五年级下册数学应用题竞赛(3)
人教版五年级下册数学第三单元长方体和正方体应用题训练(含参考答案)

4.如图,木块从中间锯成两块后,木块的表面积增加多少平方厘米?
5.用棱长2分米的正方体砖块砌成一面长8米,宽0.2米,高3米的砖墙,一共用了多少块砖?
6.小红买了一个棱长6分米的储物箱,她要在每条棱上粘胶带,若每米胶带2.5元,至少需要买多少元的胶带?
18.用丝带捆扎一个长35厘米,宽25厘米,高10厘米的长方体礼盒(如图)。打结处的丝带长40厘米。捆扎这个礼盒至少需要多长的丝带?
19.王冰爸爸准备做一个无盖的长方体鱼缸,长 ,宽 ,高 ,至少需要多少平方分米的玻璃?如果每平方分米玻璃3.5元钱,至少需要多少钱买玻璃?
20.健身中心准备建一个游泳池,该游泳池长50米,长是宽的2倍,深2.5米。
11.将一根体积为 立方分米的长方体木料垂直截开表面积增加了50平方分米,那么这根木料原来多长?
12.用一根长1米的铁丝,做一个长8厘米、宽7厘米、高6厘米的长方体框架后,还剩多少厘米?
13.学校把8立方米的黄沙填入沙坑,已知沙坑长5米,宽36分米,如果沙坑中至少需要填40厘米深的沙,这些沙够吗?
14.一个装有水的正方体容器,棱长是1.5分米,把一个土豆浸没水中(水未溢出),水面上升了0.2分米。这个土豆的体积是多少?
15.一段长方体石料,长12分米,宽10分米,高8分米,从中截取一个最大的正方体后,剩下部分的体积是多少立方分米?
16.李叔叔要挖一个长8米、宽6米、深2米的蓄水池。
(1)如果给这个蓄水池的四周和底部抹上水泥,抹水泥部分的面积是多少平方米?
(2)这个水池最多能蓄水多少吨?(1立方米的水重1吨)
17.生产50个如图所示的手提袋,一共需要多少平方分米的纸?(提手以及连接处忽略不计)
五年级下册数学竞赛试题-09讲分数应用题综合全国通用(含答案)

五年下册奥数试题-分数应用题综合姓名得分【知识讲述】分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。
在几个量中,关键也是要找准单位“1”和对应的占比,以及对应量三者的关系例如:(1)a是b的几分之几,就把数b看作单位“1”.(2)甲比乙多18,乙比甲少几分之几?方法一:可设乙为单位“1”,则甲为19188,因此乙比甲少191889.方法二:可设乙为8份,则甲为9份,因此乙比甲少1199.怎样找准分数应用题中单位“1”(一)、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。
例如:我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。
解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。
(二)、两种数量比较(比较量与标准量)分数应用题中,两种数量相比的关键句非常多。
有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。
在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。
例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看1。
五年级下册数学试题分数混合运算的应用题一、二、三练习题|北师大版(无答案)

分数混合运算的应用题一教学目的:1、在观察比较中,学会判断单位1的量;2、利用分数加、减、乘、除解决生活中的实际问题,发展应用意识。
3、学会画线段图分析应用题。
教学内容:“已知一个数比另一个数多几分之几(或少几分之几),求这个数”的解题方法 知识点结构:判断哪个数量是单位“1”的量的方法:①、某个数的几分之几,这里的“某个数”就是单位“1”的量; ②、谁是谁的几分之几,“是”字后面的数量就是单位“1”的量; ③、谁比谁多(少)几分之几,“比”字后面的数量就是单位“1”的量; ④、谁占谁的几分之几,“占”字后面的数量就是单位“1”的量; ⑤、谁相当于谁的几分之几,“相当于”后面的数量就是单位“1”的量 分数应用题的乘除法的列式关键是找准单位“1”:①、如果单位“1”的量已知,用乘法计算:单位“1”的量×分率=对应的数量 ②、如果单位“1”的量未知,用除法计算:对应的数量÷分率=单位“1”的量 ③、如果已知单位“1”的量与对应的数量,求对应的分率,用除法计算:对应的数量÷单位“1”的量=对应的分率。
若求对应的分率是“谁比谁多(或少)几分之几”的分率:(大数一小数)÷标准量=几分之几 经典例题:例1:学校举办的美术展览中,有50幅水彩画、80画幅蜡笔画。
1、蜡笔画比水彩画多几分之几?水彩画比蜡笔画少几分之几? 分析并讲解:2、讨论下面两个问题。
(1)、根据“蜡笔画比水彩画多53”这个条件: ①、如果已知水彩画有50幅,怎样求蜡笔画有多少幅?分析: 解题: 运用公式:②、如果已知蜡笔画有80幅,怎样求水彩画有多少幅?分析: 解题: 运用公式:(2)、根据“水彩画比蜡笔画少83”这个条件:①、如果已知水彩画有50幅,怎样求蜡笔画有多少幅?分析: 解题: 运用公式:②、如果已知蜡笔画有80幅,怎样求水彩画有多少幅?分析: 解题: 运用公式:例2:601班男生人数比女生多61,女生30人,全班多少人? 分析: 解题: 运用公式:例3:食堂运来一批大米,已经吃去600千克,正好吃去43,这批大米共多少千克?分析: 解题: 运用公式:例4:汽车厂8月份比7月份多生产500辆,已知8月份比7月份增产91。
五年级下册数学竞赛试题-奥数经典应用题100题 通用版(无答案)

