2017年天津市河北区中考数学二模试卷(有答案)
天津市河北区2017年中考数学《二次函数》复习练习题及答案

九年级数学中考专题复习二次函数一、选择题:1、将抛物线y=(x﹣1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为()A.y=(x﹣2)2 B.y=(x﹣2)2+6 C.y=x2+6 D.y=x22、已知抛物线y=x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是()A.﹣1<x<4 B.﹣1<x<3 C.x<﹣1或x>4 D.x<﹣1或x>33、已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣3x+m=0的两实数根是()A.x1=1,x2=﹣1 B.x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=34、函数y=(x﹣1)2﹣k与y=(k≠0)在同一坐标系中的图象大致为()A. B. C. D.5、如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是()A.5个 B.4个 C.3个 D.2个6、在同一平面直角坐标系中,函数y=mx+m和函数y=-mx2+2x+2(m是常数,且m≠0)图象可能是( )7、如图是一个横断面为抛物线形状的拱桥,当水面宽4m时,拱顶(拱桥洞的最高点)离水面2m,当水面下降1m时,水面的宽度为()A.3 B.2C.3D.28、生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y和月份n之间函数关系式为y=-n2+14n-24,则该企业一年中利润最高的月份是( )A.5月B.6月C.7月D.8月9、已知a<﹣1,点(a﹣1,y1)、(a,y2)、(a+1,y3)都在函数y=x2﹣2的图象上,则()A.y1<y2<y3 B.y1<y3<y2 C.y3<y2<y1 D.y2<y1<y310、在平面直角坐标系中,二次函数y=﹣x2+6x﹣9的图象顶点为A,与y轴交于点B.若在该二次函数图形上取一点C,在x轴上取一点D,使得四边形ABCD为平行四边形,则D点的坐标为()A.(﹣9,0) B.(﹣6,0) C.(6,0) D.(9,0)11、二次函数y=ax2+bx+c的图象如图所示,对称轴x=﹣1,下列五个代数式ab、ac、a﹣b+c、b2﹣4ac、2a+b中,值大于0的个数为()A.5 B.4 C.3 D.212、根据下列表格的对应值,判断方程ax2+bx+c=0(a≠0,a、b、c为常数)一个解的范围是()A.3<x<3.23 B.3.23<x<3.24 C.3.24<x<3.25 D.3.25<x<3.2613、如图,在平面直角坐标系中,四边形OABC是菱形,点C的坐标为(4,0),∠AOC=60°,垂直于轴的直线从轴出发,沿轴正方向以每秒1个单位长度的速度向右平移,设直线与菱形OABC的两边分别交于点M、N(点M在点N 的上方),若△OMN的面积S,直线的运动时间为秒(),则能大致反映S与的函数关系的图像是( )14、如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(-1,0),对称轴为直线x=1,与y轴的交点B在(0,2)和(0,3)之间(包括这两点),下列结论:①当x>3时,y<0;②3a+b<0;③-1≤a≤;④4ac-b2>8a.其中正确的结论是()A.①②③B.①②④C.①③④D.①②③④15、已知二次函数y=x2-2x-3,点P在该函数的图象上,点P到x轴、y轴的距离分别为d1、d2.设d=d1+d2,下列结论中:①d没有最大值;②d没有最小值;③;-1<x<3时, d随x的增大而增大;④满足d=5的点P有四个.其中正确结论的个数有( )A.1个 B.2个 C.3个 D.4个二、填空题:16、如图,点E是抛物线y=a(x﹣2)2+k的顶点,抛物线与y轴交于点C,过点C作CD∥x轴,与抛物线交于点B,与对称轴交于点D.点A是对称轴上一点,连结AC、AB.若△ABC是等边三角形,则图中阴影部分图形的面积之和是.17、如图,一农户要建一个矩形猪舍,猪舍的一边利用住房墙,另外三边用25m长的建筑材料围成,为方便进出,在CD边上留一个1m宽的门,若设AB为y(m),BC为x(m),则y与x之间的函数关系式为.18、有一个二次函数的图象,三位学生分别说出了它的一些特点:甲:对称轴是直线x=4;乙:与x轴两个交点的横坐标都是整数;丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3.请你写出满足上述全部特点的一个二次函数的表达式:.(答案不惟一)19、二次函数y=x2-6x+n的部分图象如图所示,若关于x的一元二次方程x2-6x+n=0的一个解为x1=1,则另一个解x2= ___________.20、如图,Rt△OAB的顶点A(-2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为________.21、若抛物线y=x2+bx+c与x轴只有一个交点,且过点A(m,n),B(m+6,n),则n=______.22、小明在某次投篮中,球的运动路线是抛物线y=﹣x2+3.5的一部分,如图所示,若球命中篮圈中心,则他与篮底的距离L是m.23、如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为米.24、已知抛物线y=﹣与x轴交于点A,点B,与y轴交于点C,若D为AB中点,则CD长为.25、如图,在平面直角坐标系中,抛物线y=ax2+3与y轴交于点A,过点A与x轴平行的直线交抛物线y=于点B、C,则BC的长为.26、如图,在平面直角坐标系中,点A在抛物线y=x2-2x+2上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为.27、如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B,有人在直线AB上点C(靠点B一侧)竖直向上摆放若干个无盖的圆柱形桶.试图让网球落入桶内,已知AB=4米,AC=3米,网球飞行最大高度OM=5米,圆柱形桶的直径为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).当竖直摆放圆柱形桶至少个时,网球可以落入桶内.28、如图,抛物线与交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,的值总是正数;②;③当x=0时,;④AB+AC=10;⑤,其中正确结论的个数是:.29、如图,平行于x轴的直线AC分别交函数y1=x2(x≥0)与y2=(x≥0)的图象于B、C两点,过点C作y轴的平行线交y1的图象于点D,直线DE∥AC,交y2的图象于点E,则= .30、如图,抛物线的对称轴是.且过点(,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有正确的结论是.(填写正确结论的序号)三、简答题:31、如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0)、B(3,0)两点,交y轴于点C.(1)求该抛物线的解析式与顶点D的坐标;(2)请判断以B、C、D为顶点的三角形的形状;(3)若点Q是y轴上的动点,在抛物线上是否存在点P使得以点A、B、P、Q为顶点的四边形为平行四边形?若存在,求出所有满足条件的点P坐标;若不存在,请说明理由.32、如图,抛物线的顶点D的坐标为(1,﹣4),与y轴交于点C(0,﹣3),与x轴交于A、B两点.(1)求该抛物线的函数关系式;(2)在抛物线上存在点P(不与点D重合),使得S△PAB=S△ABD,请求出P点的坐标.33、某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看做一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)每月的利润z(万元)与销售单价x(元)之间的函数关系式为;(2)当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?34、某水果店出售某种水果,已知该水果的进价为6元/千克,若以9元/千克的价格销售,则每天可售出200千克;若以11元/千克的价格销售,则每天可售出120千克.通过调查验证,我发现每天的销售量y(千克)与销售单价x(元)之间存在一次函数关系.(1)求y(千克)与x(元)(x>0)的函数关系式;(2)当销售单价为何值时,该水果店销售这种水果每天获取的利润达到280元?(利润=销售量×(销售单价﹣进价))(3)该水果店在进货成本不超过720元时,销售单价定为多少元可获得最大利润?最大利润是多少?35、已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.36、一座拱桥的轮廓是抛物线型(如图1所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图2所示),其表达式是y=ax2+c的形式.请根据所给的数据求出a,c的值.(2)求支柱MN的长度.(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.37、某公司销售一种进价为20元/个的计算器,其销售量y(万个)与销售价格x(元/个)的变化如下表:同时,销售过程中的其他开支(不含进价)总计40万元.(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式.(2)求出该公司销售这种计算器的净得利润z(万元)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?38、九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y元(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.39、已知:抛物线y=x2+bx+c经过点(2,﹣3)和(4,5).