晶体结构与性质知识总结(完善)
化学 晶体结构与性质总复习

分子晶体
碘晶体构造
• 1.定义:只含分子的晶体称为分子晶体 如碘晶体只含I2分子,属于分子晶体。
构成粒子:分子
构成晶体中粒子间的相互作用:分子间作用力 (范德华力和氢键)
分子晶体熔化时一般只破坏分子间作用 力,不破坏化学键,也有例外,如S8
注:分子内原子间以共价键结合,除稀有气体
因为 稀有气体分子为单原子分子,无共价键。
〔5〕绝大多数有机物晶体 乙醇,冰醋酸,蔗糖
分子晶体的物理特性:
较低的熔点和沸点〔为什么?〕
较小的硬度〔多数分子晶体在常温时为 气态或液态〕
一般都是绝缘体,固态或熔融状态也不 导电,局部溶于水后导电(举例)。
溶解性与溶质、溶剂的分子的极性相关 ——相似相溶(讲)。 ➢原因:分子间作用力很弱
分子晶体熔沸点变化规律
一、晶体和非晶体
1、构造特征:晶体——构造微粒在微观空间里 呈周期性有序排列 非晶体——构造微粒无序排列
2 晶体与非晶体的性质特征
自范性
微观结构
晶体
有(能自发呈封闭的规则的多面 原子在三维空间里呈周期性有
体外形)
序排列
非晶体 没有(不能自发呈现多面体外形)
原子排列相对无序
• 说明:
– 晶体自范性的本质:是晶体中粒子在微观空间里呈现周期性的有序排列 的宏观表象。
所以在金刚石中
碳原子的杂化方式为sp3 金刚石晶体中所有的C—
C键长 相等
• 晶体中最小的碳环由6 个碳组成,且不在同一平面内,;
晶体中每个C原子被 12 个六元环所共有,每个环平均拥 有: 1 个C-C键, 1/2个C原子。
• 晶体中每个C参与了4条C—C键的形成,而在每条键中的
奉献只有一半,故C原子与C—C键数之比为:1:2
晶体结构与性质知识点总结大一

晶体结构与性质知识点总结大一晶体结构与性质知识点总结晶体是由具有一定规则排列方式的原子、离子或分子组成的固体物质,拥有特定的结构和性质。
晶体结构与性质是材料科学与化学领域的重要基础知识,对于理解和研究材料的性质、制备工艺以及应用具有重要意义。
本文将对晶体结构与性质的相关知识点进行总结。
一、晶体结构1. 空间点阵:晶体的基本结构单位是晶胞,晶胞在空间的无限重复构成空间点阵。
六种常见的空间点阵包括:立方点阵、四方点阵、正交点阵、六方点阵、单斜点阵和三斜点阵。
2. 晶体的晶格参数:晶体的晶格参数是对晶格进行定量描述的基本参数,包括晶格常数、晶胞参数和晶胞角度。
晶格常数是指晶胞的尺寸,晶胞参数是指晶体中原子间距的大小,晶胞角度则描述了晶体中原子间的排列方式。
3. 晶体的晶系:根据晶体的对称性,可以将晶体分为七个晶系,分别为立方晶系、四方晶系、正交晶系、六方晶系、三斜晶系、单斜晶系和菱面晶系。
每个晶系都具有特定的组成、结构和性质。
4. 晶体结构类型:根据晶体结构的特征,可以将晶体分为离子晶体、共价晶体、金属晶体和分子晶体等。
各类晶体的结构特点不同,从而决定了它们的性质和用途。
5. 点阵缺陷:晶体中可能存在的点阵缺陷包括空位、层错、插入固溶体和间隙固溶体等。
这些点阵缺陷对晶体的导电性、热导率和力学性能等起着重要的影响。
二、晶体性质1. 光学性质:晶体在光的照射下表现出特定的光学性质,包括吸收、折射、散射和双折射等。
不同晶体的光学性质可用于光学器件、光纤通信和激光技术等领域。
2. 电学性质:晶体的电学性质与晶体结构和成分密切相关。
