第二章 泊松过程-随机过程

合集下载

泊松过程的性质

泊松过程的性质

到达时刻的分布
01
到达时刻的分布是均匀分布。在泊 松过程中,到达时刻的概率密度函 数为$f(t) = lambda e^{-lambda t}$,其中$t$是到达时刻。
02
到达时刻的期望和方差分别为 $E(T) = frac{1}{lambda}$和 $Var(T) = frac{1}{lambda^2}$ 。
泊松过程的性质
目录
CONTENTS
• 泊松过程的定义 • 泊松过程的性质 • 泊松过程的统计特性 • 泊松过程的扩展和推广 • 泊松过程的应用
01
CHAPTER
泊松过程的定义
泊松过程的基本概念
01
02
03
随机性
泊松过程是一种随机过程, 其事件的发生具有随机性。
独立性
泊松过程中,任意两个不 相交的时间区间内发生的 事件相互独立。
马尔科夫到达过程是一 种特殊的泊松过程,其 中事件的发生概率只与 当前状态有关,而与过 去的状态无关。
在马尔科夫到达过程中 ,事件的发生是一个马 尔科夫链的过程,即下 一个事件的发生概率只 取决于当前事件是否发 生,而与之前的事件无 关。这种过程具有无记 忆性。
马尔科夫到达过程的数 学表达通常使用马尔科 夫链和概率论,通过状 态转移概率和转移矩阵 来描述。
平稳性
总结词
平稳性是指泊松过程的事件发生频率与时间无关,即单位时间内发生的事件数 是一个常数。
详细描述
在泊松过程中,事件的发生频率是恒定的,不随时间的推移而改变。这意味着 在任意一个固定的时间间隔内,事件发生的次数是一个随机变量,但其均值等 于单位时间间隔内的事件发生率。
无后效性
总结词
无后效性是指泊松过程中,过去的事件不会影响未来的事件。

泊松过程poisson

泊松过程poisson
分析、推荐系统等。
研究如何将泊松过程与其他 随机过程进行更有效的结合,
以更好地描述复杂现象。
探索如何利用机器学习方法改 进泊松过程的参数估计和模型 选择,以提高模型的预测能力
和解释性。
THANKS
泊松分布的性质
泊松分布具有指数衰减的性质, 即随着时间的推移,事件发生的
概率逐渐减小。
泊松分布的期望值和方差都是参 数λ(λ > 0),即E(X)=λ, D(X)=λ。
当λ增加时,泊松分布的概率密 度函数值也增加,表示事件发生
的频率更高。
泊松分布的应用场景
通信网络
泊松分布用于描述在一定 时间内到达的电话呼叫或 数据包的数量。
生物信息学中的泊松过程
在生物信息学中,泊松过程用于描述基因表达、蛋白质相互 作用等生物过程中的随机事件。例如,基因表达数据可以用 泊松过程来分析,以了解基因表达的模式和规律。
通过泊松过程,生物信息学家可以识别出与特定生物学功能 或疾病相关的基因,为药物研发和个性化医疗提供有价值的 线索。
06 泊松过程的扩展与展望
交通流量分析
泊松分布用于描述在一定 时间内经过某个地点的车 辆数量。
生物学和医学研究
泊松分布可以用于描述在 一定时间内发生的事件数 量,例如基因突变或细菌 繁殖。
04 泊松过程的模拟与实现
离散时间的模拟
01
定义时间间隔
首先确定模拟的时间区间,并将其 划分为一系列离散的时间点。
随机抽样
使用随机数生成器,在每个时间间 隔内随机决定是否发生事件。
有限可加性
在有限的时间间隔内,泊松过 程中发生的事件数量服从二项
分布。
与其他随机过程的比较
与马尔可夫链的比较