(1)求抛物线的表达式及顶点坐标;(2)将抛物线沿x轴翻折,得到图象G,求图象G的表达式;(3)在(2)的条件下,当﹣2<x<2时,直线y=m与该图象有一个公共点,求m的值或取值范围.40、如图,已知抛物线y=ax2﹣5ax+2(a≠0)与y轴交于点C,与x轴交于点A(1,0)和点B.(1)求抛物线的解析式;(2)求直线BC的解析式;(3)若点N是抛物线上的动点,过点N作NH⊥x轴,垂足为H,以B,N,H为顶点的三角形是否能够与△OBC 相似?若能,请求出所有符合条件的点N的坐标;若不能,请说明理由.参考答案1、D.2、B.3、B.4、C.5、B.6、D.7、B.8、C.9、C.10、D.11、C.12、C.13、C.14、D.15、B.16、答案为:2.17、答案为:y=13﹣x.18、答案为:y=x2﹣x+3.19、答案为:520、答案为:(,2) 21、答案是:9.22、答案为:4.5.23、答案为:2米.24、答案为:.25、答案为:6.26、答案为:_1 27、答案为:8. 28、答案为:4.29、答案为:3﹣.30、答案为:①③⑤.31【解答】解:(1)把A(﹣1,0)、B(3,0)两点代入y=x2+bx+c得:,解得:b=﹣2,c=﹣3,∴抛物线的解析式为:y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点D的坐标为(1,4);(2)如图1,连接BC、CD、BD,DM⊥x轴,DN⊥y轴,垂足分别为M、N,∵y=x2﹣2x﹣3与y轴的交点C(O,﹣3),A(﹣1,0)、B(3,0),D(1,4),∴BC==3,CD==,BD==2,∵(3)2+()2=(2)2∴BC2+CD2=BD2∴△BCD是直角三角形;(3)如图2,①当AB为边时,只要PQ∥AB,且PQ=AB=4即可,又知点Q在y轴上,所以点P的横坐标为﹣4或4,当x=﹣4时,y=21;当x=4时,y=5;所以此时点P1的坐标为(﹣4,21),P2的坐标为(4,5);②当AB为对角线时,只要线段PQ与线段AB互相平分即可,线段AB中点为G,PQ必过G点且与y轴交于Q点,过点P3作x轴的垂线交于点H,可证得△P3HB≌△Q3OA,∴AO=BH,∴GO=GH,∵线段AB的中点G的横坐标为1,∴此时点P横坐标为2,由此当x=2时,y=﹣3,∴这是有符合条件的点P3(2,﹣3),∴所以符合条件的点为:P1的坐标为(﹣4,21),P2的坐标为(4,5);P3(2,﹣3).32、【解答】解:(1)∵抛物线的顶点D的坐标为(1,﹣4),∴设抛物线的函数关系式为y=a(x﹣1)2﹣4,又∵抛物线过点C(0,﹣3),∴﹣3=a(0﹣1)2﹣4,解得a=1,∴抛物线的函数关系式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3;(2)∵S△PAB=S△ABD,且点P在抛物线上,∴点P到线段AB的距离一定等于顶点D到AB的距离,∴点P的纵坐标一定为4.令y=4,则x2﹣2x﹣3=4,解得x1=1+2,x2=1﹣2.∴点P的坐标为(1+2,4)或(1﹣2,4).33、【解答】解:(1)由题意得,z=y(x﹣18)=(﹣2x+100)(x﹣18)=﹣2x2+136x﹣1800.故答案是:z=﹣2x2+136x﹣1800;(2)设月销售利润为w,则w=﹣2x2+140x﹣2000=﹣2(x﹣35)2+450,当x=35时,w取得最大,最大利润为450万元.答:当销售单价为35元时,厂商每月能获得最大利润,最大利润是450万元;(3)结合(2)及函数z=﹣2x2+136x﹣1800的图象(如图所示)可知,当25≤x≤43时z≥350,又由限价32元,得25≤x≤32,根据一次函数的性质,得y=﹣2x+100中y随x的增大而减小,故当x=32时,每月制造成本最低.最低成本是18×(﹣2×32+100)=648(万元),因此,所求每月最低制造成本为648万元.34、【解答】解:(1)设y(千克)与x(元)(x>0)的函数关系式为:y=kx+b,根据题意可得:,解得:.故y(千克)与x(元)(x>0)的函数关系式为:y=﹣40x+560;(2)∵W=280元,∴280=(﹣40x+560)×(x﹣6)解得:x1=7,x2=13.答:当销售单价为7元或13元时,每天可获得的利润达到W=280元;(3)∵利润=销售量×(销售单价﹣进价)∴W=(﹣40x+560)(x﹣6)=﹣40x2+800x﹣3360=﹣40(x﹣10)2+640,当售价为10元,则y=560﹣400=160,160×6=960(元)>720元,则当(﹣40x+560)×6=720,解得:x=11.即当销售单价为11元时,每天可获得的利润最大,最大利润是600元.35、【解答】方法一:解:(1)将A(﹣1,0)、B(3,0)、C(0,3)代入抛物线y=ax2+bx+c中,得:,解得:∴抛物线的解析式:y=﹣x2+2x+3.(2)连接BC,直线BC与直线l的交点为P;∵点A、B关于直线l对称,∴PA=PB,∴BC=PC+PB=PC+PA设直线BC的解析式为y=kx+b(k≠0),将B(3,0),C(0,3)代入上式,得:,解得:∴直线BC的函数关系式y=﹣x+3;当x=1时,y=2,即P的坐标(1,2).(3)抛物线的对称轴为:x=﹣=1,设M(1,m),已知A(﹣1,0)、C(0,3),则:MA2=m2+4,MC2=(3﹣m)2+1=m2﹣6m+10,AC2=10;①若MA=MC,则MA2=MC2,得:m2+4=m2﹣6m+10,得:m=1;②若MA=AC,则MA2=AC2,得:m2+4=10,得:m=±;③若MC=AC,则MC2=AC2,得:m2﹣6m+10=10,得:m1=0,m2=6;当m=6时,M、A、C三点共线,构不成三角形,不合题意,故舍去;综上可知,符合条件的M点,且坐标为 M(1,)(1,﹣)(1,1)(1,0).(2)连接BC,∵l为对称轴,∴PB=PA,∴C,B,P三点共线时,△PAC周长最小,把x=1代入l BC:y=﹣x+3,得P(1,2).(3)设M(1,t),A(﹣1,0),C(0,3),∵△MAC为等腰三角形,∴MA=MC,MA=AC,MC=AC,(1+1)2+(t﹣0)2=(1﹣0)2+(t﹣3)2,∴t=1,(1+1)2+(t﹣0)2=(﹣1﹣0)2+(0﹣3)2,∴t=±,(1﹣0)2+(t﹣3)2=(﹣1﹣0)2+(0﹣3)2,∴t1=6,t2=0,经检验,t=6时,M、A、C三点共线,故舍去,综上可知,符合条件的点有4个,M1(1,),M2(1,﹣),M3(1,1),M4(1,0).(4)作点O关于直线AC的对称点O交AC于H,作HG⊥AO,垂足为G,∴∠AHG+∠GHO=90°,∠AHG+∠GAH=90°,∴∠GHO=∠GAH,∴△GHO∽△GAH,∴HG2=GO•GA,∵A(﹣1,0),C(0,3),∴l AC:y=3x+3,H(﹣,),∵H为OO′的中点,∴O′(﹣,),∵D(1,4),∴l O′D:y=x+,l AC:y=3x+3,∴x=﹣,y=,∴Q(﹣,).36【解答】解:(1)根据题目条件,A、B、C的坐标分别是(﹣10,0)、(10,0)、(0,6).将B、C的坐标代入y=ax2+c,得解得.所以抛物线的表达式是;(2)可设N(5,y N),于是.从而支柱MN的长度是10﹣4.5=5.5米;(3)设DE是隔离带的宽,EG是三辆车的宽度和,则G点坐标是(7,0),(7=2÷2+2×3).过G点作GH垂直AB交抛物线于H,则yH=﹣×72+6=3+>3.根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.37、【解答】解:(1)根据表格中数据可得出:y与x是一次函数关系,设解析式为:y=ax+b,则,解得:,故函数解析式为:y=﹣x+8;(2)根据题意得出:z=(x﹣20)y﹣40=(x﹣20)(﹣x+8)﹣40=﹣x2+10x﹣200,=﹣(x2﹣100x)﹣200=﹣[(x﹣50)2﹣2500]﹣200=﹣(x﹣50)2+50,故销售价格定为50元/个时净得利润最大,最大值是50万元.(3)当公司要求净得利润为40万元时,即﹣(x﹣50)2+50=40,解得:x1=40,x2=60.如上图,通过观察函数y=﹣(x﹣50)2+50的图象,可知按照公司要求使净得利润不低于40万元,则销售价格的取值范围为:40≤x≤60.而y与x的函数关系式为:y=﹣x+8,y随x的增大而减少,因此,若还需考虑销售量尽可能大,销售价格应定为40元/个.38、【解答】解:(1)当1≤x<50时,y=(x+40﹣30)=﹣2x2+180x+2000,当50≤x≤90时,y=(90﹣30)=﹣120x+12000,综上所述:y=;(2)当1≤x<50时,y=﹣2x2+180x+2000,y=﹣2(x﹣45)2+6050.∴a=﹣2<0,∴二次函数开口下,二次函数对称轴为x=45,当x=45时,y最大=6050,当50≤x≤90时,y随x的增大而减小,当x=50时,y最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;(3)①当1≤x<50时,y=﹣2x2+180x+2000≥4800,解得:20≤x<70,因此利润不低于4800元的天数是20≤x<50,共30天;②当50≤x≤90时,y=﹣120x+12000≥4800,解得:x≤60,因此利润不低于4800元的天数是50≤x≤60,共11天,所以该商品在整个销售过程中,共41天每天销售利润不低于4800元.39、【解答】解:(1)根据题意得,解得,所以抛物线的解析式为y=x2﹣2x﹣3.∵抛物线的解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标为(1,﹣4).(2)根据题意,﹣y=x2﹣2x﹣3,所以y=﹣x2+2x+3.(3)∵抛物线y=x2﹣2x﹣3的顶点为(1,﹣4),当x=﹣2时,y=5,抛物线y=﹣x2+2x+3的顶点(1,4),当x=﹣2时,y=﹣5.∴当﹣2<x<2时,直线y=m与该图象有一个公共点,则4<m<5或﹣5<m<﹣4.40、解:(1)∵点A(1,0)在抛物线y=ax2﹣5ax+2(a≠0)上,∴a﹣5a+2=0,∴a=,∴抛物线的解析式为y=x2﹣x+2;(2)抛物线的对称轴为直线x=,∴点B(4,0),C(0,2),设直线BC的解析式为y=kx+b,∴把B、C两点坐标代入线BC的解析式为y=kx+b,得,解得k=﹣,b=2,∴直线BC的解析式y=﹣x+2;(3)设N(x,x2﹣x+2),分两种情况讨论:①当△OBC∽△HNB时,如图1,=,即=,解得x1=5,x2=4(不合题意,舍去),∴点N坐标(5,2);②当△OBC∽△HBN时,如图2,=,即=﹣,解得x1=2,x2=4(不合题意舍去),∴点N坐标(2,﹣1);综上所述点N坐标(5,2)或(2,﹣1).。