经典小学五年级奥数应用题100题1.甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵。
已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树。
两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?2.有三块草地,面积分别是5,15,24亩。
草地上的草一样厚,而且长得一样快。
第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?3.某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元。
在保证一星期内完成的前提下,选择哪个队单独承包费用最少?4.一个圆柱形容器内放有一个长方形铁块。
现打开水龙头往容器中灌水。
3分钟时水面恰好没过长方体的顶面。
再过18分钟水已灌满容器。
已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比。
5.甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售。
两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?6.有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池。
这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?7.小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校。
小明从家到学校全部步行需要多少时间?8.甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离。
五年级下册数学人教版应用题大全及答案

五年级下册数学人教版应用题大全及答案篇一:人教版五年级数学下册典型应用题大全 2人教版数学下册典型应用题大全1粮店运来30袋大米和40袋面粉,一共是2500千克,大米每袋50千克。
每袋面粉多少千克?2一架飞机每小时飞行860千米,比两列火车每小时飞行的6倍还多20千米。
这列火车每小时行多少千米?3.甲乙两辆电动车同时从相距480千米的两地相对开出,经过3.2小时两车相遇。
假定乙车每小时行72千米,甲车每小时行多少千米4.甲乙两艘驳船同时从上海开往武汉,甲船每小时行24千米,经过8. 5小时甲船超过乙船5 1千米。
乙船每小时行多少千米?5.学校里的柏树和天泉一共有126棵,柏树的老树数是杨树的6倍。
柏树和天泉各有多少棵?6.一台空调的价钱的一台电视机的3倍,学校买了一台空调和4台和电视机一共用了8400元钱。
一台空调和一台电视机各阴极射线管多少千元?7.8筐苹果比8筐梨重40千克,已知一筐梨重20千克,一筐苹果重多少千克?8.修一条长1960米的路,先是每天修80米,修了8天以后为了尽快完成,以后打算每天修120米,还要多少天才能修完?9.今年爸爸比小芳非常大36岁,已知爸爸今年的岁数是小芳去年的4倍,爸爸和小芳今年各是多少岁?10.甲乙两车同时从距420千米的来两地相对开出,甲车的速度是乙车的1. 5倍,经过2. 4小时相遇。
甲车和乙车每小时各行多少千米?五年级应用题练习11.一头牛重850千克,一头长颈鹿的重量比这头牛的5倍还多500千克。
这头大象较重多少千克?12.安泰小学的人数比中学宏扬中学少1260人,已知宏扬小学的人数是新光小学的2. 5倍。
宏扬中学和新光小学各有多少人?13.小兰和小芳同时从环形跑道上的一点向相反方向走去,小兰每分走65米,小芳每分走75米,经过2. 5分相遇。
这个环形跑道全长是多少米?14.植树节同学们植了12行杨树和8行杉树,一共是300棵,杉树每行有15棵,杨树每行有多少棵?15.一个长方形的周长是64厘米,已知长是宽的3倍,这个长方形的长和宽分别是多少厘米?16.一块三角形的地,它面积是60平方米,已知底是15米。
五年级下册数学竞赛试题-奥数经典应用题100题 通用版(无答案)

经典小学五年级奥数应用题100题1.甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵。
已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树。
两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?2.有三块草地,面积分别是5,15,24亩。
草地上的草一样厚,而且长得一样快。
第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?3.某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元。
在保证一星期内完成的前提下,选择哪个队单独承包费用最少?4.一个圆柱形容器内放有一个长方形铁块。
现打开水龙头往容器中灌水。
3分钟时水面恰好没过长方体的顶面。
再过18分钟水已灌满容器。
已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比。
5.甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售。