泊松过程poisson课件

泊松过程poisson课件
则T 旳概率分布为 分布:
fT
(t )
e t
(t )k 1
, (k 1)!
t
0
0 ,
t0
故仪器在时刻 t0 正常工作旳概率为:
P P(T t0 )
e
t
(t)k 1
dt
t0
(k 1)!
P[ X (t0 )
k]
k 1
e t0
n0
(t0 )n
n!
(3) 到达时间旳条件分布
假设在[0 , t ]内事件A已经发生一次,拟定这一事件到 达时间W1旳分布 ——均匀分布
6.2 泊松过程旳基本性质
泊松分布:
P{X (t s) X (s) n} (t)n et , n 0,1,
n!
P{X (t) n} (t)n et , n 0,1, 2,
n!
ΦX ( ) E[e jX (t) ] et(ej 1)
(1) 泊松过程旳数字特征
均值函数
mX (t) E[ X (t)] t
D[S (t)]
tE[
X
2 1
]
t(
2
2
)
泊松脉冲列
[定义] 称泊松过程 { X(t) , t 0 } 旳导数过程为泊松脉冲列,
记为 { Z(t) , t 0 } ,即
Z (t) d X (t) dt
X(t) u(t ti )
i
Z(t) (t ti )
i
t0 t1 t2
ti
t
t0 t1 t2
事件A发生旳次数, T1 T2 T3
n
Wn Ti (n 1)
Tn
i 1
t
0 W1 W2 W3
Wn-1 Wn

泊松过程的定义

泊松过程的定义

泊松过程的定义泊松过程(Poisson Process)是一种随机过程,它表示了在固定时间段内发生的不同类型事件的概率分布。

泊松过程由泊松分布发展而来,它是一种概率分布,其中包含一个无限的平均特征。

泊松过程是一种重要的概率过程,在许多领域都有应用,例如通讯、生物学、信号处理等等。

泊松过程的定义是描述一个不断发生的随机事件的概率分布,即它是一种持续的随机过程,表示在给定的时间段内,某种类型的事件在某个时间段内会发生多少次。

这种过程的性质是:在一个给定的时间段内,随机事件的发生次数是一个服从泊松分布的随机变量。

泊松过程的定义一般可以描述为:设定一个时间段Δt,若在Δt内某种类型的事件发生m次,则该事件的发生概率满足泊松分布:P(m) = (λΔt)^me-λΔt/ m!,其中λ 是发生次数的平均数,Δt 是时间段,m 是发生次数。

泊松过程的定义还包括“独立性”的要求,即在一定的时间段内,发生的每一次事件都是相互独立的。

此外,泊松过程还有一个重要的性质——“不确定性”,即在一定时间段内,发生的每一次事件是不确定的,也就是说,我们不能准确预测每次发生的次数。

泊松过程是一种重要的概率过程,在一定的时间段内,对某种事件的发生次数的预测,可以使用泊松分布来实现。

泊松过程的应用可以追溯到19世纪,由法国数学家和物理学家泊松(Simeon Denis Poisson)发现,并且受到广泛的应用。

泊松过程的定义和性质是概率论中的重要概念,它主要用于描述在一定的时间段内,某种类型的事件发生的概率分布。

它可以用来描述不同类型事件发生的概率,从而可以模拟不同类型事件的发生情况。

同时,它可以用来研究一定时间段内,某种类型事件发生的概率,从而帮助我们更好地预测未来事件的发生情况。

第2章 随机过程与排队轮基础

第2章 随机过程与排队轮基础
(t ) o(t )
t 0

(4)有限性:在任意有限区间内到达有限个 事件的概率为1,即 P (t ) 1
k 0 k
11
Poisson过程
一放射性源放射出的 粒子数; 某电话交换台收到的电话呼叫数; 到某机场降落的飞机数; 一个售货员接待的顾客数; 一台纺纱机的断头数; 都可以近似看作泊松流.
P[T1 T2 ]
1 2
1
P[T1 T2 ]


0
1e 1
1 x

x y
12e x y dxdy
1 2

x
2e
2 y
dy dx 1e 1x e 2 y dx
0


1 2
28
性质2.4的证明
(3)需要证明的就是随机变量T与随机事件T1<T2互相独立,所 以只要证明P[T>t, T1<T2]= P[T>t]P[T1<T2]。
14
Siméon Denis Poisson
Born: 6/21/1781Pithiviers, France Died: 4/25/1840Sceaux, France “Life is good for only two things: discovering mathematics and teaching mathematics.”
(t ) k pk (t ) k!
e
t
k 0,1,2,
其中λ>0是泊松流的强度,表示平均到达率; 且N(0) = 0;不相交区间上增量相互独立,即对 一切 0≤t1<t2<…<tn,N(t1), N(t2)-N(t1), N(t3)N(t2), „, N(tn)-N(tn-1)相互独立。