2017年天津市中考数学试卷(含答案)

2017年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(﹣3)+5的结果等于()A.2 B.﹣2 C.8 D.﹣82.(3分)cos60°的值等于()A.B.1 C.D.3.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C.D.4.(3分)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263×108 B.1.263×107C.12.63×106D.126.3×1055.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C. D.6.(3分)估计的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.(3分)计算的结果为()A.1 B.a C.a+1 D.8.(3分)方程组的解是()A.B.C.D.9.(3分)如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC10.(3分)若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y311.(3分)如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD 上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BC B.CE C.AD D.AC12.(3分)已知抛物线y=x2﹣4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为()A.y=x2+2x+1 B.y=x2+2x﹣1 C.y=x2﹣2x+1 D.y=x2﹣2x﹣1二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算x7÷x4的结果等于.14.(3分)计算的结果等于.15.(3分)不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.(3分)若正比例函数y=kx (k 是常数,k ≠0)的图象经过第二、四象限,则k 的值可以是 (写出一个即可).17.(3分)如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点F ,G 分别在边BC ,CD 上,P 为AE 的中点,连接PG ,则PG 的长为 .18.(3分)如图,在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上.(1)AB 的长等于 ;(2)在△ABC 的内部有一点P ,满足S △PAB :S △PBC :S △PCA =1:2:3,请在如图所示的网格中,用无刻度...的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) .三、解答题(本大题共7小题,共66分。
天津市河北区2017年中考数学冲刺练习试卷(二及答案

2017年中考数学冲刺练习卷一、选择题:1.计算1-(-2)的正确结果是( )A.-2B.-1C.1D.32.当1<a<2时,代数式|a-2|+|1-a|的值是()A.-1B.1C.3D.-33.已知一个正多边形的内角是140°,则这个正多边形的边数是()A.6B.7C.8D.94.如图,已知△ABC的三个元素,则甲、乙、丙三个三角形中,和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙5.若下列选项中的图形均为正多边形,则哪一个图形恰有4条对称轴?()6.用矩形纸片折出直角的平分线,下列折法正确的是()A. B. C. D.7.下列函数中,是反比例函数的为()A.y=B.y=C.y=2x+1D.2y=x8.如图,边长为a的正六边形内有两个三角形(数据如图),则=()A.3B.4C.5D.69.下列说法:①所有等腰三角形都相似;②有一个底角相等的两个等腰三角形相似;③有一个角相等的等腰三角形相似;④有一个角为60o的两个直角三角形相似,其中正确的说法是()A.②④B.①③C.①②④D.②③④10.如图,正方形ABCD边长为4,点P从点A运动到点B,速度为1,点Q沿B﹣C﹣D运动,速度为2,点P、Q同时出发,则△BPQ的面积y与运动时间t(t≤4)的函数图象是()二、填空题:11.分解因式:x2﹣4(x﹣1)= .12.一只蚂蚁在如图1所示的七巧板上任意爬行,已知它停在这副七巧板上的任何一点的可能性都相同,那么它停在1号板上的概率是.13.函数中,自变量x的取值范围是.14.若三角形的边长分别为6、8、10,则它的最长边上的高为.15.如图,⊙O的半径为5,P为⊙O上一点,P(4,3),PC、PD为⊙O的弦,分别交y轴正半轴于E、F,且PE=PF,连CD,设直线CD为y=kx+b,则k= .三计算题:16.解二元一次方程组:四解答题:17.某射击运动员在相同条件下的射击160次,其成绩记录如下:(1)根据上表中的信息将两个空格的数据补全(射中9环以上的次数为整数,频率精确到0.01);(2)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率(精确到0.1),并简述理由.18.春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.19.如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)过点B作⊙O的切线交CD的延长线于点E,若BC=6,tan∠CDA=,求BE的长.20.【发现证明】如图1,点E,F分别在正方形ABCD的边BC,CD上,∠EAF=45°,试判断BE,EF,FD之间的数量关系.小聪把△ABE绕点A逆时针旋转90°至△ADG,通过证明△AEF≌△AGF;从而发现并证明了EF=BE+FD.【类比引申】(1)如图2,点E、F分别在正方形ABCD的边CB、CD的延长线上,∠EAF=45°,连接EF请根据小聪的发现给你的启示写出EF、BE、DF之间的数量关系,并证明;【联想拓展】(2)如图3,如图,∠BAC=90°,AB=AC,点E、F在边BC上,且∠EAF=45°,若BE=3,EF=5,求CF的长.21.如图,二次函数y=x2+bx+c的图象交x轴于A(﹣1,0)、B(3,0)两点,交y轴于点C,连接BC,动点P以每秒1个单位长度的速度从A向B运动,动点Q以每秒个单位长度的速度从B向C运动,P、Q同时出发,连接PQ,当点Q到达C点时,P、Q同时停止运动,设运动时间为t秒.(1)求二次函数的解析式;(2)如图1,当△BPQ为直角三角形时,求t的值;(3)如图2,当t<2时,延长QP交y轴于点M,在抛物线上是否存在一点N,使得PQ的中点恰为MN的中点?若存在,求出点N的坐标与t的值;若不存在,请说明理由.参考答案1.D2.B3.D4.B5.B6.D7.A8.C9.A10.B11.答案为:(x﹣2)2.12.答案为:0.25;13.答案为:x≤1.5;14.答案为:h=4.815.【解答】解:如图,取点P关于y轴的对称点Q,∵P(4,3),∴Q(﹣4,3),连接PQ,∴PQ⊥y轴,∵PE=PF,∴∠CPE=∠DPE,∴点Q为的中点,连接OQ,则OQ⊥DC,设直线OQ解析式为y=mx,把Q点坐标代入可得3=﹣4m,解得m=﹣0.75,∴直线OQ解析式为y=﹣x,∴直线CD解析式为y=x+b,∴k=,故答案为:.16.答案为:17.解:(1)48,0.81;(2)P=0.8;18.【解答】解:(1)设甲种商品每件的进价为x元,乙种商品每件的进价为y元,依题意得:,解得:,答:甲种商品每件的进价为30元,乙种商品每件的进价为70元.(2)设该商场购进甲种商品m件,则购进乙种商品件,由已知得:m≥4,解得:m≥80.设卖完A、B两种商品商场的利润为w,则w=(40﹣30)m+(90﹣70)=﹣10m+2000,∴当m=80时,w取最大值,最大利润为1200元.故该商场获利最大的进货方案为甲商品购进80件、乙商品购进20件,最大利润为1200元.19.20.【解答】解:(1)DF=EF+BE.理由:如图1所示,∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,∵∠ADC=∠ABE=90°,∴点C、D、G在一条直线上,∴EB=DG,AE=AG,∠EAB=∠GAD,∵∠BAG+∠GAD=90°,∴∠EAG=∠BAD=90°,∵∠EAF=45°,∴∠FAG=∠EAG﹣∠EAF=90°﹣45°=45°,∴∠EAF=∠GAF,在△EAF和△GAF中,,∴△EAF≌△GAF,∴EF=FG,∵FD=FG+DG,∴DF=EF+BE;(2)∵∠BAC=90°,AB=AC,∴将△ABE绕点A顺时针旋转90°得△ACG,连接FG,如图2,∴AG=AE,CG=BE,∠ACG=∠B,∠EAG=90°,∴∠FCG=∠ACB+∠ACG=∠ACB+∠B=90°,∴FG2=FC2+CG2=BE2+FC2;又∵∠EAF=45°,而∠EAG=90°,∴∠GAF=90°﹣45°,在△AGF与△AEF中,,∴△AEF≌△AGF,∴EF=FG,∴CF2=EF2﹣BE2=52﹣32=16,∴CF=4.21.解:(1)∵二次函数y=x2+bx+c的图象经过A(﹣1,0)、B(3,0)两点,∴,解得.∴二次函数的解析式是:y=x2﹣2x﹣3.(2)∵y=x2﹣2x﹣3,∴点C的坐标是(0,﹣3),∴BC==3,设BC所在的直线的解析式是:y=mx+n,则,解得.∴BC所在的直线的解析式是:y=x﹣3,∵经过t秒,AP=t,BQ=t,∴点P的坐标是(t﹣1,0),设点Q的坐标是(x,y),∵OB=OC=3,∴∠OBC=∠OCB=45°,则y=×sin45°=×=t,∴BP==×=t,∴x=3﹣t,∴点Q的坐标是(3﹣t,t),①如图1,当∠QPB=90°时,点P和点Q的横坐标相同,∵点P的坐标是(t﹣1,0),点Q的坐标是(3﹣t,t),∴t﹣1=3﹣t,解得t=2,即当t=2时,△BPQ为直角三角形.②如图2,当∠PQB=90°时,∵∠PBQ=45°,∴BP=,∵BP=3﹣(t﹣1)=4﹣t,BQ=,∴4﹣t=即4﹣t=2t,解得t=,即当t=时,△BPQ为直角三角形.综上,可得当△BPQ为直角三角形,t=或2.(3)如图3,延长MQ交抛物线于点N,H是PQ的中点,设PQ所在的直线的解析式是y=cx+d,∵点P的坐标是(t﹣1,0),点Q的坐标是(3﹣t,t),∴,解得.∴PQ所在的直线的解析式是y=x+,∴点M的坐标是(0,)∵,,∴PQ的中点H的坐标是(1,)假设PQ的中点恰为MN的中点,∵1×2﹣0=2,=,∴点N的坐标是(2,),又∵点N在抛物线上,∴=22﹣2×2﹣3=﹣3,解得t=或t=﹣(舍去),∵>,∴当t<2时,延长QP交y轴于点M,在抛物线上不存在一点N,使得PQ的中点恰为MN的中点.。