两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?6.有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池。
这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?7.小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校。
小明从家到学校全部步行需要多少时间?8.甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离。
五年级数学思维训练:应用题拓展(五年级)竞赛测试.doc

五年级数学思维训练:应用题拓展(五年级)竞赛测试姓名:_____________ 年级:____________ 学号:______________一、xx 题(每空xx 分,共xx 分)【题文】(4分)水果店运来了西瓜和哈密瓜共234个,如果西瓜和哈密瓜的个数比为5:4,那么水果店运来西瓜和哈密瓜各多少个?【答案】西瓜和哈密瓜各是130个及104个. 【解析】试题分析:把234平均分成5+4=9(份),求出一份有多少个,用一份的个数乘以5就是西瓜的个数,总个数减去西瓜的个数就是哈密瓜的个数. 解:234÷(5+4)×5 =26×5 =130(个) 234﹣130=104(个)答:水果店运来西瓜和哈密瓜各是130个及104个.点评:本题关键求出一份有多少个,进一步求出西瓜的个数,用总个数减去西瓜的个数即可得到哈密瓜的个数.【题文】(4分)有429名小学生参加数学冬令营,其中男生和女生的人数比为7:6.后来又有一些女生报名参赛,这时男生和女生的人数比变为11:10.请问:后来报名的女生有多少人? 【答案】有12人. 【解析】试题分析:运用和比问题的解答方法,先求出男生的人数,因为男生的人数没有发生变化,由男生的人数求出总共的人数,然后运用总共的人数减去429人,即可得到后来报名的女生的人数. 解:429÷(7+6)×7÷11×(11+10)﹣429 =33×7÷11×21﹣429 =21×21﹣429 =12(人)答:后来报名的女生有12人.点评:本题运用和比问题的解答方法进行解答,先求出男生人数,进一步取消最后的总人数,最后求出问题.【题文】(4分)松鼠一家三口出门采摘松果,松鼠爸爸采得最快,他每采摘7颗松果,松鼠妈妈只能采摘6颗;松鼠宝宝采得最慢,他每采摘2颗,松鼠妈妈已经采摘了3颗.一天下来,他们一共采摘了340颗松果.试问:其中有多少颗是松鼠宝宝采的?【答案】80颗【解析】试题分析:由于松鼠爸爸每采摘7颗松果,松鼠妈妈采摘6颗;松鼠宝宝采每采摘2颗,松鼠妈妈采摘3颗.依此可知松鼠爸爸采摘松果颗数:松鼠妈妈采摘松果颗数:松鼠宝宝采摘松果颗数=7:6:4,再根据按比例分配即可求得松鼠宝宝采摘松果颗数.解:3:2=6:4鼠爸爸采摘松果颗数:松鼠妈妈采摘松果颗数:松鼠宝宝采摘松果颗数=7:6:4340×=340×=80(颗).答:其中有80颗是松鼠宝宝采的.点评:本题关键是得到松鼠爸爸采摘松果颗数:松鼠妈妈采摘松果颗数:松鼠宝宝采摘松果颗数=7:6:4.【题文】(4分)育才小学五年级学生分成三批去参观博物馆,第一批与第二批的人数比是5:4,第二批与第三批的人数比是3:2.已知第一批的人数比第二、三批的总和少55人.请问:育才小学五年级一共有多少人?【答案】385人.【解析】试题分析:第一批与第二批的人数比是5:4,第二批与第三批的人数比是3:2,据此设第二批有x人,则第一批有x人,第三批有x人.根据第一批的人数比第二、三批的总和少55人,列出方程x+x﹣55=x,解答即可.解:设第二批有x人,则第一批有x人,第三批有x人.x+x﹣55=xx﹣x=55x=55x=132x=×132=165x=×132=88132+165+88=385(人)答:育才小学五年级一共有385人.点评:本题含有3个未知数,设出其中一个,然后用含x的代数式,表示出另外两个,根据题意列出方程解答即可.【题文】(4分)小明将100枚棋子分成三堆,已知第一堆比第二堆的2倍还多,第二堆比第三堆的2倍也要多.请问:第三堆最多有多少枚棋子?【答案】13枚【解析】试题分析:设第三堆最多有x枚棋子,则第二堆至少有2x+1枚棋子,第一堆至少有2(2x+1)+1枚棋子,然后根据三堆的数量总和是100,求出x的值,进而判断出出第三堆最多有多少枚棋子即可.解:设第三堆最多有x枚棋子,则第二堆至少有2x+1枚棋子,第一堆至少有2(2x+1)+1枚棋子,则x+(2x+1)+2(2x+1)+1=1007x+4=1007x=967x÷7=96÷7x=13所以第三堆最多有13枚棋子.答:第三堆最多有13枚棋子.点评:此题主要考查了最大与最小问题的应用,解答此题的关键是弄清楚三堆棋子数量的关系.【题文】(4分)博雅小学五年级有200人,在一次数学竞赛中,参赛人数的获得优胜奖,获得鼓励奖,其余的人没有得奖.试问:该校五年级学生中有多少人没有参加这次数学竞赛?【答案】96人.【解析】试题分析:由于参赛人数的获得优胜奖,获得鼓励奖,可以通过求8和13的最小公倍数确定参赛人数,再用五年级的人数﹣参赛人数,列式计算即可求解.解:因为8和13的最小公倍数是8×13=104,五年级有200人所以参赛人数为104人,200﹣104=96(人)答:该校五年级学生中有96人没有参加这次数学竞赛.点评:此题属于公约数和公倍数问题,解答此题的关键是通过分析,确定范围,进而根据公倍数知识进行解答.【题文】(4分)甲、乙、丙三堆棋子总共有100多枚.