高级生化 第二章 基因研究技术2(测序)
分子生物学第2章 基因和基因组

Single Nucleotide Polymorphism (SNP)
是指同一物种不同个体间染色体上遗传密 码单个碱基的变化,主要表现为基因组核 苷酸水平上的变异引起的DNA序列多态性 。
Mapping Structural Variation in Humans
>1 kb segments (大于1kb的基因组变异)
Chapter 2. Gene and Genome 第二章 基因和基因组
Section 1. Gene Section 2. Genome and Genomics Section 3. Genomic Polymorphism
Chapter 2. Gene and Genome 第二章 基因和基因组
DNA Copy Number Changes in Tumor Cells (肿瘤细胞基因拷贝数的变化)
Normal cell
Tumor cells deletion
CN=2
Homologous repeats Segmental duplications Chromosomal rearrangements Duplicative transpositions Non-allelic recombinations ……
3. CNV: Copy Number Variation(拷贝数多态性)
4. VNTR :Variable number of tandem repeats(串联重复序列数量多 态性)
(1)Minisatellite (小卫星串联重复序列数量多态性) (2)STR: Short tandem repeats (短片段串联重复)
Minor
Structural Sequence
二代基因测序流程和试剂

二代基因测序流程和试剂的步骤和流程引言二代基因测序是一种高通量、高效率的基因测序技术,能够大规模地获取DNA或RNA的序列信息。
本文将详细描述二代基因测序的流程和试剂的步骤和流程,确保流程清晰且实用。
流程概述二代基因测序的流程可以分为样品准备、DNA或RNA提取、文库构建、聚合酶链式反应(PCR)、测序和数据分析等步骤。
下面将详细介绍每个步骤的具体操作和试剂使用。
1. 样品准备样品准备是整个二代基因测序流程的关键步骤,合理的样品准备可以保证后续步骤的顺利进行。
样品可以是组织、细胞、血液等,需要根据研究目的进行选择。
样品准备的步骤包括:1.1 样品收集根据研究目的选择合适的样品,并采用合适的方法进行收集。
例如,对于组织样品,可以通过手术获取;对于细胞样品,可以通过培养或离心分离等方法获取。
1.2 样品保存采集后的样品需要及时保存,以防止样品质量的降低。
常用的保存方法包括冷冻保存和固定保存。
冷冻保存可以使用液氮保存或低温冰箱保存,固定保存可以使用甲醛等试剂进行固定。
2. DNA或RNA提取DNA或RNA提取是获取样品中的核酸的关键步骤,常用的提取方法包括酚-氯仿法、盐酸法和商用试剂盒法等。
下面以商用试剂盒法为例进行介绍:2.1 样品裂解将样品加入裂解缓冲液中,通过离心等方法使细胞或组织破碎,释放出DNA或RNA。
2.2 蛋白酶处理加入蛋白酶将样品中的蛋白质降解,以便后续纯化DNA或RNA。
2.3 DNA或RNA纯化将裂解液加入商用试剂盒中,通过离心等方法将DNA或RNA与其他杂质分离。
根据试剂盒的不同,可以使用硅胶膜或磁珠等材料进行纯化。
2.4 洗脱DNA或RNA将纯化后的DNA或RNA从硅胶膜或磁珠上洗脱下来,得到纯化后的DNA或RNA。
3. 文库构建文库构建是将提取到的DNA或RNA转化为测序所需的文库,常用的文库构建方法包括PCR文库构建法和片段文库构建法。
下面以PCR文库构建法为例进行介绍:3.1 DNA片段制备将提取到的DNA通过限制性内切酶或超声波等方法制备成适当的片段。
基因测序试题及答案

基因测序试题及答案一、选择题1. 基因测序技术中,Sanger测序法的基本原理是什么?A. 利用PCR扩增DNAB. 利用DNA聚合酶的特异性C. 利用链终止法D. 利用DNA杂交技术答案:C2. 下列哪项不是高通量测序技术的特点?A. 通量高B. 测序速度快C. 成本低D. 需要较长的测序时间答案:D二、填空题1. 基因测序中,_________是指通过测序技术确定DNA分子中核苷酸的排列顺序。
答案:DNA测序2. 在基因测序中,_________是一种常用的测序方法,它通过在DNA 聚合酶上添加荧光标记的dNTPs来实现。
答案:Sanger测序法三、简答题1. 请简述基因测序在医学研究中的应用。
答案:基因测序在医学研究中的应用非常广泛,包括但不限于疾病诊断、遗传病筛查、个性化医疗、药物反应预测、病原体鉴定等。
2. 描述一下什么是第二代测序技术。
答案:第二代测序技术,又称为高通量测序技术,是一种能够同时对大量DNA片段进行测序的技术。
它通过将DNA片段固定在芯片上,然后进行并行测序,从而实现高通量、低成本的DNA测序。
四、计算题1. 如果一个基因组含有3.2亿个碱基对,使用第二代测序技术,假设每个测序反应能够产生500个碱基对的读长,那么理论上需要进行多少次测序反应才能覆盖整个基因组?答案:理论上需要进行的测序反应次数为:3.2亿 / 500 = 64,000次。
五、论述题1. 请论述基因测序技术在疾病诊断中的应用及其重要性。
答案:基因测序技术在疾病诊断中的应用主要包括对遗传性疾病的诊断、癌症的早期检测、病原体的鉴定等。
通过基因测序,医生可以更准确地识别患者的遗传特征和疾病风险,从而提供更个性化的治疗方案。
此外,基因测序技术还可以帮助发现疾病的新机制,推动新药物和治疗方法的开发,对提高疾病诊断的准确性和治疗的针对性具有重要意义。
基因组测序与序列PPT课件