2017年河北中考数学试卷

2017年河北中考数学试卷DA .4446+-=B .004446++=C .34446++=D .14446-÷+=13.若321x x -=-( )11x +-,则( )中的数是( ) A .1- B .2- C .3- D .任意实数14.甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,比较5月份两组家庭用水量的中位数,下列说法正确的是( )A .甲组比乙组大B .甲、乙两组相同C .乙组比甲组大D .无法判断 15.如图,若抛物线23y x =-+与x 轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k ,则反比例函数k y x =(0x >)的图象是( )16.已知正方形MNOK 和正六边形ABCDEF 边长均为1,把正方形放在正六边形中,使OK 边与AB 边重合,如图所示.按下列步骤操作:将正方形在正六边形中绕点B 顺时针旋转,使KM 边与BC 边重合,完成第一次旋转;再绕点C 顺时针旋转,使MN 边与CD 边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B,M 间的距离可能是()A.1.4 B.1.1 C.0.8 D.0.5第Ⅱ卷(共78分)二、填空题(本题共有3个小题,满分10分,将答案填在答题纸上)17.如图,A,B两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C,连接CA,CB,分别延长到点M,N,使AM AC=,BN BC=,测得MN m=,则A,B间的距离为m.20018.如图,依据尺规作图的痕迹,计算α∠=.19.对于实数p ,q ,我们用符号{}min ,p q 表示p ,q 两数中较小的数,如{}min 1,21=,因此{}min 2,3--=;若{}22min (1),1x x -=,则x = .三、解答题 (本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤.)20.在一条不完整的数轴上从左到右有点A ,B ,C ,其中2AB =,1BC =,如图所示.设点A ,B ,C 所对应数的和是p .(1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少?(2)若原点O 在图中数轴上点C 的右边,且28CO =,求p .21.编号为1~5号的5名学生进行定点投篮,规定每人投5次,每命中1次记1分,没有命中记0分.如图是根据他们各自的累积得分绘制的条形统计图,之后来了第6号学生也按同样记分规定投了5次,其命中率为40%.(1)求第6号学生的积分,并将图增补为这6名学生积分的条形统计图;(2)在这6名学生中,随机选一名学生,求选上命中率高于50%的学生的概率;(3)最后,又来了第7号学生,也按同样记分规定投了5次.这时7名学生积分的众数仍是前6名学生积分的众数,求这个众数,以及第7号学生的积分.22.发现任意五个连续整数的平方和是5的倍数.验证(1)22222-++++的结果是5的几倍?(1)0123(2)设五个连续整数的中间一个为n,写出它们的平方和,并说明是5的倍数.23.如图,16AB =,O 为AB 中点,点C 在线段OB 上(不与点O ,B 重合),将OC 绕点O 逆时针旋转270︒后得到扇形COD ,AP ,BQ 分别切优弧CD 于点P ,Q ,且点P ,Q 在AB 异侧,连接OP .(1)求证:AP BQ =;(2)当43BQ =时,求QD 的长(结果保留π);(3)若APO ∆的外心在扇形COD 的内部,求OC 的取值范围.24.如图,直角坐标系xOy 中,(0,5)A ,直线5x =-与x轴交于点D ,直线33988y x =--与x 轴及直线5x =-分别交于点C ,E .点B ,E 关于x 轴对称,连接AB .(1)求点C ,E 的坐标及直线AB 的解析式;(2)设面积的和CDE ABDO S S S ∆=+,求S 的值;(3)在求(2)中S 时,嘉琪有个想法:“将CDE ∆沿x 轴翻折到CDB ∆的位置,而CDB ∆与四边形ABDO 拼接后可看成AOC ∆,这样求S 便转化为直接求AOC ∆的面积不更快捷吗?”但大家经反复验算,发现AOC S S ∆≠,请通过计算解释他的想法错在哪里.25.平面内,如图,在ABCD 中,10AB =,15AD =,4tan 3A =.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90︒得到线段PQ .(1)当10DPQ ∠=︒时,求APB ∠的大小;(2)当tan :tan 3:2ABP A ∠=时,求点Q 与点B 间的距离(结果保留根号);(3)若点Q 恰好落在ABCD 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留π).26.某厂按用户的月需求量x (件)完成一种产品的生产,其中0x >.每件的售价为18万元,每件的成本y (万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x (件)成反比.经市场调研发现,月需求量x 与月份n (n 为整数,112n ≤≤)符合关系式2229(3)x n kn k =-++(k 为常数),且得到了表中的数据. 月份n (月)1 2 成本y (万元/件)11 12 需求量x(件/月)120 100(1)求y 与x 满足的关系式,请说明一件产品的利润能否是12万元;(2)求k ,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m 个月和第(1)m +个月的利润相差最大,求m .。
2017年天津市河北区高考数学二模试卷(理科)(解析版)

2017年天津市河北区高考数学二模试卷(理科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U=R,集合A={1,2,3,4,5},B={x∈R|x≥3},图中阴影部分所表示的集合为()A.{1,2}B.{4,5}C.{1,2,3}D.{3,4,5}2.(5分)若x,y满足,且z=y﹣x的最小值为﹣4,则k的值为()A.2B.﹣2C.D.﹣3.(5分)在△ABC中,已知BC=1,B=,△ABC的面积为,则AC的长为()A.3B.C.D.4.(5分)执行如图所示的程序框图,如果输入n=5,则输出的S值为()A.B.C.D.5.(5分)已知条件p:|x+1|>2,条件q:x>a,且¬p是¬q的充分不必要条件,则a的取值范围是()A.a≤1B.a≤﹣3C.a≥﹣1D.a≥16.(5分)已知点A(﹣2,3)在抛物线C:y2=2px的准线上,记C的焦点为F,则直线AF的斜率为()A.﹣2B.﹣C.﹣D.﹣7.(5分)若O为△ABC所在平面内任一点,且满足(﹣)•(+﹣2)=0,则△ABC的形状为()A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形8.(5分)对任意的x>0,总有f(x)=a﹣x﹣|lgx|≤0,则a的取值范围是()A.(﹣∞,lge﹣lg(lge)]B.(﹣∞,1]C.[1,lge﹣lg(lge)]D.[lge﹣lg(lge),+∞)二、填空题:本大题共6小题,每小题5分,共30分,把答案填在题中横线上.、9.(5分)i是虚数单位,复数=.10.(5分)某三棱锥的三视图如图所示,则该三棱锥的体积为11.(5分)直线y=4x与曲线y=x3在第一象限内围成的封闭图形的面积为.12.(5分)若(a+x)5展开式中x2的系数为10,则实数a=.13.(5分)在极坐标系中,直线ρcosθ﹣ρsinθ﹣1=0与圆ρ=2cosθ交于A,B两点,则|AB|=.14.(5分)设函数y=f(x)是定义在R上以1为周期的函数,若g(x)=f(x)﹣2x在区间[2,3]上的值域为[﹣2,6],则函数g(x)在[﹣2017,2017]上的值域为.三、解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤15.(13分)在△ABC中,a,b,c分别是角A,B,C的对边,且2cos A cos C(tan A tan C ﹣1)=1.(Ⅰ)求B的大小;(Ⅱ)若a+c=,b=,求△ABC的面积.16.(13分)袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取,…,取后不放回,直到两人中有一人取到白球时即终止,每个球在每一次被取出的机会是等可能的.(Ⅰ)求袋中原有白球的个数;(Ⅱ)求取球次数X的分布列和数学期望.17.(13分)如图,在四棱锥P﹣ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB∥CD,AB⊥AD,AB=2AD=2CD=2,E是PB上的一点.(Ⅰ)求证:平面EAC⊥平面PBC;(Ⅱ)如图(1),若=,求证:PD∥平面EAC;(Ⅲ)如图(2),若E是PB的中点,且二面角P﹣AC﹣E的余弦值为,求直线P A与平面EAC所成角的正弦值.18.(13分)已知等差数列{a n}满足:a1=1,a n+1>a n(n∈N*),a1+1,a2+1,a3+3成等比数列.a n+2log2b n=﹣1.(1)求数列{a n},{b n}的通项公式;(2)求数列{a n•b n}的前n项和T n.19.(14分)椭圆C:+=1(a>b>0)的离心率e=,a+b=3.