离子晶体具有良好的导电性,而共价晶体和分子晶体通常是绝缘体或半导体。
晶体的电导率、电介质性能和电子输运性质等是电学性质的重要指标。
3. 磁学性质:晶体的磁学性质与晶体结构和电子自旋有关。
常见的磁性晶体包括铁磁体、反铁磁体和顺磁体等。
磁性晶体在磁记录、磁存储和磁共振成像等方面具有广泛应用。
晶体结构与性质 晶体结构与性质知识点

晶体结构与性质晶体结构与性质知识点第34讲晶体结构与性质(一)(考纲要求)1、理解离子键的形成,能根据离子化合物的结构特征解释其物理性质。
2、了解原子晶体的特征,能描述金刚石、二氧化硅等原子晶体的结构与性质的关系。
3、理解金属键的含义,能用金属键理论解释金属的一些物理性质。
4、了解化学键和分子间作用力的区别。
5、了解氢键的存在对物质性质的影响,能列举含有氢键的物质。
6、了解分子晶体与原子晶体、离子晶体、金属晶体的结构微粒、微粒间作用力的区别。
7、了解简单配合物的成键情况。
(课前预习区)一、认识晶体1、晶体的定义:微观粒子在空间按一定规律做周期性重复排列构成的固体物质2、晶体的特性:(1)有规则的几何外形(自范性:在适宜的条件下,晶体能够自发的呈现封闭的、规则的多面体外形。
)(2)有确定的熔点(3)各向异性:在不同的方向上表现不同的性质(4)具有特定的对称性3、晶体是由晶胞堆积得到的,故晶胞就能反映整个晶体的组成。
利用晶胞可以求化学式——均摊法。
均摊法是指每个晶胞平均拥有的粒子数目。
若某个粒子为N 个晶胞所共有,则该粒子有1/N属于此晶胞。
以正方体晶胞为例,晶胞中不同位置的粒子对晶胞的贡献为:顶点原子_______属于此晶胞棱上原子_______属于此晶胞面上原子_______属于此晶胞体内原子完全属于此晶胞若晶胞为六棱柱,则顶点原子有________属于此晶胞,棱上有________属于此晶胞。
练习、硼镁化合物刷新了金属化合物超导温度的最高记录。
该化合物晶体结构中的重复结构单元如图所示。
十二个镁原子间形成正六棱柱,两个镁原子分别在棱柱上底、下底的中心;六个硼原子位于棱柱内。
则该化合物的化学式可表示为A 、Mg 14B 6 B 、MgB 2 ()● ○ Mg BC 、Mg 5B 12D 、Mg 3B 2二、晶体结构1、金属晶体(1)金属键:_____________________________________________________________成键微粒:________________________特征:影响金属键强弱因素及对金属性质的影响:(2)金属晶体:(3)金属晶体物理性质的解释2、离子晶体(1)离子键:____________________________________________________________成键微粒:_________________ 特征:____________________________影响离子键强弱因素:(2)离子晶体定义:(3)晶格能:①影响因素②与离子晶体性质的关系:晶格能越大,形成的离子晶体越,且熔点越,硬度越。
高中化学人教版第三讲晶体结构与性质知识点总结

第三讲晶体结构与性质考点1 晶体晶体的结构与性质一、晶体1.晶体与非晶体(1)熔融态物质凝固。
(2)气态物质冷却不经液态直接凝固(凝华)。
(3)溶质从溶液中析出。
3.晶胞(1)概念:描述晶体结构的基本单元。
(2)晶体中晶胞的排列——无隙并置①无隙:相邻晶胞之间没有任何间隙。
