教案正弦型函数的图像和性质

合集下载

正弦函数的图象和性质教案

正弦函数的图象和性质教案

第一章:正弦函数的定义与基本概念1.1 引入正弦函数讲解正弦函数的定义:在直角三角形中,正弦函数是角的对边与斜边的比值。

强调正弦函数的单位:弧度制。

1.2 分析正弦函数的性质周期性:正弦函数周期为2π。

奇偶性:正弦函数是奇函数,即f(-x) = -f(x)。

1.3 举例说明正弦函数的应用利用正弦函数计算角度对应的弧度值。

应用正弦函数解决实际问题,如测量角度等。

第二章:正弦函数的图象2.1 绘制正弦函数的基本图象利用计算器或绘图软件,绘制y = sin(x)的图象。

观察并描述正弦函数的波形特点,如波动、振幅、周期等。

2.2 分析正弦函数图象的性质周期性:正弦函数图象每隔2π重复一次。

奇偶性:正弦函数图象关于原点对称。

振幅:正弦函数图象的最大值为1,最小值为-1。

2.3 绘制正弦函数的相位图利用计算器或绘图软件,绘制不同相位角的正弦函数图象。

分析相位对正弦函数图象的影响。

3.1 分析正弦函数的单调性证明正弦函数在区间[0, π]上单调递增。

证明正弦函数在区间[π, 2π]上单调递减。

3.2 研究正弦函数的极值求解正弦函数的极大值和极小值。

分析极值出现的条件。

3.3 探讨正弦函数的奇偶性证明正弦函数是奇函数。

探讨正弦函数的偶函数性质。

第四章:正弦函数的应用4.1 正弦函数在物理中的应用介绍正弦函数在振动、波动等物理现象中的应用。

举例说明正弦函数在电磁学中的应用。

4.2 正弦函数在工程中的应用探讨正弦函数在信号处理、通信工程等领域的应用。

举例说明正弦函数在声学、光学等工程领域的应用。

4.3 正弦函数在其他领域的应用介绍正弦函数在音乐、艺术等领域的应用。

探讨正弦函数在其他科学领域的应用。

第五章:正弦函数的综合应用5.1 求解正弦函数的方程求解方程sin(x) = a,其中a为给定的数值。

介绍解正弦方程的方法和技巧。

5.2 利用正弦函数解决实际问题举例说明利用正弦函数解决测量、导航等实际问题。

介绍正弦函数在数据分析、图像处理等领域的应用。

教案正弦型函数的图像和性质

教案正弦型函数的图像和性质

教案:正弦型函数的图像和性质第一章:正弦函数的定义与图像1.1 引入正弦函数的概念解释正弦函数的定义:y = sin(x)说明正弦函数的单位圆定义:在一个单位圆上,正弦函数表示的是圆上一点的y 坐标值1.2 绘制正弦函数的图像利用图形计算器或绘图软件,绘制y = sin(x)的图像观察图像的特性:周期性、振幅、相位、对称性等1.3 分析正弦函数的性质周期性:正弦函数的图像每隔2π重复一次振幅:正弦函数的最大值为1,最小值为-1相位:正弦函数的图像向左或向右平移,但不改变其形状第二章:余弦函数的定义与图像2.1 引入余弦函数的概念解释余弦函数的定义:y = cos(x)说明余弦函数的单位圆定义:在一个单位圆上,余弦函数表示的是圆上一点的x 坐标值2.2 绘制余弦函数的图像利用图形计算器或绘图软件,绘制y = cos(x)的图像观察图像的特性:周期性、振幅、相位、对称性等2.3 分析余弦函数的性质周期性:余弦函数的图像每隔2π重复一次振幅:余弦函数的最大值为1,最小值为-1相位:余弦函数的图像向左或向右平移,但不改变其形状第三章:正切函数的定义与图像3.1 引入正切函数的概念解释正切函数的定义:y = tan(x)说明正切函数的定义域:正切函数在除原点以外的所有实数上都有定义3.2 绘制正切函数的图像利用图形计算器或绘图软件,绘制y = tan(x)的图像观察图像的特性:周期性、振幅、相位、对称性等3.3 分析正切函数的性质周期性:正切函数的图像每隔π重复一次振幅:正切函数没有振幅限制,可以无限增大或减小相位:正切函数的图像向左或向右平移,但不改变其形状第四章:正弦型函数的图像与性质4.1 