(1)求椭圆C的方程;(2)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意一点,直线DP交x轴于点N,直线AD交BP于点M,设MN的斜率为m,BP的斜率为n,证明:2m﹣n为定值.20.(14分)已知函数f(x)=xlnx,g(x)=﹣x2+ax﹣3.(1)求函数f(x)在[t,t+2](t>0)上的最小值;(2)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围.(3)探讨函数F(x)=lnx﹣+是否存在零点?若存在,求出函数F(x)的零点,若不存在,请说明理由.2017年天津市河北区高考数学二模试卷(理科)参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U=R,集合A={1,2,3,4,5},B={x∈R|x≥3},图中阴影部分所表示的集合为()A.{1,2}B.{4,5}C.{1,2,3}D.{3,4,5}【解答】解:图中阴影部分表示的集合中的元素是在集合A中,但不在集合B 中.由韦恩图可知阴影部分表示的集合为(∁U B)∩A,又A={1,2,3,4,5},B={x∈R|x≥3},∵∁U B={x|x<3},∴(∁U B)∩A={1,2}.则图中阴影部分表示的集合是:{1,2}.故选:A.2.(5分)若x,y满足,且z=y﹣x的最小值为﹣4,则k的值为()A.2B.﹣2C.D.﹣【解答】解:对不等式组中的kx﹣y+2≥0讨论,可知直线kx﹣y+2=0与x轴的交点在x+y﹣2=0与x轴的交点的右边,故由约束条件作出可行域如图,当y=0,由kx﹣y+2=0,得x=,∴B(﹣).由z=y﹣x得y=x+z.由图可知,当直线y=x+z过B(﹣)时直线在y轴上的截距最小,即z最小.此时,解得:k=﹣.故选:D.3.(5分)在△ABC中,已知BC=1,B=,△ABC的面积为,则AC的长为()A.3B.C.D.【解答】解:∵BC=1,B=,△ABC的面积为=BC•AB•sin B=,∴AB=4,∴AC===.故选:B.4.(5分)执行如图所示的程序框图,如果输入n=5,则输出的S值为()A.B.C.D.【解答】解:输入n=5,i=1,s=0,s=,i=2≤5,s=+,i=3≤5,s=++,i=4≤5,s=+++,i=5≤5,s=++++,i=6>5,输出s=(1﹣)=,故选:C.5.(5分)已知条件p:|x+1|>2,条件q:x>a,且¬p是¬q的充分不必要条件,则a的取值范围是()A.a≤1B.a≤﹣3C.a≥﹣1D.a≥1【解答】解:由题意知:p:|x+1|>2可化简为{x|x<﹣3或x>1};q:x>a∵“若¬p则¬q”的等价命题是“若q则p”,∴q是p的充分不必要条件,即q⊊p∴a≥1故选:D.6.(5分)已知点A(﹣2,3)在抛物线C:y2=2px的准线上,记C的焦点为F,则直线AF的斜率为()A.﹣2B.﹣C.﹣D.﹣【解答】解:由点A(﹣2,3)在抛物线C:y2=2px的准线上,即﹣2=﹣,则p=4,故抛物线的焦点坐标为:(2,0),则直线AF的斜率k==﹣,故选:C.7.(5分)若O为△ABC所在平面内任一点,且满足(﹣)•(+﹣2)=0,则△ABC的形状为()A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形【解答】解:因为(﹣)•(+﹣2)=0,即•(+)=0;又因为﹣=,所以(﹣)•(+)=0,即||=||,所以△ABC是等腰三角形.故选:B.8.(5分)对任意的x>0,总有f(x)=a﹣x﹣|lgx|≤0,则a的取值范围是()A.(﹣∞,lge﹣lg(lge)]B.(﹣∞,1]C.[1,lge﹣lg(lge)]D.[lge﹣lg(lge),+∞)【解答】解:对任意的x>0,总有f(x)=a﹣x﹣|lgx|≤0,即a﹣x≤|lgx|恒成立,设y=﹣x+a,g(x)=|lgx|,如图当直线y=﹣x+a与g(x)相切时是a的最大值时,设切点为A(x,y),则﹣1=(﹣lgx)',得到x=lge,所以y=﹣lg(lge),所以切线方程为:y+lg(lge)=﹣(x﹣lge),令x=0得到y=lge﹣lg(lge),所以a的取值范围为:(﹣∞,lge﹣lg(lge));故选:A.二、填空题:本大题共6小题,每小题5分,共30分,把答案填在题中横线上.、9.(5分)i是虚数单位,复数=i.【解答】解:复数===i.故答案为:i.10.(5分)某三棱锥的三视图如图所示,则该三棱锥的体积为【解答】解:由三视图可知:该三棱锥的底面三角形的底边为1,高为1,三棱锥的高为1.∴该三棱锥的体积V==.故答案为:.11.(5分)直线y=4x与曲线y=x3在第一象限内围成的封闭图形的面积为4.【解答】解:先根据题意画出图形,得到积分上限为2,积分下限为0,曲线y=x3与直线y=4x在第一象限所围成的图形的面积是∫02(4x﹣x3)dx,而∫02(4x﹣x3)dx=(2x2﹣x4)|02=8﹣4=4∴曲边梯形的面积是4,故答案为:412.(5分)若(a+x)5展开式中x2的系数为10,则实数a=1.【解答】解:(a+x)5展开式中x2的系数为,因为(a+x)5展开式中x2的系数为10,所以=10,解得a=1,故答案为:1.13.(5分)在极坐标系中,直线ρcosθ﹣ρsinθ﹣1=0与圆ρ=2cosθ交于A,B两点,则|AB|=2.【解答】解:直线ρcosθ﹣ρsinθ﹣1=0化为y直线x﹣y﹣1=0.圆ρ=2cosθ化为ρ2=2ρcosθ,∴x2+y2=2x,配方为(x﹣1)2+y2=1,可得圆心C(1,0),半径r=1.则圆心C在直线上,∴|AB|=2.故答案为:2.14.(5分)设函数y=f(x)是定义在R上以1为周期的函数,若g(x)=f(x)﹣2x在区间[2,3]上的值域为[﹣2,6],则函数g(x)在[﹣2017,2017]上的值域为[﹣4030,4044].【解答】解:由g(x)在区间[2,3]上的值域为[﹣2,6],可设g(x0)=﹣2,g (x1)=6,x0,x1∈[2,3],g(x0)=f(x0)﹣2x0=﹣2,∵y=f(x)是定义在R上以1为周期的函数,∴g(x0+n)=f(x0+n)﹣2(x0+n)=f(x0)﹣2x0﹣2n=﹣2﹣2n.同理g(x1+n)=6﹣2n,2017﹣3=2014,于是g(x)在[﹣2017,2017]上的最小值是﹣2﹣2×2014=﹣4030;﹣2017﹣2=﹣2019,于是g(x)在[﹣2017,2017]上的最大值是6﹣2(﹣2019)=4044.∴函数g(x)在[﹣2017,2017]上的值域为[﹣4030,4044].故答案为:[﹣4030,4044].三、解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤15.(13分)在△ABC中,a,b,c分别是角A,B,C的对边,且2cos A cos C(tan A tan C ﹣1)=1.(Ⅰ)求B的大小;(Ⅱ)若a+c=,b=,求△ABC的面积.【解答】解:(Ⅰ)由2cos A cos C(tan A tan C﹣1)=1,得:2cos A cos C(﹣1)=1,∴2(sin A sin C﹣cos A cos C)=1,即cos(A+C)=﹣,∴cos B=﹣cos(A+C)=,又0<B<π,∴B=;(Ⅱ)由b2=a2+c2﹣2ac cos B,得(a+c)2﹣3ac=b2,又a+c=,b=,∴ac=4,=ac sin B=×4×=.∴S△ABC16.(13分)袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取,…,取后不放回,直到两人中有一人取到白球时即终止,每个球在每一次被取出的机会是等可能的.(Ⅰ)求袋中原有白球的个数;(Ⅱ)求取球次数X的分布列和数学期望.【解答】解:(Ⅰ)设袋中原有n个白球,由题意知:===,化简得n(n﹣1)=6,解得n=3或n=﹣2(不合题意,舍去),即袋中原有3个白球;(Ⅱ)由题意,X的可能取值为1,2,3,4,5,计算P(X=1)=,P(X=2)==,P(X=3)==,P(X=4)==,P(X=5)==;所以X的分布列为:数学期望是E(X)=1×+2×+3×+4×+5×=2.17.(13分)如图,在四棱锥P﹣ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB∥CD,AB⊥AD,AB=2AD=2CD=2,E是PB上的一点.(Ⅰ)求证:平面EAC⊥平面PBC;(Ⅱ)如图(1),若=,求证:PD∥平面EAC;(Ⅲ)如图(2),若E是PB的中点,且二面角P﹣AC﹣E的余弦值为,求直线P A与平面EAC所成角的正弦值.【解答】解:(Ⅰ)证明:取AB的中点M,连接CM,∵AM=AB=1=CD=AD,AB⊥AD,AB∥CD,∴四边形CDAM是正方形,CM=MA=MB,∴AC⊥CB,∵PC⊥底面ABCD,∴PC⊥AC,又PC∩BC=C,∴AC⊥平面PBC;又AC⊂∴面EAC⊥平面PBC.(Ⅱ)连接BD交AC于G,连接GE,∵AB∥CD,AB=2CD,∴,∵=,∴PE:EB=1:2,∴PD∥EG,PD⊄平面EAC,EG⊂平面EAC;∴PD∥平面EAC;(Ⅲ)如图,以C为原点,取AB中点F,分别为x轴、y轴、z轴正向,建立空间直角坐标系,则C(0,0,0),A(1,1,0),B(1,﹣1,0).设P(0,0,a)(a>0),则E(),=(1,1,0),=(0,0,a),=().设面EAC的法向量为,由,取.可取面P AC的法向量=(1,﹣1,0)依题意,|cos<>|=,解得a=2.于是=(2,﹣2,﹣2),=(1,1,﹣2).设直线P A与平面EAC所成角为θ,则sinθ=|cos>|=即直线P A与平面EAC所成角的正弦值为.18.(13分)已知等差数列{a n}满足:a1=1,a n+1>a n(n∈N*),a1+1,a2+1,a3+3成等比数列.a n+2log2b n=﹣1.(1)求数列{a n},{b n}的通项公式;(2)求数列{a n•b n}的前n项和T n.