②并置:所有晶胞都是平行排列、取向相同。
4.晶格能(1)定义:气态离子形成1摩离子晶体释放的能量,通常取正值,单位:kJ·mol -1。
(2)影响因素①离子所带电荷数:离子所带电荷数越多,晶格能越大。
②离子的半径:离子的半径越小,晶格能越大。
二、四种晶体类型的比较1.不同类型晶体熔、沸点的比较(1)不同类型晶体的熔、沸点高低的一般规律:原子晶体>离子晶体>分子晶体。
(2)金属晶体的熔、沸点差别很大,如钨、铂等熔、沸点很高,汞、铯等熔、沸点很低。
2.同种晶体类型熔、沸点的比较(1)原子晶体原子半径越小―→键长越短―→键能越大―→熔、沸点越高。
如熔点:金刚石>碳化硅>硅。
(2)离子晶体①一般地说,阴、阳离子的电荷数越多,离子半径越小,则离子间的作用力就越强,其离子晶体的熔、沸点就越高,如熔点:MgO>MgCl2>NaCl>CsCl。
②衡量离子晶体稳定性的物理量是晶格能。
晶格能越大,形成的离子晶体越稳定,熔点越高,硬度越大。
(3)分子晶体①分子间作用力越大,物质的熔、沸点越高;具有氢键的分子晶体熔、沸点反常地高,如H2O>H2Te>H2Se>H2S。
②组成和结构相似的分子晶体,相对分子质量越大,熔、沸点越高,如SnH4>GeH4>SiH4>CH4。
③组成和结构不相似的物质(相对分子质量接近),分子的极性越大,其熔、沸点越高,如CO>N2、CH3OH>CH3CH3。
④同分异构体支链越多,熔、沸点越低。
如CH3—CH2—CH2—CH2—CH3>(4)金属晶体金属离子半径越小,离子电荷数越多,其金属键越强,金属熔、沸点就越高,如熔、沸点:Na<Mg<Al。
晶体结构与性质知识点

第三章晶体构造与性质第一节晶体的常识【知识点梳理】一、晶体与非晶体1、晶体与非晶体① 晶体:是内部微粒〔原子、离子或分子〕在空间按一定规律做周期性重复排列构成的物质。
② 非晶体:是内部的原子或分子的排列呈杂乱无章的分布状态的物质。
2、晶体的特征〔1〕晶体的根本性质晶体的根本性质是由晶体的周期性构造决定的。
① 自范性:a.晶体的自范性即晶体能自发的呈现多面体外形的性质。
b.“自发〞过程的实现,需要一定的条件。
晶体呈现自范性的条件之一是晶体生长的速率适当。
② 均一性:指晶体的化学组成、密度等性质在晶体中各局部都是一样的。
③ 各向异性:同一晶体构造中,在不同方向上质点排列一般是不一样的,因此,晶体的性质也随方向的不同而有所差异。
④ 对称性:晶体的外形与内部构造都具有特有的对称性。
在外形上,常有相等的对称性。
这种一样的性质在不同的方向或位置上做有规律的重复,这就是对称性。
晶体的格子构造本身就是质点重复规律的表达。
⑤ 最小内能:在一样的热力学条件下,晶体与同种物质非晶体固体、液体、气体相比拟,其内能最小。
⑥ 稳定性:晶体由于有最小内能,因而结晶状态是一个相对稳定的状态。
⑦ 有确定的熔点:给晶体加热,当温度升高到某温度便立即熔化。
⑧ 能使X射线产生衍射:当入射光的波长与光栅隙缝大小相当时,能产生光的衍射现象。
X射线的波长与晶体构造的周期大小相近,所以晶体是个理想的光栅,它能使X射线产生衍射。
利用这种性质人们建立了测定晶体构造的重要试验方法。
非晶体物质没有周期性构造,不能使X射线产生衍射,只有散射效应。
〔2〕晶体SiO2与非晶体SiO2的区别① 晶体SiO2有规那么的几何外形,而非晶体SiO2无规那么的几何外形。