引入正弦型函数的概念解释正弦型函数的定义:y = A sin(Bx C) + D说明正弦型函数的参数:A表示振幅,B表示周期,C表示相位,D表示垂直平移4.2 绘制正弦型函数的图像利用图形计算器或绘图软件,绘制y = A sin(Bx C) + D的图像观察图像的特性:振幅、周期、相位、对称性等4.3 分析正弦型函数的性质振幅:正弦型函数的最大值为A,最小值为-A周期:正弦型函数的图像每隔B个单位重复一次相位:正弦型函数的图像向左或向右平移C个单位垂直平移:正弦型函数的图像向上或向下平移D个单位第五章:正弦型函数的实例分析5.1 分析y = sin(x)的图像和性质利用图形计算器或绘图软件,绘制y = sin(x)的图像分析其振幅、周期、相位、对称性等性质5.2 分析y = cos(x)的图像和性质利用图形计算器或绘图软件,绘制y = cos(x)的图像分析其振幅、周期、相位、对称性等性质5.3 分析y = tan(x)的图像和性质利用图形计算器或绘图软件,绘制y = tan(x)的图像分析其振幅、周期、相位、对称性等性质第六章:正弦型函数的应用6.1 简谐运动解释简谐运动的定义和特点利用正弦函数表示简谐运动的位移、速度、加速度等物理量6.2 电磁波解释电磁波的产生和传播利用正弦函数表示电磁波的振荡电流或电压6.3 音乐信号处理解释音乐信号的振幅和频率特性利用正弦函数表示音乐信号的波形和频谱第七章:正弦型函数的积分与微分7.1 积分讲解正弦型函数的不定积分和定积分利用积分公式计算正弦型函数的定积分值7.2 微分讲解正弦型函数的导数利用导数公式求解正弦型函数的导数值7.3 应用案例利用积分和微分方法解决实际问题,如计算物体的位移、速度、加速度等第八章:正弦型函数的复合与变换8.1 复合函数讲解正弦型函数的复合方法利用复合函数的性质分析复合后的函数图像和性质8.2 函数变换讲解正弦型函数的平移、缩放、反转等变换利用变换公式分析变换后的函数图像和性质8.3 应用案例利用复合和变换方法解决实际问题,如设计电子电路的滤波器、振荡器等第九章:正弦型函数的极限与连续性9.1 极限讲解正弦型函数的极限概念和性质利用极限公式求解正弦型函数的极限值9.2 连续性讲解正弦型函数的连续性概念和性质利用连续性定理判断正弦型函数的连续性9.3 应用案例利用极限和连续性方法解决实际问题,如信号处理、物理现象分析等第十章:正弦型函数的综合应用10.1 正弦型函数在数学领域的应用讲解正弦型函数在几何、代数、微积分等数学领域的应用10.2 正弦型函数在自然科学领域的应用讲解正弦型函数在物理学、生物学、地球科学等领域的应用10.3 正弦型函数在工程与技术领域的应用讲解正弦型函数在电子工程、通信技术、机械工程等领域的应用重点和难点解析重点环节一:正弦函数的定义与图像重点关注内容:正弦函数的单位圆定义,正弦函数的图像特点,如周期性、振幅、相位、对称性等。

正弦函数的图像与性质教案

正弦函数的图像与性质教案

正弦函数的图像与性质教案教学目标:1. 了解正弦函数的定义和图像特点。

2. 掌握正弦函数的周期性和对称性。

3. 理解正弦函数的增减性和奇偶性。

4. 能够应用正弦函数的性质解决实际问题。

教学内容:第一章:正弦函数的定义与图像1.1 正弦函数的定义1.2 正弦函数的图像第二章:正弦函数的周期性2.1 周期性的定义2.2 周期性的图像表现第三章:正弦函数的对称性3.1 对称性的定义3.2 对称性的图像表现第四章:正弦函数的增减性4.1 增减性的定义4.2 增减性的图像表现第五章:正弦函数的奇偶性5.1 奇偶性的定义5.2 奇偶性的图像表现教学步骤:第一章:正弦函数的定义与图像1.1 正弦函数的定义1. 引入正弦函数的概念,让学生回顾三角函数的定义。