【解答】解:(1)设等差数列{a n}的公差为d,由a1=1,a n+1>a n(n∈N*),可得:d>0,a2=1+d,a3=1+2d,由a1+1,a2+1,a3+3成等比数列,可得:(a2+1)2=(a1+1)(a3+3),即为(d+2)2=(1+1)(4+2d),解得d=2(﹣2舍去),则a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1,n∈N*,由a n+2log2b n=﹣1,即log2b n=﹣n,可得b n=()n,n∈N*;(2)a n•b n=(2n﹣1)•()n,则前n项和T n=1•()1+3•()2+5•()3+…+(2n﹣1)•()n,T n=1•()2+3•()3+5•()4+…+(2n﹣1)•()n+1,两式相减可得T n=+2[()2+()3+()4+…+()n]﹣(2n﹣1)•()n+1=+2•﹣(2n﹣1)•()n+1=﹣(2n+3)•()n+1,可得T n=3﹣(2n+3)•()n,n∈N*.19.(14分)椭圆C:+=1(a>b>0)的离心率e=,a+b=3.(1)求椭圆C的方程;(2)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意一点,直线DP交x轴于点N,直线AD交BP于点M,设MN的斜率为m,BP的斜率为n,证明:2m﹣n为定值.【解答】解:(1)由椭圆的离心率e===,则a=2b,①a+b=3,②,解得:a=2,b=1,则椭圆的标准方程为:;(2)证明:因为B(2,0),P不为椭圆顶点,则可设直线BP的方程为y=n(x ﹣2)(n≠0,n≠±).联立,整理得(4n2+1)x2﹣16n2x+16n2﹣4=0.则x P+2=,x P=.则y P=n(x P﹣2)=.所以P(,).又直线AD的方程为y=x+1.联立,解得M(,).由三点D(0,1),P(,).N(x,0)共线,得=,所以N(,0).∴MN的斜率为m===.则2m﹣n=﹣n=.∴2m﹣n为定值.20.(14分)已知函数f(x)=xlnx,g(x)=﹣x2+ax﹣3.(1)求函数f(x)在[t,t+2](t>0)上的最小值;(2)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围.(3)探讨函数F(x)=lnx﹣+是否存在零点?若存在,求出函数F(x)的零点,若不存在,请说明理由.【解答】解:(1)f(x)=xlnx,f′(x)=lnx+1,令f′(x)=0,解得x=.①当0<t<时,在x∈[t,)上f′(x)<0;在x∈(.t+2]上f′(x)>0.因此,f(x)在x=处取得极小值,也是最小值.f min(x)=﹣.②当t≥,f′(x)≥0,因此f(x)在[t,t+2]上单调递增,f min(x)=f(t)=tlnt;(2)由对一切x∈(0,+∞),2f(x)≥g(x)恒成立,即有2xlnx≥﹣x2+ax﹣3.即a≤2lnx+x+恒成立,令h(x)=2lnx+x+,h′(x)=+1﹣==,当x>1时,h′(x)>0,h(x)是增函数,当0<x<1时,h′(x)<0,h(x)是减函数,∴a≤h(x)min=h(1)=4.即实数a的取值范围是(﹣∞,4];(3)令m(x)=2xlnx,m'(x)=2(1+lnx),当x∈(0,)时,m'(x)<0,m(x)递减;当x∈(,+∞)时,m'(x)>0,m(x)递增;∴m(x)的最小值为m()=﹣,则2xlnx≥﹣,∴lnx≥﹣,F(x)=lnx﹣+=0①则F(x)=lnx﹣+≥﹣﹣+=(﹣),令G(x)=﹣,则G'(x)=,当x∈(0,1)时,G'(x)<0,G(x)递减;当x∈(1,+∞)时,G'(x)>0,G(x)递增;∴G(x)≥G(1)=0 ②∴F(x)=lnx﹣+≥﹣﹣+=(﹣)≥0,∵①②中取等号的条件不同,∴F(x)>0,故函数F(x)没有零点.。
2017河北中考数学试题及答案word

2017河北中考数学试题及答案word 2017年河北省中考数学试题一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. -2B. 0C. 0.5D. -0.52. 一个数的相反数是-3,那么这个数是:A. 3B. -3C. 0D. 13. 以下哪个选项是无理数?A. 0.5B. πC. √4D. 0.3334. 函数y=2x+3的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限5. 一个等腰三角形的两边长分别为4和6,那么它的周长是:A. 14B. 16C. 18D. 206. 已知一个矩形的长和宽分别为x和y,且x+y=10,那么这个矩形的面积是:A. 5xyB. 10xyC. xyD. 507. 一个圆的半径为3,那么它的面积是:A. 9πB. 18πC. 27πD. 36π8. 一个二次函数的顶点坐标为(2, -3),且开口向上,那么它的对称轴是:A. x=-2B. x=2C. x=3D. x=-39. 一个等差数列的首项为2,公差为3,那么它的第5项是:A. 17B. 14C. 11D. 810. 一个几何体的三视图分别为正方形、长方形和圆形,那么这个几何体是:A. 圆柱B. 圆锥C. 球体D. 立方体二、填空题(每题3分,共15分)11. 一个数的绝对值是5,那么这个数可以是______或______。
12. 如果一个角的补角是120°,那么这个角的度数是______。
13. 一个直角三角形的两条直角边长分别为3和4,那么它的斜边长是______。
14. 一个函数的自变量x的取值范围是x≥0,那么这个函数的图象在y轴上的截距是______。
15. 一个等比数列的首项为2,公比为2,那么它的第3项是______。
三、解答题(每题10分,共55分)16. 已知一个二次函数的图象经过点(1, 0)和(-1, 0),且开口向上,求这个二次函数的解析式。
2017年天津市河北区高考数学二模试卷(文科)(解析版)

2017年天津市河北区高考数学二模试卷(文科)一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的。
共8小题,每小题5分,满分40分)1.(5分)已知全集U=R,集合A={1,2,3,4,5},B={x∈R|x≥3},图中阴影部分所表示的集合为()A.{1,2}B.{4,5}C.{1,2,3}D.{3,4,5} 2.(5分)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为80秒.若一名行人来到该路口遇到红灯,则至少需要等待30秒才出现绿灯的概率为()A.B.C.D.3.(5分)为得到函数y=sin(2x+)的图象,只需将函数y=sin2x的图象()A.向左平移个长度单位B.向左平移个长度单位C.向左平移个长度单位D.向右平移个长度单位4.(5分)在△ABC中,已知BC=1,B=,△ABC的面积为,则AC的长为()A.3B.C.D.5.(5分)执行如图所示的程序框图,如果输入n=3,则输出的S值为()A.B.C.D.6.(5分)已知条件p:|x+1|>2,条件q:x>a,且¬p是¬q的充分不必要条件,则a的取值范围是()A.a≤﹣3B.a≤1C.a≥﹣1D.a≥17.(5分)已知x=lnπ,y=log52,,则()A.x<y<z B.z<x<y C.z<y<x D.y<z<x8.(5分)对任意的x>0,总有f(x)=a﹣x﹣|lgx|≤0,则a的取值范围是()A.(﹣∞,lge﹣lg(lge)]B.(﹣∞,1]C.[1,lge﹣lg(lge)]D.[lge﹣lg(lge),+∞)二、填空题(共6小题,每小题5分,满分30分)9.(5分)i是虚数单位,复数=.10.(5分)某三棱锥的三视图如图所示,则该三棱锥的体积为11.(5分)已知点A(﹣2,3)在抛物线C:y2=2px的准线上,记C的焦点为F,则直线AF的斜率为.12.(5分)设f(x)=xlnx,若f′(x0)=2,则x0的值为.13.(5分)设向量,满足||=||=1,•=﹣,则|+2|=.14.(5分)设函数y=f(x)是定义在R上以1为周期的函数,若g(x)=f(x)﹣2x在区间[2,3]上的值域为[﹣2,6],则函数g(x)在[﹣2017,2017]上的值域为.三、解答题(共6小题,满分80分)15.(13分)已知函数f(x)=sin(x﹣)+cos x.(1)求函数f(x)的最小正周期;(2)若α是第一象限角,且f(α+)=,求tan(α﹣)的值.16.(13分)一农民有基本农田2亩,根据往年经验,若种水稻,则每季每亩产量为400公斤;若种花生,则每季每亩产量为100公斤.但水稻成本较高,每季每亩240元,而花生只需80元,且花生每公斤卖5元,稻米每公斤卖3元.现该农民有400元,怎样安排才能获得最大利润?最大利润为多少?17.(13分)如图,在四棱锥P﹣ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB ∥CD,AB⊥AD,AB=2AD=2CD=2,E是PB上的一点.(Ⅰ)求证:平面EAC⊥平面PBC;(Ⅱ)如图(1),若=,求证:PD∥平面EAC;(Ⅲ)如图(2),若E是PB的中点,PC=2,求二面角P﹣AC﹣E的余弦值.18.(13分)已知等差数列{a n}满足:a1=1,a n+1>a n(n∈N*),a1+1,a2+1,a3+3成等比数列.a n+2log2b n=﹣1.(1)求数列{a n},{b n}的通项公式;(2)求数列{a n•b n}的前n项和T n.19.(14分)椭圆C:+=1(a>b>0)的离心率e=,a+b=3.(1)求椭圆C的方程;(2)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意一点,直线DP交x 轴于点N,直线AD交BP于点M,设MN的斜率为m,BP的斜率为n,证明:2m﹣n 为定值.20.(14分)已知函数f(x)=﹣x3+ax2﹣4(a∈R),f′(x)是f(x)的导函数.(1)当a=2时,对于任意的m∈[﹣1,1],n∈[﹣1,1]求f(m)+f′(n)的最小值;(2)若存在x0∈(0,+∞),使f(x0)>0求a的取值范围.2017年天津市河北区高考数学二模试卷(文科)参考答案与试题解析一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的。
2017年河北省中考数学模拟试题及答案

- 总结2018年省初中毕业生升学文化课模拟考试数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷I 前,考生务必将自己的、号、科目填涂在答题卡上. 考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑. 答在试卷上无效. 一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.4的算术平方根是【 】。
