300V以下的功率器件领域,是首选的器件。有文献报道已成功研制出阻断电压10 kV 的SiC MOSFET。研究人员认为,碳化硅MOSFET器件在3kV~5 kV领域将占据优势地位。尽管遇到了不少困难,具有较大的电压电流能力的碳化硅MOSFET器件的研发还是取得了显著进展。 另外,有报道介绍,碳化硅MOSFET栅氧层的可靠性已得到明显提高。在350℃条件下有良好的可靠性。这些研究结果表明栅氧层将有希望不再是碳化硅MOSFET的一个显著的问题。 3、碳化硅绝缘栅双极晶体管(SiC BJT、SiC IGBT)和碳化硅晶闸管(SiC Thyristor) 最近报道了阻断电压12kV的碳化硅P型IGBT器件,并具有良好的正向电流能力。碳化硅IGBT器件的导通电阻可以与单极的碳化硅功率器件相比。与Si双极型晶体管相比,SiC 双极型晶体管具有低20~50倍的开关损耗以及更低的导通压降。SiC BJT主要分为外延发

中国芯片行业发展概况分析研究

中国芯片行业发展概况分析研究 (一)半导体投资机会来临,未来3-5年为重要投资周期。 2015年初至今费城半导体指数持续创出新高,北美半导体设备BB值已连续8个月不低于1.0,全球半导体行业高景气周期将持续。国内政策支持力度不断加大,由过去单一政策支持转变为政策和资金共同支持,扶持重点将向制造环节倾斜,利好全产业链。随着IPO重启,A股将迎来一批优秀的半导体公司上市,未来3-5年为半导体行业重要投资周期。 (二)封测环节投资机会在当下。封测环节技术壁垒较低,人力成本要求高,有利于国内企业在半导体产业链切入。 在过去十多年发展中,封测环节一直占据国内集成电路产业主导,不过主要被海外IDM厂商的封测厂占据。现在A股上市的封测企业质地优秀,长电科技、华天科技、晶方科技,完成先进封装技术布局,符合未来封装行业趋势。 (三)IC设计领域潜在投资机会巨大。 过去十年在政策支持和终端市场需求强劲的双重动力推动下实现了持续快速增长,是半导体产业链上发展最快的一环。中为咨询观察目前,国内已经涌现出华为海思、展讯等具备全球竞争力的IC设计公司。华为海思最近发布的麒麟

Kirin920性能卓越,有望冲击移动应用处理器第一阵营。紫光集团私有化收购展讯和锐迪科实施强强联合,并提出了要打造世界级芯片巨头的宏伟目标。未来将会有一批国内最优秀具备国际竞争力的IC设计公司有望在A股上市,潜在投资机会巨大。 (四)晶圆制造领域快速追赶,利好全产业链。 晶圆制造环节具有极高的资本壁垒和技术壁垒,盈利能力丰厚。过去国内晶圆制造环节发展严重滞后,直接影响国内半导体全产业链发展。未来,国家将会加大对晶圆制造环节的政策和资金支持力度。中芯国际作为国内最大全球第五大的晶圆代工企业,将挑起国内集成电路崛起重任,成为政府主要支持对象,利好国内半导体全产业链发展。 (五)投资建议:封测环节重点关注:

中国芯片产业未来发展前景展望

中投顾问产业研究中心 中投顾问·让投资更安全 经营更稳健 中国芯片产业未来发展前景展望 中投顾问在《2017-2021年中国芯片行业产业链深度调研及投资前景预测报告》中提到,芯片产业一直是中国科技产业的“阿喀流斯之踵”——长期受制于人,即使有像银河超级计算机这些“面子”上的产品,其“里子”用的还是外国进口的芯片。 美国、韩国、日本、台湾的半导体产业都是顺着市场潮流和资本市场的东风发展起来的。技术的积累,研究的进步离不开市场对浪潮之巅新产品的追捧,反过来也为其进一步开发研究拓展打好了资金基础,这是一个良性循环过程,同时商业模式也从探索走向成熟。 但是在整个芯片市场开始衰退的时间里,中国的市场需求依旧保持着足够的活力,全球芯片市场自2015年中开始的衰退,一直持续至今,除了中国之外的所有区域市场销售额与前一年同期相较都呈现衰退。 中国市场同样面临着PC 市场的下滑与智能手机市场饱和的问题,而总的市场需求却能够增加则说明在物联网领域等新兴市场的需求要比国外市场增加的更多,这其实也国内物联网的市场反应并不落后国外,所以这也给了国产芯片产业的一个机会,国产芯片产业可以从两个角度发展自主芯片产业。 一、政府大力扶持 近几十年来,中国政府一直在断断续续地促进本土半导体行业的发展。但是之前投入的热情也不是很大,在整个90年代后半期投入的资金不足10亿美元。但是,根据2014年制定的一项宏伟计划,政府将向公共和私营基金投入1000亿至1500亿美元。此举的目标是到2030年从技术上赶超世界领先企业,包括各类芯片的设计、装配和封装公司,从而摆脱对国外供应商的依赖。在许多芯片业务领域,中国企业最终可能在技术上实现赶超,但却有可能因为产能过剩而给整个行业带来冲击。因此在花大资金对芯片产业进行扶持引导的时候,需要认清两个问题: (一)中国半导体制造能力弱,无法支撑中国大陆目前快速发展的设计企业的代工需求,也无法跟上设计企业、整机企业在很多关键领域需要自主产能的需求,比如存储器、基带芯片需要的先进工艺,比如MEMS 、功率器件需要的特色工艺,必须扩大产能,提升制造能力。 (二)中国对制造业的投资·增速在前些年是远远落后于全球水平的,现在遇到摩尔定律失效,FDSOI 等新的工艺被关注,这是难得的制造业发展窗口期,当然应该加大投资力度,在工艺提升和产能扩充上加快赶超速度。 二、直接引进外国技术 中投顾问在《2017-2021年中国芯片行业产业链深度调研及投资前景预测报告》中提到,让外国芯片企业将核心技术转让给中国企业,这在以前听起来是天方夜谭的事情,但是,随着芯片市场整体的下滑,以及中国芯片市场的强势,让越来越多的芯片企业更加愿意在中国市场有更深入的投入,前不久AMD 便宣布了允许旗下一家新成立的中国合资企业使用其专利技术以开发芯片。当然更暴力的做法就如同紫光一般直接斥巨资收购芯片厂商。

中国半导体产业发展历史大事记

中国半导体产业发展历史大事记 1947年,美国贝尔实验室发明了半导体点接触式晶体管,从而开创了人类的硅文明时代。1956年,我国提出“向科学进军”,根据国外发展电子器件的进程,提出了中国也要研究半导体科学,把半导体技术列为国家四大紧急措施之一。中国科学院应用物理所首先举办了半导体器件短期培训班。请回国的半导体专家黄昆、吴锡九、黄敞、林兰英、王守武、成众志等讲授半导体理论、晶体管制造技术和半导体线路。在五所大学――北京大学、复旦大学、吉林大学、厦门大学和南京大学联合在北京大学开办了半导体物理专业,共同培养第一批半导体人才。培养出了第一批著名的教授:北京大学的黄昆、复旦大学的谢希德、吉林大学的高鼎三。 1957年毕业的第一批研究生中有中国科学院院士王阳元(北京大学微电子所所长)、工程院院士许居衍(华晶集团中央研究院院长)和电子工业部总工程师俞忠钰(北方华虹设计公司董事长)。 1957年,北京电子管厂通过还原氧化锗,拉出了锗单晶。中国科学院应用物理研究所和二机部十局第十一所开发锗晶体管。当年,中国相继研制出锗点接触二极管和三极管(即晶体管)。 1958年,美国德州仪器公司和仙童公司各自研制发明了半导体集成电路(IC)之后,发展极为迅猛,从SSI(小规模集成电路)起步,经过MSI(中规模集成电路),发展到LSI(大规模集成电路),然后发展到现在的VLSI(超大规模集成电路)及最近的ULSI(特大规模集成电路),甚至发展到将来的GSI(甚大规模集成电路),届时单片集成电路集成度将超过10亿个元件。 1959年,天津拉制出硅(Si)单晶。 1960年,中科院在北京建立半导体研究所,同年在河北建立工业性专业化研究所――第十三所(河北半导体研究所)。 1962年,天津拉制出砷化镓单晶(GaAs),为研究制备其他化合物半导体打下了基础。1962年,我国研究制成硅外延工艺,并开始研究采用照相制版,光刻工艺。 1963年,河北省半导体研究所制成硅平面型晶体管。 1964年,河北省半导体研究所研制出硅外延平面型晶体管。 1965年12月,河北半导体研究所召开鉴定会,鉴定了第一批半导体管,并在国内首先鉴定了DTL型(二极管――晶体管逻辑)数字逻辑电路。1966年底,在工厂范围内上海元件五厂鉴定了TTL电路产品。这些小规模双极型数字集成电路主要以与非门为主,还有与非驱动器、与门、或非门、或门、以及与或非电路等。标志着中国已经制成了自己的小规模集成电路。 1968年,组建国营东光电工厂(878厂)、上海无线电十九厂,至1970年建成投产,形成中国IC产业中的“两霸”。 1968年,上海无线电十四厂首家制成PMOS(P型金属-氧化物半导体)电路(MOSIC)。拉开了我国发展MOS电路的序幕,并在七十年代初,永川半导体研究所(现电子第24所)、上无十四厂和北京878厂相继研制成功NMOS电路。之后,又研制成CMOS电路。 七十年代初,IC价高利厚,需求巨大,引起了全国建设IC生产企业的热潮,共有四十多家集成电路工厂建成,四机部所属厂有749厂(永红器材厂)、871(天光集成电路厂)、878(东光电工厂)、4433厂(风光电工厂)和4435厂(韶光电工厂)等。各省市所建厂主要有:上海元件五厂、上无七厂、上无十四厂、上无十九厂、苏州半导体厂、常州半导体厂、北京半导体器件二厂、三厂、五厂、六厂、天津半导体(一)厂、航天部西安691厂等等。