② 晶体SiO2的外形与内部质点的排列高度有序,而非晶体SiO2内部质点排列无序。
③ 晶体SiO2具有固定的熔沸点,而非晶体SiO2无固定的熔沸点。
④ 晶体SiO2能使X射线产生衍射,而非晶体SiO2没有周期性构造,不能使X射线产生衍射,只有散射效应。
晶体结构与性质知识总结

晶体结构与性质知识总结晶体是由原子、离子或分子组成的固体,它们按照一定的规则排列而形成的,在空间上具有周期性的结构。
晶体的结构与性质密切相关,下面对晶体的结构和性质进行总结。
一、晶体的结构:1.晶体的基本单位:晶体的基本单位是晶胞,它是晶格的最小重复单位。
晶胞可以是点状(原子)、离子状(离子)或分子状(分子)。
2.晶格:晶格是一种理想的周期性无限延伸的结构,它由晶胞重复堆积而成。
晶格可以通过指标来描述,如立方晶系的简单立方晶格用(100)、(010)和(001)来表示。
3.晶系:晶体按照对称性的不同可以分为立方系、四方系、正交系、单斜系、菱面系、三斜系和六角系等七个晶系。
4.点阵:点阵是晶胞中原子、离子或分子的空间排列方式。
常用的点阵有简单立方点阵、体心立方点阵和面心立方点阵。
5.晶体的常见缺陷:晶体中常见的缺陷有点缺陷、线缺陷和面缺陷。
点缺陷包括空位、间隙原子和杂质原子等;线缺陷包括晶体的位错和附加平面等;面缺陷包括晶体的晶界、孪晶和堆垛疏松等。
二、晶体的性质:1.晶体的光学性质:晶体对光有吸收、透射和反射等作用,这取决于晶格结构和晶胞的对称性。
晶体在光学显微镜下观察时,有明亮的晶体颗粒。
2.晶体的热学性质:晶体的热学性质主要包括热容、热传导和热膨胀等。
晶体的热传导性能与晶胞的结构和相互作用有关,不同晶体的热传导性能差异很大。
3.晶体的电学性质:晶体的导电能力与晶体的结构和化学成分密切相关。
一些晶体可以具有金属导电性,例如铜、银和金等;而其他晶体可以具有半导体或绝缘体导电性。
4.晶体的力学性质:晶体的力学性质涉及到晶体的刚性、弹性和塑性等。
晶体在受力作用下可能发生形变,这取决于晶格的结构和原子、离子或分子之间的相互作用力。
5.晶体的化学性质:晶体的化学性质取决于晶体的成分和结构。
晶体可能与其他物质发生化学反应,形成新的物质。
晶体的化学性质对其功能和应用具有重要影响。
综上所述,晶体的结构与性质密切相关。
晶体结构与性质

晶体结构与性质【德智助学】1.晶体类型判断方法2.熔沸点高低比较规律3.各种常见晶体类型结构【知识梳理】考试要点一、晶体类型判断及熔沸点高低比较1.晶体类型判断方法(1)根据物理性质进行判断,如熔沸点、硬度以及导电性等。
(2)根据空间结构图、文字表达等。
(3)根据常见的物质类型判断。
2.熔、沸点高低比较规律(1)异类晶体一般规律:原子晶体> 离子晶体> 分子晶体,如SiO2 > NaCl > CO2(干冰)。
金属晶体熔、沸点变化大,根据实际情况分析。
(2)同类晶体①原子晶体半径和越小,即键长越短,共价键越强,晶体的熔、沸点越高,如熔点:金刚石> 金刚砂> 晶体硅。
②离子晶体离子半径越小;阴、阳离子电荷数越多,离子键越牢固,晶体的熔、沸点越高,如LiCl > NaCl > KCl > CsCl;MgO > NaCl。
③组成和结构相似的分子晶体相对分子质量越大,分子间作用力越强,物质的熔、沸点越高,如F2 < Cl2 < Br2 < I2。
极性越大,分子间作用力越强,物质的熔、沸点越高,如CO > N2。