A .2B .-2C .±2D .22. 某种微粒子,测得它的质量为0.00006746克,这个质量用科学计数法表示(保留三个有效数字)应为( ) A .6.75×10-5克B .6.74×10-5克C .6.74×10-6克D .6.75×10-6克3. 26的值A .在3和4之间B .在4和5之间C .在5和6之间D .在6和7之间 4. 下列运算正确的是( )A .a 5+a 5=a 10B .a 3·a 3=a 9C .(3a 3)3=9a 9D .a 12÷a 3=a 95. 如图,在△ABC 中,∠ACB=900,∠A=200,若将△ABC 沿CD 折叠,使B 点落在AC 边上的E 处,则∠ADE 的度数是( )A .300B .400C .500D .5506.使代数式x2x 1-有意义的x 的取值围是【 】 A.x 0≥ B.1x 2≠ C.x 0≥且1x 2≠ D.一切实数7. 一组数据2,3,6,8,x 的众数是x ,其中x 又是不等式组 的整数解,则这组数据的中位数可能是【 】 240x 70x ->⎧⎨-<⎩- 总结A. 3B. 4C. 6D. 3或6 8.(3)(3)a y a y -+是下列哪一个多项式因式分解的结果( ) A.229a y +B.229a y -+C.229a y -D.229a y --9.已知菱形的边长和一条对角线的长均为2cm ,则菱形的面积为( ) A.24cmB.23cmC.223cmD.23cm10.左图是一几何体,某同学画出它的三视图如下(不考虑尺寸),你认为正确的是( )A.①② B.①③ C.②③ D.③11.不等式组24010x x -<⎧⎨+⎩≥的解集在数轴上表示正确的是( )12.下列图形中,既是轴对称图形又是中心对称图形的是( )13.某单位购买甲、乙两种纯净水共用250元,其中甲种水每桶8元,乙种水每桶6元;乙种水的桶数是甲种水桶数的75%.设买甲种水x 桶,买乙种水y 桶,则所列方程组012A. 012 B.0C. 02D.A. B. C. D. ①正视图 ②俯视图 ③左视图 正面- 总结中正确的是( )A.8625075%x y y x +=⎧⎨=⎩B.8625075%x y x y +=⎧⎨=⎩C.6825075%x y y x +=⎧⎨=⎩ D.6825075%x y x y +=⎧⎨=⎩14.将一矩形纸片ABCD 如图所示折叠,使顶点C 落在C '点.已知2AB =,30DEC '∠=,则折痕DE 的长为( )A.2B.23C.4D.115.2014年6月,世界杯足球赛决赛在巴西拉开战幕,6月5日,某班40名学生就哪支队伍将夺冠进行竞猜,统计结果如图.若把认为巴西队将夺冠的这组学生人数作为一组的频数,则这一组的频率为( ) A.0.1 B.0.15 C.0.25 D.0.316.一个装有进出水管的水池,单位时间进、出水量都是一定的.已知水池的容积为800升,又知单开进水管20分钟可把空水池注满;若同时打开进、出水管,20分钟可把满水池的水放完,现已知水池有水200升,先打开进水管3分钟,再打开出水管,两管同时开放,直至把水池中的水放完,则能确定反映这一过程中水池的水量Q (升)随时间t (分钟)变化的函数图象是( )第14题图 第15题图 320 200O 38 Q (升)t (分钟)A320 200O311 Q (升)t (分钟)B200 O311 Q (升)t (分钟)C320200 O311 Q (升)t (分钟)- 总结2018年省初中毕业生升学文化课模拟考试数 学 试 卷卷II (非选择题,共78分)注意事项:1.答卷II 前,将密封线左侧的项目填写清楚.2.答卷II 时,将答案用黑色字迹的钢笔、签字笔或圆珠笔直接写在试卷上.题号 二 三21 22 23 24 25 26 得分二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17. 已知圆锥的底面半径为3 cm ,母线长4 cm ,则它的侧面积为 cm 2.18.如图,AB 是⊙O 的弦,OC ⊥AB ,垂足为C .若AB =23,OC =1,则OB 的长为 ▲ .19.如图,正方形ABCD 的顶点B 、 C 都在直角坐标系的x 轴上,若点A 的坐标是(-1,4),则点C 的坐标是 .20.在梯形ABCD 中,AD ∥BC ,∠B =90°,AD =2 cm ,AB =8 cm ,E 是AB 上一点,连接DE 、CE .若满足∠DEC =90°的点E 有且只有一个,则BC = cm .三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)总 分 核分人得 分评卷人(第18题)AOBC ABCDOxy- 总结21.(本小题满分9分)已知|a-1|+2 b =0,求方程xa+bx=1的解.22.(本小题满分10分)某校九年级男生进行引体向上训练,体育老师随机选择了部分男生,根据训练..前.成绩编组:0~4个的编为第一组,5~8个的编为第二组,9~12个的编为第三组,在训练后制作了如下两幅统计图,请回答下列问题:(1)下列说确的是 (填写所有正确的序号). ①训练后,第一组引体向上平均成绩的增长率最大; ②训练前,所选男生引体向上成绩的中位数一定在第二组; ③训练前,所选男生引体向上成绩的众数一定在第二组.(2)估计该校九年级全体男生训练后的平均成绩是多少?第一组第二组第三组每个小组引体向上平均成绩对比统计图 训练前 训练后10%30% 第一组第三组第二组 60%每组人数占所选男生人数的百分比统计图(第22题)①②- 总结23.(本小题满分10分)如图所示,A 、B 两地之间有一条河,原来从A 地到B 地需要经过桥DC ,沿折线A →D →C →B 到达,现在新建了桥EF ,可直接沿直线AB 从A 地到达B 地.已知BC =16km ,∠A =53°,∠B =30°.桥DC 和AB 平行,则现在从A 地到达B 地可比原来少走多少路程? (结果精确到0.1km .参考数据:73.13 ,sin53°≈0.80,cos53°≈0.60)- 总结24.(本小题满分11分)如果一条抛物线y =ax2+bx +c (a ≠0)与x 轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”. (1)“抛物线三角形”一定是____________三角形;(2)若抛物线抛物线:m 2(2)y a x b =-+)0(<ab 的“抛物线三角形”是直角三角形,请求出a ,b 满足的关系式;(3)如图,△OAB 是抛物线:n y =-x2+b ′x (b ′>0)的“抛物线三角形”,是否存在以原点O 为对称中心的矩形ABCD ?若存在,求出过O 、C 、D 三点的抛物线的表达式;若不存在,说明理由.- 总结25.(本小题满分12分)两个全等的直角三角形ABC 和DEF 重叠在一起,其中∠A=60°,AC=1. 固定△ABC 不动,将△DEF 进行如下操作:(1) 如图11(1),△DEF 沿线段AB 向右平移(即D 点在线段AB 移动),连结DC 、CF 、FB ,四边形CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.(2)如图11(2),当D 点移到AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.(3)如图11(3),△DEF 的D 点固定在AB 的中点,然后绕D 点按顺时针方向旋转△DEF ,使DF 落在AB 边上,此时F 点恰好与B 点重合,连结AE ,请你求出sinα的值.图11(1) 图11(2))- 总结26.(本小题满分14分)某市今年在中心城区启动二环路高架桥快速通道建设工程,研究表明,某种情况下,高架桥上的车流速度V (单位:千米/时)是车流密度x (单位:辆/千米)的函数,且当0<x≤28时,V=80;当28<x≤188时,V 是x 的一次函数.函数关系如图所示. (1)求当28<x≤188时,V 关于x 的函数表达式;(2)若车流速度V 不低于50千米/时,求当车流密度x 为多少时,车流量P (单位:辆/时)达到最大,并求出这一最大值.(注:车流量是单位时间通过观测点的车辆数,计算公式为:车流量=车流速度×车流密度)得 分 评卷人v 千米/时x 辆/千米2880188- 总结2017年省初中毕业生升学文化课模拟考试数学试题参考答案一、选择题题 号 1 2 3 4 5 6 7 8 答 案 A A C D D C D C 题 号 9 10 11 12 13 14 15 16 答 案 CABDACDB二、填空题17.12π 18.2 19.(3,0) 20.8 三、解答题21.解:解:由|a-1|+2+b =0,得a=1,b=-2. 由方程x1-2x=1得2x 2+x-1=0 解之,得x 1=-1,x 2=21. 经检验,x 1=-1,x 2=21是原方程的解. 22.解:(1)①②.(2)5×30%+8×60%+10×10%=7.3(个). 答:估计该校九年级全体男生训练后的平均成绩是7.3个.23.解:23.作DG ⊥AB 于G 、CH ⊥AB 于H 在Rt △BCH 中,Sin ∠B=CBCH,BC =16km ,∠B =30° ∴CH=8; cos ∠B=CBBH∴BH=83 易得DG=CH=8 在△ADG 中,Sin ∠A=ADDG、DG=8 ∴AD=10、AG=6 ∴(AD+DC+CB )-(AG+GH+HB )=20-83≈6.2 24. 解:(1)等腰(2)1ab =-.- 总结(3)存在.所求抛物线的表达式为2=+23y x x .25.解:(1)过C 点作CG ⊥AB 于G ,在Rt △AGC 中,∵sin60°=ACCG ,∴23=CG ∵AB=2,∴S 梯形CDBF =S △ABC =2323221=⨯⨯(2)菱形∵CD ∥BF , FC ∥BD ,∴四边形CDBF 是平行四边形∵DF ∥AC ,∠ACD=90°,∴CB ⊥DF∴四边形CDBF 是菱形(判断四边形CDBF 是平行四边形,并证明正确,记2分)(3)过D 点作DH ⊥AE 于H ,则S △ADE =233121EB AD 21=⨯⨯=⋅⋅ ··············· 又S △ADE =2321=⋅⋅DH AE ,)721(733或==AE DH ·································· ∴在Rt △DHE ’中,sinα=)1421(723或=DE DH 26.解:(1)设函数解析式为V=kx+b ,则,解得:,故V 关于x 的函数表达式为:V=﹣x+94;(2)由题意得,V=﹣x+94≥50,解得:x≤88,又P=Vx=(﹣x+94)x=﹣x2+94x ,B E FC 解图11(1)当0<x≤88时,函数为增函数,即当x=88时,P取得最大,故Pmax=﹣×882+94×88=4400.答:当车流密度达到88辆/千米时,车流量P达到最大,最大值为4400辆/时- 总结。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2017年天津市河北区中考数学二模试卷 一、选择题(3×12=36) 1.计算(﹣4)×(﹣3)的结果等于( ) A.﹣12 B.﹣7 C.7 D.12 2.计算sin60°+cos45°的值等于( )