集成电路产业现状及发展趋势

集成电路产业现状及发展趋势 付靖国家无线电监测中心监测中心 关键词:集成电路集成电路产业发展与现状 摘要:1958年美国德克萨斯仪器公司发明全球第一块集成电路后,随着硅平面技术的发展,20世纪60年代先后发明双极型和MOS型两种重要电路,创造了一个前所未有的具有极强渗透力和旺盛生命力的新兴产业——集成电路产业。 一、什么是集成电路产业 1、集成电路 集成电路是采用半导体制作工艺,在一块较小的单晶硅片上制作许多晶体管及电阻器、电容器等元器件,并按照多层布线或隧道布线的方法将元器件组合成完整的电子电路,通常用“IC”(Integrated Circuit)。 与集成电路相关的几个概念: 晶圆:多指单晶硅圆片,由普通硅沙拉制提炼而成,是最常用的半导体材料,按其直径分为4英寸、5英寸、6英寸、8英寸等规格,近来发展出12英寸甚至更大规格。晶圆越大,同一圆片上可生产的IC就多,可降低成本,但要求材料技术和生产技术更高。 光刻:IC生产的主要工艺手段,指用光技术在晶圆上刻蚀电

路。 前、后工序:IC制造过程中,晶圆光刻的工艺(即所谓流片),被称为前工序,这是IC制造的最要害技术;晶圆流片后,其切割、封装等工序被称为后工序。 线宽:4微米/1微米/0.6微米/0.35微米/90纳米等,是指IC 生产工艺可达到的最小导线宽度,是IC工艺先进水平的主要指标。线宽越小,集成度就高,在同一面积上就集成更多电路单元。 封装:指把硅片上的电路管脚,用导线接引到外部接头处,以便与其它器件连接。 2、集成电路产品分类 集成电路产品一般是以内含晶体管等电子组件的数量即集成度来分类,即分成:①小型集成电路(SSI),晶体管数10~100;②中型集成电路(MSI),晶体管数100~1000;③大规模集成电路(LSI),晶体管数1000~10,0000;④超大规模集成电路(VLSI),晶体管数10,0000以上。 3、集成电路产业链 一条完整的集成电路产业链除了包括设计、芯片制造和封装测试三个分支产业外,还包括集成电路设备制造、关键材料生产等相关支撑产业。如果按照集成电路产业链上下游产业划分,可简单的划分为集成电路设计业和制造业,其中制造业又衍生出代工业。目前美国仍是集成电路产品设计和