先从甲堆分一些棋子给另外两堆,使得乙、丙两堆的棋子数增加1倍;接着,从乙堆分一些棋子给另外两堆,使得甲、丙两堆各增加2倍;最后,从丙堆分一些棋子给另外两堆,使得甲、乙两堆各增加3倍,此时甲、乙、丙三堆棋子数的比是1:2:3.请问:原来三堆棋子各有多少枚?【答案】甲、乙、丙原来各有73、50和21枚.【解析】试题分析:首先由丙分之后甲、乙、丙三堆棋子数的比是1:2:3,根据比的基本性质变形,进一步得到丙分之前,乙分之前,甲分之前甲、乙、丙三堆棋子数的比,再根据甲、乙、丙三堆棋子总共有100多枚即可求解.解:丙分之后甲、乙、丙三堆棋子数的比是1:2:3=4:8:124÷(3+1)=18÷(3+1)=212+(4﹣1)+(8﹣2)=21丙分之前是1:2:21=3:6:633÷(2+1)=163÷(2+1)=216+(3﹣1)+(63﹣21)=50乙分之前是1:50:21=2:100:42100÷(1+1)=5042÷(1+1)=212+(100﹣50)+(42﹣21)=73甲分之前是73:50:21又因为甲、乙、丙三堆棋子总共有100多枚,73+50+21=144(枚),所以甲、乙、丙原来各有73、50和21枚.点评:考查了按比例分配应用题和逆推问题,解题的关键是得到甲分之前甲、乙、丙三堆棋子数的比是73:50:21.【题文】(4分)今年,爷爷的年龄是小明年龄的6倍.若干年后,爷爷的年龄将是小明年龄的5倍.再过若干年,爷爷的年龄将是小明年龄的4倍.求爷爷今年的年龄.【答案】72岁.【解析】试题分析:由题意,可设爷爷今年x岁,则小明今年y岁,第一过了a年,第二次又过了b年,根据“爷爷的年龄是小明年龄的6倍.若干年后,爷爷的年龄将是小明年龄的5倍,再过若干年,爷爷的年龄将是小明年龄的4倍”列方程解答即可.解:设爷爷今年x岁,则小明今年y岁,第一过了a年,第二次又过了b年,x=6yx+a=5(y+a) x=5y+4ax+a+b=4(y+a+b) x=4y+3a+3b解x=24ay=4ab=根据实际a=3 b=5y=12x=72答:爷爷今年72岁.点评:此题等量关系较复杂,要求学生要审清题意找准等量关系,列出方程解答.【题文】(4分)甲、乙、丙三人各有一些书,甲、乙共有54本,乙、丙共有79本,已知三人中书最多的那个人书的数量是书最少的人的2倍.请问:乙有多少本书?【答案】乙有32本或乙有32本.【解析】试题分析:三人有书由少到多的情况有以下6种:(1)甲乙丙,(2)甲丙乙,(3)乙甲丙,(4)乙丙甲,(5)丙甲乙,(6)丙乙甲;又由于甲和乙的本数和小于乙和丙的本数和,故此可得:甲的本数一定小余丙的本数,故此(4)(5)(6)三种情况不可能会有,在其余的三种情况里,设最少的有x本,那么最多的就有2x本,中间数量的有y本,根据甲有的本数+乙有的本数=54本,以及乙有的本数+丙有的本数=79本,分别列出方程,依据等式的性质即可求解.解:设最少的有x本,那么最多的就有2x本,中间数量的有y本情况(1):x+y=54y+2x=79故此可得:x=2254﹣22=32(本)答:乙有32本.情况(2):x+2x=543x=543x÷3=54÷3x=1818×2=36(本)答:乙有乙有32本情况(3):x+2x=793x=793x÷3=79÷3x=26由于书的本数只能是整数,所以情况(3)不存在.点评:解答本题要明确三人有数多少的情况,再判断出不可能情况,根据可能情况列方程解答即可.【题文】(4分)某乡水电站按户收取电费,具体规定是:如果每月用电不超过24度,就按每度9分钱收费;如果超过24度,超出的部分按每度2角钱收费.已知在某月中,甲家比乙家多交了电费9角6分钱(用电按整度计算),问甲、乙两家各交了、电费.【答案】2元7角6分,1元8角.【解析】试题分析:如果甲、乙两家用电均超过24度,那么他们两家的电费差应是2角钱的整数倍;如果甲、乙两家用电均不超过24度,那么他们两家的电费差应是9分钱的整数倍.现在9角6分既不是2角钱的整数倍,又不是9分钱的整数倍,所以甲家的用电超过了24度,乙家的用电不超过24度.设甲家用了24+x度电,乙家用了24﹣y度电,有20x+9y=96,得x=3,y=4.即甲家用了27度电,乙家用了20度电,那么乙家应交电费20×9=180分=1元8角,则甲家交了180+96=276分=2元7角6分.即甲、乙两家各交电费2元7角6分,1元8角.解:设甲家用了24+x度电,乙家用了24﹣y度电,有20x+9y=96,得x=3,y=4.即甲家用了27度电,乙家用了20度电,那么乙家应交电费20×9=180分=1元8角,则甲家交了180+96=276分=2元7角6分.答:甲家交电费2元7角6分,乙家交电费1元8角.故答案为:2元7角6分,1元8角.点评:完成此题,关键是根据整数倍来确定两家的用电范围,进一步解决问题.【题文】(4分)红旗小学共有师生1081人,其中老师与学生的人数之比为2:45,男生与女生的人数之比为5:4.请问:红旗小学的老师、男生和女生各有多少人?【答案】老师46人,男生575人,女生460人.【解析】试题分析:设男生的人数人数为x人,则女生为0.8x人.男女生总人数是x+0.8x=1.8x人.又老师与学生的人数之比为2:45,所以老师人数是×1.8x人.然后根据师生总数1081,列出方程为x+0.8x+×(x+0.8x )=1081,解答即可.解:设男生的人数人数为x人,则女生为0.8x人,由题意得:x+0.8x+×(x+0.8x)=10811.8x+0.08x=10811.88x=1081x=5750.8x=0.8×575=460(人).×(x+0.8x)=×(575+460)=×1035=46(人).答:老师46人,男生575人,女生460人.