也称卫星DNA
➢ 中度重复顺序: 一般分散于整个基因组中; 长度和拷贝数差别很大
➢ 单一顺序: 基因主要位于单一顺序
动物中单一顺序约占50% 植物中单一顺序约占20%
.
7
顺序复杂性
❖ DNA 的复性 遵循二级反应动力学,可表述为: dCt / dt = -KC02 反应达 t 时,单链DNA浓度 = Ct C0 = 单链 DNA起始浓度 K= 复性速度常数
1 ATAC G TTA
2 2GCTGTAT GTAAGT CAT
4 C4GATCTGA GT TAATG A
3 3TA C G T TA G A
5 G TTAG ATC
1 ATAC G TTA
3 TACGTTAG
4 ACGTTAGA
2
C G TTAG AT
5
G TTAG ATC
计算机分析杂交图象 并由探针的重叠情况 推导样品的核酸序列
.
4
什么是C 值?
▪通常是指一种生物单倍体基因组DNA的 总量.
在真核生物中,C值一般随着生物的进化而 增加,高等生物C值一般大于低等生物。
C值悖理:
生物的复杂性与基因组的大小并不完全成比 例增加
.
5
阴影部分为一个门内C-值的范围
动物Leabharlann 真菌 等细菌.
6
重复顺序
➢ 高度重复顺序: 长度:几个——几千个bp 拷贝数:几百个——上百万个 首尾相连,串联排列
↓ 电泳,读取DNA的核苷酸顺序
.
23
Maxam-Gilbert 法所用的化学技术
碱基 G
A+G
C+T C
DNA第2代测序技术

从1910年到现在,遗传学的发展大致可以分为三个时期: 细胞遗传学时期、微生物遗传学时期和分子遗传学时期。 细胞遗传学时期 • 大致是1910~1940年, 这一时期通过对遗传学规律和染 色体行为的研究确立了遗传的染色体学说。这一时期中虽 然由美国遗传学家马勒和斯塔德勒分别在动植物中发现 了 X射线的诱变作用,可是对于基因突变机制的研究并没 有进展。基因作用机制研究的重要成果则几乎只限于动植 物色素的遗传研究方面。
• 20世纪90年代初美国率先实施的“人类基因组计划”, 旨在测定人类基因组全部约32亿个核苷酸对的排列顺序, 构建控制人类生长发育的约3.5万个基因的遗传和物理图 谱,确定人类基因组编码的遗传信息。 • 21世纪,遗传学的发展进入“后基因组时代”。
三. 第2代测序技术对遗传学发展的影响
• DNA测序技术是遗传学研究中发展起来的一个最基本的 技术,它使得研究者可以确定DNA片段的核苷酸序列 。
微生物遗传学时期
• 大致是1940~1960年,在这一时期中,采用微生物作为 材料研究基因的原初作用、精细结构、化学本质、突变机 制以及细菌的基因重组、基因调控等,取得了已往在高等 动植物研究中难以取得的成果,从而丰富了遗传学的基础 理论。
分子遗传学时期 • 这一时期从1963年沃森和克里克提出DNA的双螺旋模型 开始,但是50年代只在DNA分子结构和复制方面取得了 一些成就,而遗传密码、mRNA、tRNA、核糖体的功能 等则几乎都是60年代才得以初步阐明。 • 20世纪70年代初,建立了遗传工程这一新的研究领域。 遗传工程是在细菌质粒和噬苗体以及限制性内切酶研究的 基础上发展起来的,它不但可以应用于工、农、医各个方 面,而且还进一步推进分子遗传学和其他遗传学分支学科 的研究。
• 高通量测序另一个被广泛应用的领域是小分子RNA或非 编码RNA(ncRNA)研究。测序方法能轻易的解决芯片技 术在检测小分子时遇到的技术难题(短序列,高度同源), 而且小分子RNA的短序列正好配合了高通量测序的长度, 使得数据“不浪费”,同时测序方法还能在实验中发现新 的小分子RNA。在衣藻、斑马鱼、果蝇、线虫、人和黑 猩猩中都已经成功地找到了新的小分子RNA。在线虫中 获得了40 万个序列,通过分析发现了18个新的小RNA分 子和一类全新的小分子RNA。
基因测序发展历程