半导体器件的发展趋势

龙源期刊网 https://www.360docs.net/doc/0b14229603.html, 半导体器件的发展趋势 作者:张川 来源:《科技传播》2012年第06期 社会发展快速发展,一些传统的功能材料很单一,已经不能够满足人们的需求,所以就出现了具有半导体特性的有机材料,比如塑料、高分子聚合物,这些有机半导体材料有可能会取代传统的由Si和GaAs来制作的材料。有机半导体材料具有独特的优势,它的原料很容易得到,而且原料的重量轻、成本低,制作的工艺简易,还有就是具有良好的环境稳定性。有机半导体材料所制作的器件属于可回收利用的器件,能做到有效环保。根据传统的知识体系来讲,有机体是不能够导电的,所以都是被作为绝缘材料。上个世纪70年代,科学家发现了如果对聚乙炔分子掺杂,就可以成为良性的导体,之后,半导体技术就开始被深入研究,并且取得了很大的成绩。上个世纪80年代,有机半导体研究领域迅速扩张,很多世界知名的企业都使用半导体技术,比如IBM通用、柯达等等;还有剑桥大学和普林斯顿大学也都设立了半导体的研究院。开发出了能够改善半导体稳定性以及特性的新技术以及新型的材料,这些新技术以及新型材料被广泛应用到各行各业当中,大大提高了有机电子器件的性能,比如有机发光二极管、有机传感器、有机场效应晶体管以及有机光伏电池等等。有机半导体器件正在越来越多的应用到各个行业当中,市场份额也在逐年快速增长。 在大家的不懈努力下,有机半导体技术和材料都取得了很大的发展,这个学科集合了材料学、物理和化学等等很多学科,是一个交叉学科,半导体技术正在不断发展,将来还会以更快的速度发展。一些专家认为,有机半导体材料开发出的各种器件正在改变未来高科技的发展。 1 有机太阳电池 传统的太阳电池是化合物薄膜太阳电池,而新型的太阳电池要采用新型的技术,有机太阳电池将作为一种新型产物摆在大家的面前,有机太阳电池的生产流程很简单,而且可以通过讲解来减少对环境的污染,由于这些优点符合当代社会的需要,所以有机太阳电池越来越受到大家的关注。如此廉价的太阳电池会让世界的能源发生巨大的改变。有机太阳电池比传统的电池更薄,重量更轻,受光面积在不断增加,所以可以大大提高光电的使用效率,在电脑等小型设备当中可以当作电源来用。可以使用有机太阳电池作为OLED屏幕的电源,可以大大减少重量。虽然太阳电池很薄、很轻,也很有柔性,但是它的效率不高,而且寿命也比较短,通过研究,改变太阳电池的缺点,使得效率达到10%,寿命也可以超过5年。 2 有机半导体晶体管 有机半导体材料的晶体管是有机电子器件当中很重要的一种器件,比如OFET。当前OFET的技术主要有聚合物、小分子蒸发或者是小分子溶液铸模等等。OFET的优点是成本低、柔性大等等,有很好的发展前景。OFET的发展很迅速,无论是材料还是制备工艺方面都有了突破,它可以使OLED发光,形成逻辑电路,发光场效应晶体管以及单晶场效应晶体管等

半导体发展及趋势

1947年12月23日第一块晶体管在贝尔实验室诞生,从此人类步入了飞速发展的电子时代。 1959年首次将集成电路技术推向商用化的飞兆半导体公司,也是曾经孵化出包括英特尔、AMD、美国国家半导体、LSI Logic、VLSI Technology、Intersil、Altera和Xilinx等等业界众多巨擘的飞兆半导体,现在已成为专注于功率和能效的公司; 全球半导体产业正在东移,以台积电为首的晶圆代工将成为全球半导体工艺与产能双双领先的公司;传统的IDM厂商都向轻资厂转变,65nm已鲜有IDM 跟踪,至45nm时除了memory厂商外,仅剩英特尔一家了;AMD在2008年将芯片制造部分剥离出来。