2. 解释正弦函数的定义,即在直角坐标系中,正弦函数表示对边与斜边的比值。

1.2 正弦函数的图像1. 利用计算机软件或板书,绘制正弦函数的图像。

2. 解释正弦函数图像的波动特点,如周期性和振幅。

第二章:正弦函数的周期性2.1 周期性的定义1. 引入周期性的概念,让学生理解周期函数的定义。

2. 解释正弦函数的周期性,即每隔一个周期,函数值重复出现。

2.2 周期性的图像表现1. 利用计算机软件或板书,展示正弦函数周期性的图像。

2. 引导学生观察图像,理解周期性的特点。

第三章:正弦函数的对称性3.1 对称性的定义1. 引入对称性的概念,让学生理解对称函数的定义。

2. 解释正弦函数的对称性,即函数图像关于y轴对称。

3.2 对称性的图像表现1. 利用计算机软件或板书,展示正弦函数对称性的图像。

2. 引导学生观察图像,理解对称性的特点。

第四章:正弦函数的增减性4.1 增减性的定义1. 引入增减性的概念,让学生理解函数的增减性质。

2. 解释正弦函数的增减性,即在一定区间内,函数值的增减规律。

4.2 增减性的图像表现1. 利用计算机软件或板书,展示正弦函数增减性的图像。

2. 引导学生观察图像,理解增减性的特点。

正弦型函数的性质与图像必修三高中数学教案设计

正弦型函数的性质与图像必修三高中数学教案设计

正弦型函数的性质与图像【教学目标】1.了解正弦型函数y =A sin(ωx +φ)的实际意义及各参数对图像变化的影响,会求其周期、最值、单调区间等.2.会用“图像变换法”作正弦型函数y =A sin(ωx +φ)的图像.【教学重难点】会求正弦型函数y =A sin(ωx +φ)的周期、最值、单调区间.【教学过程】一、问题导入日常生活中,一般家用电器使用的电流都是交流电流,交流电流i 与时间t 的关系一般可以写成i=I m sin (wt+φ)的形式.显然,上述x 与i 都是t 的函数,那么,这种类型的函数具有什么性质呢?怎样研究这种类型的函数的性质? 二、新知探究1.正弦型函数的图像与性质【例1】用五点法作函数y =2sin ⎝ ⎛⎭⎪⎫x -π3+3的图像,并写出函数的定义域、值域、周期、频率、初相、最值、单调区间、对称轴方程.[思路探究]先确定一个周期内的五个关键点,画出一个周期的图像,左、右扩展可得图像,然后根据图像求性质.[解]①①描点连线作出一周期的函数图像.①把此图像左、右扩展即得y =2sin ⎝ ⎛⎭⎪⎫x -π3+3的图像.由图像可知函数的定义域为R ,值域为[1,5],周期为T =2πω=2π,频率为f =1T =12π,初相为φ=-π3,最大值为5,最小值为1. 令2k π-π2≤x -π3≤2k π+π2(k ①Z )得原函数的增区间为⎣⎢⎡⎦⎥⎤2k π-π6,2k π+56π(k ①Z ).令2k π+π2≤x -π3≤2k π+32π,(k ①Z )得原函数的减区间为⎣⎢⎡⎦⎥⎤2k π+56π,2k π+116π(k ①Z ).令x -π3=k π+π2(k ①Z )得原函数的对称轴方程为x =k π+56π(k ①Z ). 【教师小结】(1)用五点法作y =A sin(ωx +φ)的图象,应先令ωx +φ分别为0,π2,π,32π,2π,然后解出自变量x 的对应值,作出一周期内的图象.(2)求y =A sin(ωx +φ)的单调区间时,首先把x 的系数化为正值,然后利用整体代换,把ωx +φ代入相应不等式中,求出相应的变量x 的范围.2.三角函数的图像变换【例2】函数y =2sin ⎝ ⎛⎭⎪⎫2x +π3-2的图像是由函数y =sin x 的图像通过怎样的变换得到的?[思路探究]由周期知“横向缩短”,由振幅知“纵向伸长”,并且需要向左、向下移动.【教师小结】三角函数图象平移变换问题的分类及解题策略:(1)确定函数y =sin x 的图象经过平移变换后图象对应的解析式,关键是明确左右平移的方向,按“左加右减”的原则进行;注意平移只对“x ”而言.(2)已知两个函数解析式判断其图象间的平移关系时,首先要将解析式化为同名三角函数形式,然后再确定平移方向和单位.3.求y =A sin(ωx +φ)的解析式【例3】如图所示的是函数y =A sin(ωx +φ)⎝ ⎛⎭⎪⎫|φ|<π2的图像,确定其一个函数解析式.[思路探究]解答本题可由最高点、最低点确定A ,再由周期确定ω,然后由图像所过的点确定φ.[解]由图像,知A =3,T =π,又图像过点A ⎝ ⎛⎭⎪⎫-π6,0,①所求图像由y =3sin 2x 的图像向左平移π6个单位得到, ①y =3sin 2⎝ ⎛⎭⎪⎫x +π6,即y =3sin ⎝ ⎛⎭⎪⎫2x +π3.【教师小结】确定函数y =A sin(ωx +φ)的解析式的关键是φ的确定,常用方法有:(1)代入法:把图象上的一个已知点代入(此时A ,ω已知或代入图象与x 轴的交点求解此时要注意交点在上升区间上还是在下降区间上).(2)五点法:确定φ值时,往往以寻找“五点法”中的第一个零点⎝ ⎛⎭⎪⎫-φω,0作为突破口.“五点”的ωx +φ的值具体如下:“第一点”(即图象上升时与x 轴的交点)为ωx +φ=0; “第二点”(即图象的“峰点”)为ωx +φ=π2;“第三点”(即图象下降时与x 轴的交点)为ωx +φ=π; “第四点”(即图象的“谷点”)为ωx +φ=3π2; “第五点”为ωx +φ=2π. 4.