点评:本题设男生的人数为x人,用含x的代数式表示出女生人数和老师人数是解答此题的关键.【题文】(4分)小悦去商店买了4斤水果糖、2斤奶糖和3斤巧克力糖,如果每块糖果的重量都相同,奶糖和巧克力糖一共有160块,那么水果糖有多少块?【答案】128块.【解析】试题分析:由题意,先求1进糖有多少块,即160÷(2+3),再求4斤水果糖有多少块;据此解答.解:160÷(2+3)×4=32×4=128(块)答:水果糖有128块.点评:此题考查了简单的归一问题,先求单一量是关键.【题文】(4分)万泉小学的师生在植树节栽种柳树、杨树和槐树共860棵,其中柳树和杨树棵数的比为3:4,杨树与槐树棵数的比为5:2.请问:这三种树各栽种了多少棵?【答案】杨树400棵,柳树300棵,槐树160棵.【解析】试题分析:设杨树有x棵.根据柳树和杨树棵数的比为3:4,杨树与槐树棵数的比为5:2,表示出柳树的棵数为x,槐树的棵数为x.根据柳树、杨树和槐树共860棵,列出方程为x+x+x=860,解出x,进而求出柳树和槐树的棵数即可.解:设杨树有x棵,由题意得:x+x+x=8602.15x=860x=400x=×400=300(棵)860﹣400﹣300=160(棵)答:杨树400棵,柳树300棵,槐树160棵.点评:本题须设其中一个未知数为x,用含x的代数式表示出另外两个.然后根据等量关系列出方程即可.【题文】(4分)某厂一月份与二月份生产零件的个数比为4:5.后来改进生产技术,三月份生产的零件个数与前丽个月的总产量之比为4:3,且三月份比二月份多生产了1610个零件.请问:这家工厂第一季度共生产多少个零件?【答案】4830个.【解析】试题分析:设二月份生产零件x个,则一月份生产零件x个.三月份生产的零件个数与前丽个月的总产量之比为4:3,所以三月份生产零件(x+x)个.根据三月份比二月份多生产了1610个零件,列出方程为(x+x)﹣x=1610,解答即可.解:设二月份生产零件x个,则一月份生产零件x个.由题意得:(x+x)﹣x=1610x+x﹣x=16101.4x=1610x=11501150+1150×+(1150+1150×)=1150+920+2760=4830(个)答:这家工厂第一季度共生产4830个零件.点评:对应这种较为复杂的数量关系的题目,设未知数列方程解答较好.【题文】(4分)有48本书分给两组小朋友,已知第二组比第一组多5人.如果把书全都分给第一组,一部分小朋友每人能拿到5本,其他小朋友每人能拿到4本;如果把书全都分给第二组,一部分小朋友每人能拿到4本,其他小朋友每人能拿到3本,问:两组一共有多少人?【答案】25人.【解析】试题分析:如果把书全部分给第一组,那么每人有4本的,每人有5本的.说明第一组人数少于48÷4=12人,多于48÷5=9…3,即9人;如果把书全分给第二组,那么每人有3本的,每人有4本的.说明第二组人数少于48÷3=16人,多于48÷4=12人;因为已知第二组比第一组多5人,所以,第一组只能是10人,第二组15人.由此解决问题.解:由于48÷4=12人,48÷5=9人…3本,所以,第一组少于12人,多于9人;由于48÷3=16,48÷4=12,所以第二组多于12人,少于16人;又已知第二组比第一组多5人,所以,第一组只能是10人,第二组只能是10+5=15人.两组一共有:10+15=25(人)答:两组一共有25人.点评:根据题意得出两组人数的取值范围是完成本题的关键.【题文】(4分)22名家长(爸爸或妈妈,他们都不是老师)和老师陪同一些小学生参加某次数学竞赛,已知家长比老师多,妈妈比爸爸多,女老师比妈妈多2人,至少有一名男老师,那么在这22人中,共有爸爸多少人?【答案】5人.【解析】试题分析:本题根据已知条件进行推敲,得出各类人数的范围,进而求出爸爸的人数.具体解题步骤如下:解:家长比老师多,所以老师少于22÷2=11人,也就是不超过10人,家长就不少于12人.在至少12个家长中,妈妈比爸爸多,所以妈妈要多于12÷2=6人,也就是不少于7人.因为女老师比妈妈多2人,所以女老师不少于9人,但老师最多就10个,并且还至少有1个男老师,所以老师必须是10个(9个女老师,1个男老师),家长12个人中,有7个妈妈,那么爸爸就有12﹣7=5人.答:在这22人中,爸爸有5人.点评:本题多次运用最值问题思考方法,且巧借半差关系,得出不等式的范围.【题文】(4分)志远中学有三个年级,共900多名学生,其中初一的学生数恰好占学生总数的,初三的学生恰好占学生总数的,请问:志远中学初二有多少名学生?【答案】376名.【解析】试题分析:因为8和15的最小公倍数是120,因此三个年级总人数应为120的公倍数,因为共900多名学生,所以总人数应是120×8=960人.因此志远中学初二有学生:960×(1﹣﹣),解决问题.解:三个年级总人数应为8和15的最小公倍数120的倍数,因此总人数应为:120×8=960(人).初二有学生:960×(1﹣﹣)=960×=376(人)答:志远中学初二有376名学生.点评:此题解答的关键在于根据分母的最小公倍数确定出总人数,进而解决问题.【题文】(4分)把100个人分成四队,第一队人数是第二队人数的1倍,是第三队人数的1倍,求第四队的人数.【答案】49人.【解析】试题分析:根据题意,可得前三队的人数比是:1::=20:15:16,因为20+15+16=51,四个队的总人数为100人,所以前三队的人数只能是20人,15人,16人,第四队人数为:100﹣20﹣15﹣16=49人,据此解答即可.