具有氢键的分子晶体,熔、沸点相对较大,且分子间氢键作用强于分子内氢键。
④金属晶体价电子数越多,半径越小,金属键越强,熔、沸点越高,如Na < Mg < Al。
(3)一般合金的熔、沸点低于它的各成分金属的熔、沸点,如生铁< 纯铁。
二、各种晶体类型常见例子1.离子晶体(1)NaCl:一个Na+周围以离子键同时结合 6 个Cl-,与一个Na+距离最近的Na+有12 个,Cl- 有6个,在一个晶胞中含Na+、Cl-分别为 4 、4 个,若NaCl晶胞的边长为r cm,阿伏加德罗常数为N A,则晶体的密度为234/N A r3。
(2)CsCl:一个Cs+周围以离子键同时结合8 个Cl-,与一个Cs+距离最近的Cs+有 6 个,与一个Cs+距离最近的Cl-有8个,在一个晶胞中含Cs+、Cl-分别为1 、 1 个,若CsCl晶胞的边长为r cm,晶体的密度为d g/cm3,则阿伏加德罗常数为168.5/(dr)3 。
晶体结构与性质知识总结(完善)

3—1、晶体的常识一、晶体和非晶体1、概述——自然界中绝大多数物质是固体,固体分为和两大类.*自范性——晶体能自发地呈现多面体外形的性质.本质上,晶体的自范性是晶体中粒子在微观空间里呈现周期性有序排列的宏观表象。
*晶体不因颗粒大小而改变,许多固体粉末用肉眼看不到规则的晶体外形,但在显微镜下仍可看到。
* 晶体呈现自范性的条件之一是晶体生长的速率适当,熔融态物质凝固速率过快常得到粉末或没有规则外形的块状物。
*各向异性——晶体的许多物理性质如强度、热导性和光导性等存在各向异性即在各个方向上的性质是不同的二、晶胞1、定义——描述晶体结构的基本单元.2、特征-—(1)习惯采用的晶胞都是体,同种晶体所有的晶胞大小形状及内部的原子种类、个数和几何排列完全相同。
(2)整个晶体可以看作是数量巨大的晶胞“无隙并置"而成。
<1〉所谓“无隙”是指相邻晶胞之间没有任何间隙;〈2> 所谓“并置”是指所有晶胞都是平行排列的,取向相同。
3、确定晶胞所含粒子数和晶体的化学式——均摊法分析晶胞与粒子数值的关系(1)处于内部的粒子,属于晶胞,有几个算几个均属于某一晶胞。
(2)处于面上的粒子,同时为个晶胞共有,每个粒子有属于晶胞.(3)处于90度棱上的粒子,同时为个晶胞共有,每个粒子有属于晶胞.(4)处于90度顶点的粒子,同时为个晶胞共有,每个粒子有属于晶胞;处于60度垂面顶点的粒子,同时为个晶胞共有,每个粒子有属于晶胞;处于120度垂面顶点的粒子,同时为个晶胞共有,每个粒子有属于晶胞。
4、例举三、分类晶体根据组成粒子和粒子之间的作用分为分子晶体、原子晶体、金属晶体和离子晶体四种类型。
3—2、分子晶体和原子晶体一、分子晶体1、定义——只含分子的晶体。
2、组成粒子——。
3、存在作用—-组成粒子间的作用为(),多原子分子内部原子间的作用为。
*分子晶体中定含有分子间作用力,定含有共价键。
*分子间作用力于化学键.4、物理性质(1)熔沸点与硬度-—融化和变形只需要克服,所以熔沸点、硬度,部分分子晶体还可以升华。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3-1、晶体的常识一、晶体和非晶体1、概述——自然界中绝大多数物质是固体,固体分为和两大类。
* 自范性——晶体能自发地呈现多面体外形的性质。
本质上,晶体的自范性是晶体中粒子在微观空间里呈现周期性有序排列的宏观表象。