函数y =A sin(ωx +φ)的对称性 [探究问题](1) 如何求函数y =A sin(ωx +φ)的对称轴方程?[提示]与正弦曲线一样,函数y =A sin(ωx +φ)的图像的对称轴通过函数图像的最值点且垂直于x 轴.函数y =A sin(ωx +φ)对称轴方程的求法:令sin(ωx +φ)=±1,得ωx +φ=k π+π2(k ①Z ),则x =(2k +1)π-2φ2ω (k ①Z ),所以函数y =A sin(ωx +φ)的图像的对称轴方程为x =(2k +1)π-2φ2ω(k ①Z ).(2) 如何求函数y =A sin(ωx +φ)的对称中心?[提示]与正弦曲线一样,函数y =A sin(ωx +φ)图像的对称中心即函数图像与x 轴的交点.函数y =A sin(ωx +φ)对称中心的求法:令sin(ωx +φ)=0,得ωx +φ=k π(k ①Z ),则x =k π-φω(k ①Z ),所以函数y =A sin(ωx +φ)的图像关于点⎝ ⎛⎭⎪⎫k π-φω,0(k ①Z )成中心对称.【例4】已知函数f (x )=sin(2x +φ)(0<φ<π).(1)若函数f (x )=sin(2x +φ)为偶函数,求φ的值; (2)若函数f (x )=sin(2x +φ)关于x =π8对称,求出φ的值及f (x )的所有的对称轴方程及对称中心的坐标.[思路探究]利用正弦函数的性质解题.[解](1)①f (x )为偶函数,①φ=k π+π2,又φ①(0,π),①φ=π2.(2)①f (x )=sin(2x +φ)关于x =π8对称,①f (0)=f ⎝ ⎛⎭⎪⎫π4,即sin φ=sin ⎝ ⎛⎭⎪⎫π2+φ=cos φ,①tan φ=1,φ=k π+π4(k ①Z ).又φ①(0,π),①φ=π4,①f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4.由2x +π4=k π+π2(k ①Z ),得x =k π2+π8(k ①Z ),由2x +π4=k π,得x =k π2-π8(k ①Z ),①f (x )的对称轴方程为x =k π2+π8(k ①Z ),对称中心⎝ ⎛⎭⎪⎫k π2-π8,0(k ①Z ).【教师小结】(1)函数y =A sin(ωx +φ)的性质较为综合,主要围绕着函数单调性、最值、奇偶性、图象的对称性等考查.(2)有关函数y =A sin(ωx +φ)的性质运用问题,要特别注意整体代换思想的运用. 三、课堂总结1.φ对函数y =sin(x +φ)的图象的影响函数y =sin(x +φ),x ∈R (其中φ≠0)的图象,可以看作是把正弦曲线上所有的点向左(当φ>0时)或向右(当φ<0时)平行移动|φ|个单位长度而得到.2.ω(ω>0)对函数y =sin(ωx +φ)的图象的影响函数y =sin(ωx +φ),x ∈R (其中ω>0,且ω≠1)的图象,可以看作是把y =sin(x +φ)的图象上所有点的横坐标缩短(当ω>1时)或伸长(当0<ω<1时)到原来的1ω倍(纵坐标不变)而得到的.3.A (A >0)对函数y =A sin(ωx +φ)的图象的影响函数y =A sin(ωx +φ)(A >0且A ≠1)的图象,可以看作是把y =sin(ωx +φ)的图象上所有点的纵坐标伸长(当A >1时)或缩短(当0<A <1)当原来的A 倍(横坐标不变)而得到的,函数y =A sin(ωx +φ)的值域为[-A ,A ].最大值为A ,最小值为-A .4.由y =sin x 变换得到y =A sin(ωx +φ)(A >0,ω>0)的方法 (1)先平移后伸缩 (2)先伸缩后平移 四、课堂检测1.(2019·全国卷①)若x 1=π4,x 2=3π4是函数f (x )=sin ωx (ω>0)两个相邻的极值点,则ω=()A .2B .32C .1D .12A [由题意及函数y =sin ωx 的图像与性质可知, 12T =3π4-π4,①T =π,①2πω=π,①ω=2. 故选A .]2.要得到y =3sin ⎝ ⎛⎭⎪⎫2x +π4的图像,只需将y =3sin 2x 的图像()A .向左平移π4个单位B .向右平移π4个单位C .向左平移π8个单位D .向右平移π8个单位C [y =3sin 2x 的图像――――――――→向左平移π8个单位y =3sin2⎝ ⎛⎭⎪⎫x +π8的图像,即y =3sin ⎝ ⎛⎭⎪⎫2x +π4的图像.]3.函数y =2sin ⎝ ⎛⎭⎪⎫x +π3图像的一条对称轴是________.(填序号)①x =-π2;①x =0;①x =π6;①x =-π6. ①[由正弦函数对称轴可知. x +π3=k π+π2,k ①Z ,x =k π+π6,k ①Z ,k =0时,x =π6.]4.如图是函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的图像的一部分,试求该函数的解析式.[解]由图像可知A =2,T =4×(6-2)=16,ω=2πT =π8.又x =6时,π8×6+φ=0,①φ=-3π4,且|φ|<π.①所求函数的解析式为y =2sin ⎝ ⎛⎭⎪⎫π8x -3π4.。