A. B. C. D. 3.下列图形中既是中心对称图形又是轴对称图形的是( )
A. B. C. D. 4.某地铁自开通以来,发展速度不断加快,现已成为市民主要出行方式之一,2016年地铁安全运输乘客约381万乘次,用科学记数法表示381万为( ) A.38.1×105 B.3.81×106 C.3.81×107 D.381×104 5.如图是一个由5个相同的正方体组成的立体图形,它的主视图是( )
A. B. C. D. 6.估计+1的值( ) A.在1和2之间 B.在2和3之间 C.在3和4之间 D.在4和5之间
7.计算+的结果为( ) A.2 B.1 C.0 D.﹣1 8.一元二次方程x2﹣4x﹣12=0的两个根是( ) A.x1=﹣2,x2=6 B.x1=﹣6,x2=﹣2 C.x1=﹣3,x2=4 D.x1=﹣4,x2=3 9.下列四个数中,最小的一个数是( ) A.﹣ B.﹣3 C.﹣2 D.﹣π 10.如图,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=18°,则∠2=( ) 2
A.98° B.102° C.108° D.118° 11.如图,点A的坐标为(0,3),点B是x轴正半轴上的一个动点,以AB为边作等腰直角△ABC,使∠BAC=90°.设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象的是( )
A. B. C. D. 12.已知抛物线y=ax2+bx+c的图象如图所示,则|b﹣a﹣2c|+|3a+b|=( )
A.2a+2b B.﹣2a﹣2b C.﹣4a﹣2b D.4a 二、填空题(3×6=18) 13.计算(a+x)2的结果等于 . 14.二次函数y=x2+4x+6的对称轴为 . 15.某学校组织知识竞赛,共设有15道试题,其中有关中国传统文化试题8道,实践应用试题4道,创新试题3道,一学生从中任选一道试题作答,他选中创新能力试题的概率是 . 16.直线y=kx+3经过点A(2,1),则不等式kx+3≥1的解集是 . 17.如图,正方形ABCD边长为1,连接AC,AE平分∠CAD,交BC的延长线于点E,FA⊥AE,交CE于点F,则EF的长为 . 3
18.如图,在每个小正方形的边长为1的网格中,点A、B、C、D均在格点上,点P是直线CD上的点连BP,点A′是点A关于直线BP的对称点 (Ⅰ)在图①中,当DP=1(点P在点D的左侧)时,计算DA′的值等于 ; (Ⅱ)当DA′取值最小值时,请在如图②所示的网格中,用无刻度的直尺画出点A′,并简要说明点A′的位置如何找到的(不要求证明)
三、解答题(66分) 19.(8分)解不等式组 请结合题意填空,完成本题的解答 (Ⅰ)解不等式①,得 (Ⅱ)解不等式②,得 (Ⅲ)把不等式①和②的解集在数轴上表示出来 (Ⅳ)原不等式的解集为 .
20.(8分)某校为了解全校1600名学生每周课外体育活动时间的情况,随机调查了其中的部分学生,对这些学生每周课外体育活动时间x(单位:小时)进行了统计,根据所得数据绘制了一幅统计图,根据以上信息及统计图解答下列问题 (Ⅰ)本次接受随机抽样调查的学生人数为 ; (Ⅱ)求这些学生每周课外体育活动时间的平均数; (Ⅲ)估计全校学生每周课外体育活动时间不多于4小时的人数. 4
21.(10分)如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作⊙O分别交AC,BM于点D,E. (Ⅰ)求证:MD=ME; (Ⅱ)如图2,连OD,OE,当∠C=30°时,求证:四边形ODME是菱形.
22.(10分)如图,某社会实践活动小组地测量两岸互相平行的一段河的宽度,在河的南岸边点A处,测得河的北岸 点B在其北偏东45°方向,然后向西走60m到达C点,测得点B在点C的北偏东60°方向 (Ⅰ)求∠CBA的度数 (Ⅱ)求出这段河的宽(结果精确到1m,备用数据≈1.41,≈1.73)
23.(10分)某爱心组织筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同 (Ⅰ)求甲、乙两种救灾物品每件的价格各是多少元? (Ⅱ)经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金多少元? 24.(10分)如图所示,在平面直角坐标系中,过点A(,0)的两条直线分别交y轴于B、C两点,且B、C两点的纵坐标分别是一元二次方程x2﹣2x﹣3=0的两个根 (Ⅰ)试问:直线AC与直线AB是否垂直?请说明理由; 5
(Ⅱ)若点D在直线AC上,且DB=DC,求点D的坐标; (Ⅲ)在(Ⅱ)的条件下,在直线BD上寻找点P,使以A、B、P三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.
25.(10分)如图,已知二次函数y=ax2+bx+c(a,b,c为常数)的对称轴为x=1,与y轴的交点为c(0,4),y的最大值为5,顶点为M,过点D(0,1)且平行于x轴的直线与抛物线交于点A,B. (Ⅰ)求该二次函数的解析式和点A、B的坐标; (Ⅱ)点P是直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD相似,求出所有点P的坐标. 6
2017年天津市河北区中考数学二模试卷 参考答案与试题解析
一、选择题(3×12=36) 1.计算(﹣4)×(﹣3)的结果等于( ) A.﹣12 B.﹣7 C.7 D.12 【考点】1C:有理数的乘法. 【分析】依据有理数的乘法法则计算即可. 【解答】解:原式=4×3=12. 故选:D. 【点评】本题主要考查的是有理数的乘法法则,掌握有理数的乘法法则是解题的关键.
2.计算sin60°+cos45°的值等于( ) A. B. C. D. 【考点】T5:特殊角的三角函数值. 【分析】根据特殊角三角函数值,可得答案.
【解答】解:sin60°+cos45°=, 故选:B. 【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.
3.下列图形中既是中心对称图形又是轴对称图形的是( )
A. B. C. D. 【考点】R5:中心对称图形;P3:轴对称图形. 【分析】根据轴对称图形与中心对称图形的概念结合各图形的特点求解. 【解答】解:A、是轴对称图形,不是中心对称图形,不符合题意; B、是轴对称图形,不是中心对称图形,不符合题意; C、是轴对称图形,也是中心对称图形,符合题意; D、是轴对称图形,不是中心对称图形,不符合题意. 故选:C. 【点评】本题考查了中心对称图形与轴对称图形的概念.判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合. 7
4.某地铁自开通以来,发展速度不断加快,现已成为市民主要出行方式之一,2016年地铁安全运输乘客约381万乘次,用科学记数法表示381万为( ) A.38.1×105 B.3.81×106 C.3.81×107 D.381×104 【考点】1I:科学记数法—表示较大的数. 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 【解答】解:将381万用科学记数法表示为:3.81×106. 故选B 【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
5.如图是一个由5个相同的正方体组成的立体图形,它的主视图是( )
A. B. C. D. 【考点】U2:简单组合体的三视图. 【分析】画出从正面看到的图形即可得到它的主视图. 【解答】解:这个几何体的主视图为:
故选:A. 【点评】本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.
6.估计+1的值( ) A.在1和2之间 B.在2和3之间 C.在3和4之间 D.在4和5之间 【考点】2B:估算无理数的大小. 【分析】直接利用已知无理数得出的取值范围,进而得出答案. 8
【解答】解:∵2<<3, ∴3<+1<4, ∴+1在3和4之间. 故选:C. 【点评】此题主要考查了估算无理数大小,正确得出的取值范围是解题关键.
7.计算+的结果为( ) A.2 B.1 C.0 D.﹣1 【考点】6B:分式的加减法. 【分析】原式利用同分母分式的加法法则计算即可得到结果.
【解答】解:原式===1, 故选B 【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.
8.一元二次方程x2﹣4x﹣12=0的两个根是( ) A.x1=﹣2,x2=6 B.x1=﹣6,x2=﹣2 C.x1=﹣3,x2=4 D.x1=﹣4,x2=3 【考点】A8:解一元二次方程﹣因式分解法. 【分析】利用因式分解法解方程即可. 【解答】解:(x﹣6)(x+2)=0, x﹣6=0或x+2=0, 所以x1=6,x2=﹣2. 故选A. 【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.
9.下列四个数中,最小的一个数是( ) A.﹣ B.﹣3 C.﹣2 D.﹣π 【考点】2A:实数大小比较. 【分析】先估算出、3、2、π的大小关系,然后再依据几个负数绝对值大的反而小进行比较即可. 【解答】解:∵7<8<9<π2, ∴<2<3<π. ∴﹣>﹣2>﹣3>﹣π. ∴最小的一个数是﹣π. 故选:D. 【点评】本题主要考查的是实数大小比较,熟练掌握实数比较大小的法则是解题的关键.