* 晶体不因颗粒大小而改变,许多固体粉末用肉眼看不到规则的晶体外形,但在显微镜下仍可看到。
* 晶体呈现自范性的条件之一是晶体生长的速率适当,熔融态物质凝固速率过快常得到粉末或没有规则外形的块状物。
* 各向异性——晶体的许多物理性质如强度、热导性和光导性等存在各向异性即在各个方向上的性质是不同的二、晶胞1、定义——描述晶体结构的基本单元。
2、特征——(1)习惯采用的晶胞都是体,同种晶体所有的晶胞大小形状及内部的原子种类、个数和几何排列完全相同。
(2)整个晶体可以看作是数量巨大的晶胞“无隙并置”而成。
<1> 所谓“无隙”是指相邻晶胞之间没有任何间隙;<2> 所谓“并置”是指所有晶胞都是平行排列的,取向相同。
3、确定晶胞所含粒子数和晶体的化学式——均摊法分析晶胞与粒子数值的关系(1)处于内部的粒子,属于晶胞,有几个算几个均属于某一晶胞。
(2)处于面上的粒子,同时为个晶胞共有,每个粒子有属于晶胞。
(3)处于90度棱上的粒子,同时为个晶胞共有,每个粒子有属于晶胞。
(4)处于90度顶点的粒子,同时为个晶胞共有,每个粒子有属于晶胞;处于60度垂面顶点的粒子,同时为个晶胞共有,每个粒子有属于晶胞;处于120度垂面顶点的粒子,同时为个晶胞共有,每个粒子有属于晶胞。
4、例举三、分类晶体根据组成粒子和粒子之间的作用分为分子晶体、原子晶体、金属晶体和离子晶体四种类型。
3-2、分子晶体和原子晶体一、分子晶体1、定义——只含分子的晶体。
2、组成粒子——。
3、存在作用——组成粒子间的作用为(),多原子分子内部原子间的作用为。
* 分子晶体中定含有分子间作用力,定含有共价键。
* 分子间作用力于化学键。
4、物理性质(1)熔沸点与硬度——融化和变形只需要克服,所以熔沸点、硬度,部分分子晶体还可以升华。
熔融一定破坏分子间的和可能存在的键,绝不会破坏分子内部的。
同为分子晶体的不同物质,一般来说尤其对于结构组成相似的分子,相对分子质量越大,熔沸点越;相对分子质量相差不大的分子,极性越大熔沸点越;含氢键的熔沸点会特殊的些。
例如:(2)溶解性——遵循同性互溶原理(或说相似相溶原理):即极性分子易溶于性溶剂(多为),如卤化氢(HX)、低级醇和低级羧酸易溶于极性溶剂水;非极性分子易溶于非极性(有机)溶剂,如硫、磷和卤素单质(X2)不易溶于极性溶剂水而易溶于非极性溶剂CS2、苯等。
同含氢键的溶解性会更,如乙醇、氨气与水。
5、类别范畴(1)除C、Si、B外的非金属单质,如卤素、氧气和臭氧、硫(S8)、白磷(P4)、足球烯(C60)、稀有气体等。
(2)除铵盐、SiO2、SiC、Si3N4、BN等外的非金属互化物,包括非金属氢化物和氧化物,如氨(NH3)、冰(H2O)、干冰(CO2)、三氧化硫(SO3)等。
(3)所有的酸分子(纯酸而非溶液)。
(4)大多有机物。
(5)除汞外常温下为液态和气态的物质。
(6)能升华的物质。
如干冰、碘、等。
6、结构例析如果分子间作用力只有范德华力,其分子占晶胞六面体的个顶角和个面心,若以一个分子为中心,其周围通常有个紧邻分子,这一特征称为分子密堆积,如O2、C60、CO2、I2等。
(1)干冰固态的,色透明晶体,外形像冰,分子间作用力只有,熔点较,常压能升华,常作制冷剂或人工降雨。
二氧化碳分子占据立方体晶胞的个面心和个顶角,与每个二氧化碳分子距离最近且相等的二氧化碳分子有个,若正方体棱长为a,则这两个相邻的CO2的距离为。