解:根据题意,可得前三队的人数比是:1:(1÷1):(1÷1)=1::=20:15:16,因为20+15+16=51,四个队的总人数为100人,所以前三队的人数只能是20人,15人,16人,故第四队人数为:100﹣20﹣15﹣16=49(人).答:第四队的人数是49人.点评:解答此题的关键是首先求出前三队的人数比是多少,进而判断出前三队的人数.【题文】(4分)甲、乙、丙三人各有一些棋子,其中棋子数最多的人比最少的人多出60多枚棋子,甲先拿出自己的一半平分给乙、丙,然后乙拿出自己的平分给甲、丙,最后丙拿出自己的平分给甲、乙.这时三人的棋子数正好相同.请问:三个人一共有多少枚棋子?【答案】432枚.【解析】试题分析:反过来想:最后三人都是X枚,之前丙应该是X,乙和甲都是X;再之前乙为X,丙为X,甲为X;开始为甲X,乙为X,丙为X;从这看出X一定是48的倍数,又甲X减去丙等于60多,即X=60多,所以应该等于63(7的倍数),所以X=144,三人一共为432枚棋子.解:设最后三人都是X枚,之前丙应该是X,乙和甲都是X;再之前乙为X,丙为X,甲为X;开始为甲X,乙为X,丙为X;X﹣X=63X=63X=144144×3=432(枚)答:三个人一共有432枚棋子.点评:解决此类问题的关键是抓住最后得到的数量,从后向前进行推理,根据逆运算思维进行解答.【题文】(4分)有两堆石头,如果从第一堆中取出20块石头放进第二堆,那么第二堆的石头是第一堆的2倍;如果从第二堆中取出一些石头放进第一堆,那么第一堆的石头是第二堆的6倍.问:第一堆中最少可能有多少块石头?【答案】34块.【解析】试题分析:设第一堆有x块石头,第二堆有y块石头,从第二堆取出z块放进第一堆,然后根据“从第一堆中取出20块石头放进第二堆,那么第二堆的石头是第一堆的2倍”以及“从第二堆中取出一些石头放进第一堆,那么第一堆的石头是第二堆的6倍”这两个等量关系,列出三元一次方程组,求解即可.解:设第一堆有x块石头,第二堆有y块石头,从第二堆取出z块放进第一堆,则,由①,可得y=2x﹣60…③,把③代入②,整理得11x﹣7z=360,所以x=32;又因为x,z都是自然数,所以7z+8是11的倍数,当z=2时,x有最小值为:x=32=34,即第一堆中最少可能有34块石头.答:第一堆中最少可能有34块石头.点评:此题主要考查了多元一次方程的应用,弄清题意,找出合适的等量关系,进而列出方程组是解答此类问题的关键.【题文】(4分)北京市出租车的起步价是33公里以内10元,公里后按每公里2元计费,当里程超过15公里后,超出部分按每公里3元计费.小悦、冬冬两人都从游乐园分别坐出租车回家,小悦比冬冬多花了23元,请问:小悦家距离游乐园最远是多少公里?(不足1公里按1公里计,假定两人回家一路上没有红绿灯,也没有堵车)【答案】22公里.【解析】试题分析:3公里以内10元,而公里后按每公里2元计费,所以在15公里之内车费都是偶数,小悦比比冬冬多花23元,23不是2的倍数,也不是3的倍数,说明小悦里程超过15公里,冬冬不超过15公里,然后把23进行分解,得到一部分2的倍数和一部分3的倍数组成,从而解决问题.解:在3~15公里内花的车费都是偶数,小悦比比冬冬多花23元,23不是2的倍数,也不是3的倍数,说明小悦里程超过15公里,冬冬不超过15公里,23是由一部分2的倍数和一部分3的倍数组成,23=2×10+323=2×7+3×323=2×4+3×523=2×1+3×7当小悦里程超过15公里越多,里程越远,因此小悦里程最远是15+7=22(公里)答:小悦家距离游乐园最远是22公里.点评:本题需要根据每公里车费的情况,得出小悦里程超过15公里,冬冬不超过15公里,再把23进行拆分即可求解.【题文】(4分)(2012•仙游县)某公园对团体游园购买门票的规定如下表:购票人数 50人以下 51~100人 100人以上每人门票价 12元 10元 8元今有甲、乙两个旅游团,若分别购票,两团总计应付门票费1142元.如合在一起作为一个团体购票,总计只应付门票费864元.问:这两个旅游团各有多少人?【答案】甲旅游团有31 人,乙旅游团有77人.【解析】试题分析:根据两个团合在一起作为一个团体购票,总计只应付门票费864元.这样就可以求此两个团一共有多少人,用864÷8=108人,设甲团有x人,则乙团有(108﹣x)人,已知分别购票,两团总计应付门票费1142元,由此列方程解答.解:两个团的总人数;864÷8=108(人),设甲团有x人,则乙团有(108﹣x)人,12x+(108﹣x)×10=1142,12x+1080﹣10x=1142,2x+1080=1142,2x+1080﹣1080=1142﹣1080,2x=62,2x÷2=62÷2,x=31;108﹣31=77(人);答:甲旅游团有31 人,乙旅游团有77人.点评:此题属于含有两个未知数的应用题,这类题用方程解答比较容易,关键是找准数量间的相等关系,设一个未知数为x,另一个未知数用含x的式子来表示,进而列并解方程即可【题文】(4分)植物园里菊花与月季花的盆数之比是3:4,兰花与郁金香的盆数之比是5:6,菊花与郁金香的盆数之比是4:5.如果月季比兰花多50多盆,那么菊花比郁金香少多少盆?【答案】48盆.【解析】试题分析:兰花与郁金香的盆数之比是5:6,菊花与郁金香的盆数之比是4:5.我们设郁金香有x盆,则兰花有x盆,菊花有x盆.又菊花与月季花的盆数之比是3:4,所以月季有×(x)盆.根据月季比兰花多50多盆,列出方程50<×(x)﹣x<60,解出x,然后再求出菊花的盆数,用郁金香的盆数减去菊花的盆数即可.解:设郁金香有x盆,月季比兰花多m盆.且50<m<60根据题意得:×(x)﹣x=mx﹣x=mx=mx=因为x代表花的盆数,不能是分数,30不能被7整除.