基因测序发展历程基因测序(Genomic sequencing)是确定一个生物体基因组中的基因序列的过程。
基因测序技术的发展可以追溯到20世纪50年代末的一系列研究。
下面是基因测序发展的主要里程碑:1. DNA双螺旋结构的发现(1953年):由James Watson和Francis Crick提出了DNA双螺旋结构的模型,揭示了基因组中信息传递的基础。
2. 蛋白质序列测定(1955年):Frederick Sanger发展了一种测定蛋白质序列的方法,这为后来基因测序提供了借鉴。
3. 第一次DNA测序(1972年):Paul Berg等科学家使用化学方法首次对DNA进行测序,他们成功测定了一段DNA链的序列。
4. dideoxy测序法的发明(1977年):Frederick Sanger发明了一种基于dideoxynucleotide反应原理的DNA测序方法。
这种方法是第一页广泛应用的测序技术之一。
5. 完整基因组测序(1995年):由John Craig Venter和Francis Collins领导的两个独立研究小组,分别宣布在人类基因组计划中测定人类基因组的首个完整序列。
6. 全自动测序技术的发展(1990年代):随着全自动测序仪器的出现,测序速度和准确性得到了大幅提高,为后续的基因研究提供了更多的数据。
7. 高通量测序技术的兴起(2005年):随着新一代测序技术的问世,如 Illumina 公司的Solexa测序技术和Roche 454的测序技术,测序速度和成本进一步降低,大幅改变了基因测序的规模和应用。
8. 单分子测序技术的出现(2010年):Pacific Biosciences 公司的单分子测序技术(Single-Molecule Real-Time Sequencing,SMRT)以及Oxford Nanopore Technologies 公司的纳米孔测序技术(Nanopore Sequencing)的问世,实现了更长的读片长度,为更复杂的基因组测序提供了新的可能性。
基因组测序技术PPT课件

1 ATACGTTA
2 2GCTGTATGTAAGTCAT
4 C4GATCTGATGTAATGA
3 3TACGTTAG A
5 GTTAGATC
1 ATACGTTA
3 TACGTTAG
4 ACGTTAGA
2
CGTTAGAT
5
GTTAGATC
计算机分析杂交图象 并由探针的重叠情况 推导样品的核酸序列
互补序列为:ATACGTTAGATC 样品序列为:TATGCAATCTAG
在人类基因组进入测序组装阶段就采用此方法, 其基本步骤如下 参考人类基因组图,特别是大量的STS位标作为基点, 进行序列组装,排成重叠克隆群.
先将染色体打成比较大的片段(几十-几百Kb), 利用 分子标记将这些大片段排成重叠的克隆群(Contig), 分别 测序后拼装. 这种策略叫基于克隆群(contig-based)的策 略.
2000年 12 月,第一个植物基因组—— 拟南芥(Arabidopsis thaliana)基因组 被全部测序 ,大小为125 Mb.
一、测序流程1.构建生物基因组或cDNA DNA的提取和制备→酶切制备克隆用DNA片段 →与载体连接→转化受体细胞 →筛用超声波(或限制性内切酶)切成能够测序 的小片断(200-500bp)→小片断和载体结合,植入 细菌中进行扩增(或用PCR扩增) →从细菌中提 取出繁殖好的质粒→ 酶切,制取测序的DNA片段
A
B
C
大片段contig
小片段测序拼装
A
B
C
两种策略的比较
鸟枪法策略
指导测序策略
不需背景信息
时间短 需要大型计算机 得到的是草图(Draft)
构建克隆群 (遗传、物理图谱) 需要几年的时间
生化第二章 核酸

二、核酸的生物学功能
(一)DNA是主要的遗传物质
图:肺炎球菌的转化图解 (1944年,O. Avery)
图:35S和32P标记的噬菌体T2感染大肠杆菌图解 (1952年,A.D.Hershey和M.Chase)
(二)RNA参与蛋白质的生物合成
mRNA分子中带有遗传密码,其功能是为蛋白质的合 成提供模板(templet)。 mRNA分子中每三个相邻的核苷酸组成一组,在蛋白 质翻译合成时代表一个特定的氨基酸,这种核苷酸三 联体称为遗传密码(coden)。
O
NH
N
O
H
酮式尿嘧啶
NH
NH
N
O
H
亚氨基态胞嘧啶
OH
N
N
OH
稀醇式尿嘧啶
碱基的紫外吸收
最大吸收峰在260nm附近
核苷酸的两性解离和等电点
胞嘧啶核苷酸的解离
NH2 + HN
NH2 + HN
O
ON
HO P O CH2 O
OH
HH
H
H
OH OH
+ CMP
pKa1=0.80 HO NH2
O
ON
P O CH2 O
NH2
O
6
5 N7
N
N
1N
N
HN
8
2
N
4
N9 H
3
N
N H 2HN
N
N H
嘌呤
腺嘌呤(adenine, A) 鸟嘌呤(guanine, G)
二、戊糖与核苷
1.戊糖(pentose):
HO 5´CH2 O OH 4´ 3´ 2´ 1´
HO CH2