(2)冰固态的,色透明晶体,水分子间作用力除外,还有,氢键虽远小于共价键,但明显大于范德华力,所以冰的硬度较,熔点相对较。
每个水分子与周围距离最近且相等的水分子有个,这几个水分子形成一个的空间构型,晶体中水分子与氢键的个数之比为。
这一排列使冰中水分子的空间利用率不高,留有相当大的空隙,所以冰的密度于液体水(4C的水密度最大,通常认为是1)。
(3)天然气水合物——可燃冰·海底储存的潜在能源,甲烷分子处于水分子形成笼子里,形式多样。
二、原子晶体1、定义——相邻间以键结合而成空间网状的晶体。
整块晶体是一个三维的共价键网状结构的“大分子”,又称共价晶体。
2、组成粒子——。
3、存在作用——。
4、物理性质(1)熔沸点与硬度——熔点、硬度,是原子晶体的特征。
具体综合考虑构型和键能。
同为原子晶体的物质,空间构型相似时,共价键键长越短,键能就越,熔沸点就越。
(2)溶解性——溶于极性溶剂,溶于非极性(有机)溶剂。
5、类别范畴(1)Si、B、Ge和C(金刚石)等非金属单质。
(2)SiO2、SiC、Si3N4、BN等。
6、结构例析(1)金刚石色晶体,天然硬度最,于导电和导热,溶于水和有机溶解。
能燃烧生成。
属于晶体,这种晶体的特点是;金刚石中与某个C原子紧邻即距离最近且相等C原子有(杂化),它们形成原子的构型,键角;由共价键构成最小环上有个C原子(平均每个最小环上有1/2个碳原子和1个碳碳单键),晶体中C原子个数与C-C键数之比为。
金刚石晶胞可以看为8个小立方体形成的大立方体,碳原子占大立方体的个顶角、个面心(或说占大立方体的个一个中心、个棱心)以及其中间隔的个小立方体的中心(或说碳原子占每个小立方体间隔的个顶角和中心),平均每个晶胞含有个碳原子。
晶体硅(单晶硅)、碳化硅(金刚砂)结构和性质均与之相似。
(2)二氧化硅色晶体,硬度、熔点,于导电和导热,溶于水和有机溶剂。
只与酸和强碱反应。
用于制造水泥、玻璃、人造宝石、单晶硅、硅光电池、芯片和光导纤维等。
相当于在晶体硅的每个硅硅键之间个插入了一个氧原子,每个Si与个O原子形成个共价键,这几个氧原子形成的空间构型为,每个O与个Si原子形成共价键。
在二氧化硅晶体中Si与O原子个数比为,平均每mol SiO2晶体中含有Si-O键最接近______mol。
* 石墨——色非金属单质,溶于水,质地软,熔点,可做铅笔芯和固体润滑剂,电和热的体,能做高温下的电极。
属于晶体,是状结构:层内碳原子间以相结合,C原子呈杂化,即每一个碳原子与紧邻的个碳原子形成个共价键(碳原子数与碳碳单键数之比为),这几个碳原子形成的空间构型为;层间存在的作用力为。
石墨中最小的碳环为元环,每个C原子被个六边形共用,平均每个环占有个碳原子,即碳原子数与碳环数之比为。
3-3、金属晶体一、金属键1、定义——2、特征——描述金属键最简单的理论是“电子气理论”3、强弱——F=K·Q1Q2/r2金属晶体导电性、导热性、延展性等共性以及熔沸点和硬度差异性解释。
二、金属晶体的原子堆积模型1、二维空间放置(1)非密置层——纵横成行,配位数为;(2)密置层——成行交错,配位数为。
2、三维堆积I、非密置层在三维空间的两种堆积方式:(1)简单立方堆积——三维成行堆积,晶胞为个原子形成的立方体,平均每个晶胞含有个原子。
配位数为,它们形成一个空间构型,空间利用率太低,为52%,只有金属钋(Po)采取这种堆积方式。