所以m应是7的倍数,有50<m<60,所以m=56.x===240(盆)x﹣x=240﹣×240=240﹣192=48(盆)答:菊花比郁金香少48盆.点评:本题含有多个未知数,要设其中的一个,然后用含x的代数式,表示出另外几个,根据题目中的等量关系列出方程解答.【题文】(4分)甲、乙、丙、丁包揽了班里期中考试的前四名.甲、乙的得分之和是108分,乙、丙的得分之和是149分,丙、丁的得分之和是121分,并且知道其中第一名的得分是第三名的2倍,那么第二名的得分是多少?【答案】67分.【解析】试题分析:由题意,甲、乙的得分之和是108分,乙、丙的得分之和是149分,丙、丁的得分之和是121分,相比得到:丙﹣甲=41,乙﹣丁=28,所以第一名是乙或者丙;分乙是第一或丙是第一两种情况来推理得出第二名的得分即可.解:相比得到:丙﹣甲=41,乙﹣丁=28,所以第一名是乙或者丙:(1)若乙是第一,则因为149不能被3整除,所以丙不为第三,只能是第二,丁第三,因为乙﹣丁=28,所以乙=56,但丙=149﹣56=93>乙,矛盾;(2)若丙第一,则因为149不能被3整除,乙只能是第二,又因为121不能被3整除,所以丁只能是第四,所以甲第三,丙﹣甲=41,即丙=82,甲=41,最后得:第二名乙=108﹣41=67;答:第二名的得分是67分.点评:此题考查利用整除性解决问题.【题文】(4分)有四位好朋友的体重都是整千克数.他们两两合称体重,共称了五次.称得的千克数分别是99、113、125、130、144.其中两人没有一起合称过,那么这两人中较重一人的体重是千克.【答案】66.【解析】试题分析:设四人体重分别是A、B、C、D,其中A、B没同时称重,而(A+C)+(B+D)=(A+D)+(B+C)(每个括号表示两人合称重量),注意到五个重量中只有99+144=113+130,因此得到C+D=125,这样就可以求出A+B=118.由此知A、B同奇偶,C、D必一奇一偶,故四人重量中必有三人同奇偶,由此即可求出A 、B、C,也就求出了这两人体重较大的体重.解:设四人是A、B、C、D,其中A、B没同时称重,于是必有(A+C)+(B+D)=(A+D)+(B+C)(每个括号表示两人合称重量),注意到五个重量中只有:99+144=113+130,故剩下的125必是C、D的重量和,即有C+D=125,所以A+B=99+144﹣125=118.由此知A、B同奇偶,C、D必一奇一偶,故四人重量中必有三人同奇偶,不妨令A、B、C同奇偶,于是A+C与B+C的值也是偶数,即有:A+C=144,B+C=130,或A+C=130,B+C=144,由前者求得:A=66,B=52,C=78,由后者求得:A=52,B=66,C=78,故合称的两人体重较大的是66kg.故答案为:66.点评:此题主要考查了多元一次方程组的应用,解题的关键是正确理解题意,把握题目中的数量关系,然后列出方程组解决问题.【题文】(4分)有若干盒卡片,每盒中卡片数一样多.把这些卡片分给一些小朋友,如果只分一盒,每人至少可以得到7张;如果每人分8张卡片,则还缺少5张.现在把所有卡片都分完,每人分到60张,而且还多出4张.问:共有多少个小朋友?【答案】11个.【解析】试题分析:由题意,60÷7=8…4,60÷8=7…4,说明卡片的盒数是8盒,“若都分8张则还缺少5张”,即如果我们在每盒中加5张(8盒共加40张),每人就可以得到8×8=64张,现在实际每人得到60张,即每人需要退出4张,其中要有4张是每人60张后多下来的,还有40张是我们一开始借来的要还出去,即要退出44张,44÷4═11,说明有11人.解:60÷7=8…4,60÷8=7…4,说明卡片的盒数是8盒,(4+5×8)÷4=44÷4=11(人),答:共有11个小朋友.点评:根据“只分一盒,每人至少可以得到7张;如果每人分8张卡片,则还缺少5张”推出共有8盒卡片是解题的关键.【题文】(4分)某次考试共有100道题,每题一分,做错不扣分,甲、乙、丙三位同学分别得90分、70分、50分,其中3个人都做出来的题叫作“容易题”,只有1个人做出来的题目叫作“较难题”,没人做出来的题目叫作“特难题”,且“较难题”是“特难题”的3倍,又已知丙同学做出的题中超过80%的是“容易题”,但又不全是“容易题”,请问:“特难题”共有多少道?【答案】7道.【解析】试题分析:通过分析,可设特难题a道,较难题有3a道,容易题有b道,则有2人做出的题有(100﹣4a ﹣b)道,易知3a+2(100﹣4a﹣b)+3b=210,可知b=5a+10>40,则有a≥7,又a<100﹣90=10,则有a ≤9,所以a=7,8,9,解得a=7,b=45;a=8,b=50;a=9,b=55,由于b<50,所以只有a=7,b=45满足条件,据此解答即可.解:设特难题a道,较难题有3a道,容易题有b道,则有2人做出的题有(100﹣4a﹣b)道:可得方程:3a+2(100﹣4a﹣b)+3b=210。
五年级下册数学试题第三单元应用题专题训练人教新课标Word含答案

第三单元长方体和正方体第一节长方体的认识(P18-P19)1、课前练习。
(1)一个长是30厘米、宽是10厘米,高是用一根84cm长的铁丝恰好可以焊成一个长方体框架。
框架长6cm,宽4cm,高是多长?李师傅用铁丝焊一个长10厘米、宽4厘米、高6厘米的长方体框架,至少需要铁丝多少厘米?粮店售米用的木箱(如图)所有棱长和是10.4米,长1.2米,宽60厘米,高是多少米?根铁丝长24厘米,将它焊接成一个宽和高都是1厘米的长方体框架,这个长方体框架的长是多少厘一个棱长之和是72厘米的长方体,长、宽、高的和是多少厘米?第二节正方体的认识练习五(P20-P22)1、课前练习。