1947年12月23日,贝尔实验室在助听器中展示了人类第一块晶体管,William Shockley被誉为晶体管之父。在随后的10年中,晶体管技术不断进步,包括随后发明的单锗晶硅、生长结型晶体管、接触型硅晶体管和固态晶体管开关等,德州仪器和贝尔实验室分别在1954年推出晶体管收音机和全晶体管计算机,并且,1957年美国第一个轨道卫星“探测者”也首次使用了晶体管技术。这10年间,半导体产业处于最激动人心的“发明时代”。 晶体管的演变 1958年8月,德州仪器的Jack Kilby将分离的晶体管和器件集成到一个锗片上,向人类展示了第一片集成电路;次年,飞兆半导体的Robert Noycy发明了平面工艺技术,使得集成电路可量产化,从此,人类从半导体的“发明时代”进入了“量产时代”。 半导体产业四大趋势 第一大趋势:30年河“西”,30年河“东”。回望晶体管诞生这60年,我们可以明显看到半导体产业明显向东方迁移的趋势,特别是从80年代末开始。1987年台积电这个纯晶圆代工厂的成立,宣告着半导体制造业开始从西方向东方迁移;90年代初,三星成为全球最大的DRAM厂商,随后,再成为全球闪存的最大厂商;90年代中,台湾智原、联发科、联咏等一批IC公司从联电分离出来,吹响了东方IC公司挑战西方IC公司的号角;进入21世纪,中芯国际带动中国大陆代工业成长起来,成为另一个制造中心,并且也带动了中国IC设计业的成长;最后,德州仪器、飞思卡尔、英飞凌、LSI以及ADI等众多传统的IDM厂商转

半导体技术及其器件的发展应用

半导体技术及其器件的发展应用 120131326 刘玉光 摘要:半导体技术是指半导体加工的各种技术,包括晶圆的生长技术、薄膜沉 积、光刻、蚀刻、掺杂技术和工艺整合等技术,以半导体为材料,制作成组件及集成电路的技术。半导体材料已经有多年的发展历史,自从有机半导体材料开始受到重视以后,有机半导体器件的制作水平就有了很大程度的提高,并且已经开始投入到市场上,来实现它的价值。本文简要回顾了半导体技术多年的发展历史,介绍了有机半导体的发展情况,各种器件的技术现状;太阳电池、有机发光二极管等有机半导体器件的应用情况,阐述了有机半导体的优势,探讨了有机半导体技术的应用前景,并且介绍了晶体管、集成电路、功率半导体器件以及半导体材料等的研究发展过程和当前的水平,并展望21世纪半导体技术的发展方向及其在信息社会中将起的作用。 关键字:半导体技术;半导体器件;发展;应用;展望 一、历史的回顾 早在晶体管发明之前,人们就将半导体用于电子学中,第一个无线电检测器采用金属丝与矿石或硅相接触来工作的,但这种检测器性能很不稳定,而且取决于操纵者找到最佳整流触点的能力。三十年代初,其它半导体,诸如氧化亚铜和硒被用作整流器,在此期间,人们对半导体材料的体特性和表面特性在理论上有了进一步的认识,但是当时因缺少纯而稳定的半导体样品而无法通过实验来证实。从三十年代后期,特别在第二次世界大战期间,人们对微波频率做了大量的工作,因此对用于低噪音、小电容检波器的点接触二极管再次表现出极大兴趣。美国贝尔电话实验室的微波研究组将硅选为主要材料,此后对硅的性质作深入细致的研究,一直延续到六十年代。第二次世界大战期间,半导体技术的发展受到重视。因为在通信、探测敌方目标、导航和火力控制系统中需要先进的电子技术和器件。尤其在武器系统中,对元器件的尺寸、重量、可靠性提出更高的要求,为此美国国家标准局为研制坚固耐用的小型器件提供资助,以促其发展。 与此同时,美国贝尔实验室有一个固体物理研究组,这个研究组在研究半导体基础特性方面差不多花了两年半时间,直到1947年12月诞生了世界上第一只点接触晶体管。晶体管的诞生标志一个新时代的开始,引起全球科学界的极大兴趣,从而对材料制备和工艺技术方面进行深入细致的研究,发展速度日新月异,例如, 1947年的点接触晶体管, 1951年的结型晶体管, 1953年的表面势垒晶体管, 1955年的扩散基区晶体管, 1959年的平面晶体管。由平面晶体管步入集成电路,这一发展趋势是始料未及的。 在半导体技术发展过程中,必须提及材料科学所取得的成就。第一代半导体材料为元素半导体,如锗和硅。锗是最早实现提纯和完美晶体生长,并最早用来制造晶体管的半导体材料。但是,由于锗的禁带较窄,锗器件的稳定工作温度不如硅器件高,加之资源有限,其重要地位早在半导体工业发展初期就被硅所取代。到目前为止,二极管、晶体管和集成电路的制造,仍然是半导体工业的核心内容,而硅是制造这些器件的最主要材料。第二代为化合物半导体。化合物半导体大多是由元素周期表中间部分的某两种或两种以上元素化合而成的,其中砷化镓和磷化镓

相关文档
最新文档