(2)体心立方堆积——晶胞为个原子形成的立方体(八顶角一中心),平均每个晶胞含有个原子。
配位数为,它们形成一个空间构型,空间利用率稍高,为68%,许多金属如IA族金属Na、K、Fe等采取这种堆积方式。
II、密置层在三维空间按体心立方堆积的两种堆积方式(3)六方最密堆积——按ABABABAB······的方式堆积,Mg、Zn、Ti等;(4)面心立方堆积——按ABCABCABC······的方式堆积,Cu、Ag、Au等。
~~均为金属晶体的最密堆积,配位数均为,空间利用率均为74%。
3-4、离子晶体一、离子晶体1、定义——由和通过键结合而成的晶体。
2、构成粒子——。
3、存在作用——构成粒子间一定存在,构成粒子内可能存在。
4、物理性质(1)熔沸点较,硬而脆;综合考虑离子晶格和键能,融化一定破坏键,不会破坏其中可能的存在的键。
F=K·Q1Q2/r2,即空间构型相似的离子晶体,离子电荷越、成键离子半径和越,熔沸点越高。
(2)大多溶于水,一定破坏键,可能破坏可能存在的部分或全部的键。
(3)固体导电,液态导电,水溶液导电。
一定为离子化合物,一定为电解质。
5、类别范畴——离子化合物(1)IA、IIA族等的活泼金属和VIA、VIIA族等的活泼非金属形成的化合物;(2)强碱和大多数盐;(3)熔融能导电的化合物。
6、结构例析离子晶体中的配位数(缩写为C.N.)是指一个离子周围最邻近的异性离子的数目。
NaCl和CsCl的阴阳离子之比均为1:1,同属AB型离子晶体,但配位数不同。
晶体中正负离子的半径比是决定离子晶体的重要因素,简称几何因素;正负离子的电荷比也是决定离子晶体结构的重要因素,简称电荷因素;离子的纯粹程度是决定离子晶体结构的又一因素,简称键性因素。
(1)氯化钠阴、阳离子的配位数为,即每个Na+紧邻个Cl—,这些Cl—构成的几何图形是;每个Na+与个Na+等距离相邻。
晶胞为八个小立方体并集形成的一个大的立方体,若钠离子占其个顶角和个面心的话,氯离子则占其个中心和个棱心,分别平均每个氯化钠晶胞含有个Na+和个Cl—。
若晶胞棱长为a,则相邻同性离子的核间距离为,相邻异性离子的核间距离为。
(2)氯化钾每个Cl—(或Cs+)周围与之最接近且距离相等的Cs+(或Cl—)共有个,这几个Cs+(或Cl—)在空间构成的几何构型为;在每个Cs+周围距离相等且最近的Cs+共有个,这几个Cs+(或Cl—)在空间构成的几何构型为;氯化铯晶胞为一个体心立方体即若铯离子占其个中心的话,氯离子则占其个顶角,平均一个氯化铯晶胞含有个Cs+和个Cl—。
若晶胞棱长为a,则相邻同性离子的核间距离为,相邻异性离子的核间距离为。
(3)氟化钙钙离子的配位数为,形成的空间构型为,氟离子的配位数为,形成的空间构型为,即钙离子与氟离子的个数比为;其晶胞立方体中:钙离子占其个顶角和个面心,氟离子占其八分小立方体的个中心(或说正套小立方体的个顶角);平均一个氟化钙晶胞含有个钙离子和个氟离子。
若晶胞棱长为a,则钙离子与钙离子的最近距离为,氟离子与氟离子的最近距离为,钙离子与氟离子的最近距离为。
二、晶格能1、定义——态离子形成摩尔离子晶体所的能量。
2、意义——是最能反映离子晶体稳定性的数据。
* 物质熔沸点高低的比较(1)一般说来,原子晶体> 离子晶体> 金属晶体> 分子晶体(2)如果同为原子晶体——比较共价键强弱:共价键成键原子半径之和越小,键长越,键能越,熔沸点就越。