(1)三角形面积是20m2,如果底是5m,高是多长?(2)一个三角形与一个平行四边形等底、等高,平行四边形的面积是方厘米?8厘米的长方体,棱长总和是多少厘米?(2)—个长9米,宽6米,高3米的长方体, 它的棱长之和为多少米?2、课堂训练。
(1)小龙的爷爷可会扎鸟笼子了,他想扎一个长了一个长方体框架,这个框架至少需要厘米的竹条?30厘米、宽20厘米、高15厘米的鸟笼子,于是他先扎(2)(4)一个长方体相交于一个顶点的三条棱的长度和是12厘米,这个长方体所有棱长的总和是多少厘米?3、课后巩固。
(1)如下图,绳子的长是多少厘米?(2)24cm2,那么三角形的面积多少平3、课后巩固。
(1)用铁丝组成一个长、宽、高分别 8cm 、6cm 、4cm 的长方体铁框,需要铁丝多长?(2)将一根细铁丝做一个如图所示的正方体框架,至少需要多长的铁丝?2、课堂训练。
(1)一个正方体的棱长是 6厘米,它的棱长总和是多少厘米? 用铁丝做一个正方体框架,要求棱长是7厘米,至少需要多长的铁丝?用一根长36厘米的铁丝围成一个正方体框架,正方体框架的棱长是多少厘米? 一根长60米的铁丝,剪断后焊接成一个正方体框架,这个正方体的棱长是多少米? 用一根一米长的铁丝做一个边长为 2分米的正方形,还剩多少分米?3、课后巩固。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级下册数学应用题竞赛表面积计算
班级: 姓名:
1、做10个棱长8厘米的正方体铁框架,至少需多长的铁丝
2、用铁皮做一个铁盒,使它的长、宽、高分别是分米,分米和分米,做一个这样的铁盒至
少要用铁皮多少平方米
3、做一个没盖的正方体玻璃鱼缸,棱长是3分米,至少需要玻璃多少平方米
>
4、我们学校要粉刷教室,教室长8米,宽7米,高米,扣除门窗、黑板的面积平方米,已
知每平方米需要5元涂料费。粉刷一个教室需要多少钱
5、一个商品盒是棱长为6厘米的正方体,在这个盒的四周贴上商标,贴商标的面积最大是
多少平方厘米
6、木版做长、宽、高分别是分米,分米和分米抽屉,做5个这样的抽屉至少要用木版多少
平方米
:
7.有一个养鱼池长18米,宽12米,深米,要在养鱼池各个面上抹一层水泥,防止渗水,
如果每平方米用水泥5千克,一共需要水泥多少千克
8、加工厂要加工一批电视机机套,(没有底面)每台电视机的长60厘米,宽50厘米、高
55厘米,做1000个机套至少用布多少平方米
9.做24节长方体的铁皮烟囱,每节长2米,宽4分米,高3分米,至少用多少平方米的
铁皮
"
10、一个长方体的金鱼缸,长是8分米,宽是5分米,高是6分米,不小心前面的玻璃被
打坏了,修理时配上的玻璃的面积是( )
五年级下册数学应用题竞赛体积计算
班级: 姓名:
1、一个长方体的长是4分米,宽是分米,高是3分米,求它的体积是多少立方分米
~
2、一个长方体沙坑,长4米,宽2米,深米,如果每立方米黄沙重吨,这黄沙重多少吨
3.有一种长方体钢材,长2米,横截面是边长为5厘米的正方形,每立方分米钢重千克,
这根方钢材重多少千克
4、一个长方体,底面积是30平方分米,高3米,它的体积是多少立方分米
5、一张写字台,长宽、高有20张这样的写字台要占多大空间
[
6、一个棱长是5分米的正方体鱼缸,里面装满水,把水倒入一个底面积48平方分米,高6
分米的的长方体鱼缸里,鱼缸里水有多深
7、一个棱长8分米的正方体水槽里装了490升水,把这些水倒入一个长10分米,宽7分
米,高8分米的长方体水槽里,水槽里的水深是多少
8、把一块棱长8厘米的正方体钢坯,锻造成长16厘米,宽5厘米的长方体钢板,这钢板
有多厚(损耗不计)
9. 一个长方体油桶,底面积是18平方分米,它可装千克油,如果每升油重千克,油桶内油
高是多少
10、 一个长方形铁皮长30cm,宽25cm,从四个角各切掉一个长为5cm的正方形,然后做成
一个无盖的盒子,这个盒子用了多少铁皮它的容积是多少
`
11、把一块长26dm的长方形木板,在四个角上分别剪去边长为3dm的正方形,将它制成
容积为840立方分米的长方体无盖容器,这块木板原来的宽是多少
12、一个长方体游泳池长60米,宽30米,深2米,游泳池占地多少平方米沿游泳池的内
壁米处用红漆划一条水位线,这条线的长度是多少现在游泳池内的水正好到达水位线,求池
内水的体积
13、 一个长方体玻璃缸,从里面量长40厘米,宽25厘米,水深12厘米,把一块石头浸
入水中后,水面上升到16厘米,求石块的体积
五年级下册数学应用题竞赛体积表面积综合练习
?
班级: 姓名:
1、80根方木,垛成一个长2米,宽2米,高米的长方体,平均每根方木的体积是多少立方
米合多少立方分米
2、3个棱长都8厘米的正方体,拼成一个长方体,它的体积和表面积各是多少
3、家具厂订购500根方木,每根方木横截面面积是25平方分米,长是米,这些木料的体
积是多少立方米
'
4、把两块棱长为分米的正方体木块拼成一个长方体,这个长方体的体积和表面积各是多少
5、一个长方体表面积是156平方分米,底面积是30平方分米,底面周长是32分米,长方
体的体积是多少
@
6、把长8厘米,宽12厘米,高5厘米长方体木块锯成棱长2厘米的正方体木块,可锯多
少块
7、一个底面是正方形的长方体木料,长是5米,把它截成4段,表面积增加36平方米,
求长方体的体积
8、
一个长方形的宽是8厘米,长是宽的倍,这个长方形的面积是多少平方厘米
9、一个长、宽、高分别是60厘米、50厘米、40厘米的金鱼缸,四周要贴上一
层彩色纸,至少需要彩色纸多少平方分米
10、一个正方体纸盒,棱长10厘米,它的表面积是多少平方厘米合多少平方分
米