随机过程--Chapter 2

随机过程--Chapter 2

customer in (0,t] is t-Si. Adding the revenues generated by all
arrivals in (0,t]
N (t)
N (t )
(t Si ) ,
i 1
E (t Si )
i1
14
2.2 Properties of Poisson processes
Solution:
(a) E[S10]=10/= 10 days
(b) P{X11>2} = e -2 = e-2 0.1333
9
2.2 Properties of Poisson processes
Arrival time distribution
Proposition 2.2 :
The arrival time of the nth event Sn follows a Γ distribution
f (t) e t
each interarrival time {Xn, n1} follows an exponential
distribution with parameter .
8
2.2 Properties of Poisson processes
Example 1 Suppose that people immigrate into a territory at a Poisson
and X1 and X2 are independent
7
2.2 Properties of Poisson processes
Similarly, we obtain: P{ Xn>tXn-1=s} = e-t P{ Xn tXn-1= s} = 1- e-t

2-1泊松过程

2-1泊松过程

det P 1 t dt
t P t t C e 1
NORTH UNIVERSITY OF CHINA
目 录
上一页
下一页
返 回
结 束
《应用随机过程》电子课件 张 峰
第二章 Poisson 过程
二、Poisson过程的两个等价定义的证明 t P 0 0 P t te 由初始条件 1 1
b P N t h N t 2 P N h 2 o h
P N (t h)- N (t )=1 he
h
(3)
证:由(1)显然可得Poisson过程是平稳过程
k! h 1 h o h h o h
mN t EN (t )= t
DN t DN (t )= t
均方值函数

2 N
t EN (t )=DN t EN t t t
2 2
2
NORTH UNIVERSITY OF CHINA
目 录
上一页
下一页
返 回
第二章 Poisson 过程
t 再由 P0 0 0 P N t 0 e
。Leabharlann hNORTH UNIVERSITY OF CHINA
目 录
上一页
下一页
返 回
结 束
《应用随机过程》电子课件 张 峰
第二章 Poisson 过程
二、Poisson过程的两个等价定义的证明
2 定义2 定义1 即:由(2),(3) (1) 证:当 k 1 时,Pk t h P N (t h) k

泊松过程

泊松过程

Wn = ∑ Ti
i =1
n
(n ≥ 1)
t
Wn —— 第n次事件 发生的时刻,或称等待时间, 次事件A发生的时刻 次事件 发生的时刻,或称等待时间, 或者到达时间 Tn —— 从第 次事件 发生到第 次事件 发生的 从第n-1次事件 发生到第n次事件 次事件A发生到第 次事件A发生的 时间间隔,或称第n个时间间隔 时间间隔,或称第 个时间间隔
=C
k n
s s 1 − t t
k
n−k
参数为 n 和 s/t 的 二项分布
[例3] 设在 [ 0 , t ] 内事件 已经发生 n 次,求第 次(k < n) 内事件A已经发生 求第k次
事件A发生的时间 的条件概率密度函数。 事件 发生的时间Wk 的条件概率密度函数。 发生的时间
n重贝努利试验中事件 重贝努利试验中事件A发生的 [二项分布] 随机变量 X 为n重贝努利试验中事件A发生的 ] 次数, 次数,则 X ~ B (n, p)
P ( X = k ) = n p k q n−k k
E ( X ) = np , D ( X ) = npq
是常数, [泊松定理] 在二项分布中,设 np=λ 是常数,则有 ] 在二项分布中,
jω X ( t )
]=e
(1) 泊松过程的数字特征
均值函数 方差函数 相关函数 协方差函数
m X (t ) = E[ X (t )] = λt
2 σ X (t ) = D X (t ) = λ t
R X ( s, t ) = E[ X ( s ) X (t )] = λ s (λ t + 1) , ( s < t )
P{ X ( s ) = k X (t ) = n} =
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档