教案正弦型函数的图像和性质

教案正弦型函数的图像和性质

教案:正弦型函数的图像和性质第一章:正弦函数的定义与图像1.1 教学目标了解正弦函数的定义能够绘制正弦函数的图像1.2 教学内容正弦函数的定义:y = sin(x)正弦函数的图像特点:周期性、振幅、相位、对称性1.3 教学步骤1. 引入正弦函数的概念,解释正弦函数的定义2. 利用数学软件或图形计算器,绘制正弦函数的图像3. 分析正弦函数的图像特点,引导学生理解周期性、振幅、相位、对称性1.4 练习与作业练习绘制不同振幅和相位的正弦函数图像完成课后练习题,巩固对正弦函数图像的理解第二章:正弦函数的性质2.1 教学目标了解正弦函数的性质能够应用正弦函数的性质解决问题2.2 教学内容正弦函数的单调性:增减区间正弦函数的奇偶性:奇函数与偶函数正弦函数的周期性:周期为2π正弦函数的值域:[-1, 1]2.3 教学步骤1. 介绍正弦函数的单调性,利用图像进行解释2. 解释正弦函数的奇偶性,利用数学公式进行证明3. 强调正弦函数的周期性,引导学生理解周期为2π4. 分析正弦函数的值域,解释正弦函数的取值范围2.4 练习与作业练习判断正弦函数的单调性、奇偶性和周期性完成课后练习题,应用正弦函数的性质解决问题第三章:余弦函数的定义与图像3.1 教学目标了解余弦函数的定义能够绘制余弦函数的图像3.2 教学内容余弦函数的定义:y = cos(x)余弦函数的图像特点:周期性、振幅、相位、对称性3.3 教学步骤1. 引入余弦函数的概念,解释余弦函数的定义2. 利用数学软件或图形计算器,绘制余弦函数的图像3. 分析余弦函数的图像特点,引导学生理解周期性、振幅、相位、对称性3.4 练习与作业练习绘制不同振幅和相位的余弦函数图像完成课后练习题,巩固对余弦函数图像的理解第四章:正切函数的定义与图像4.1 教学目标了解正切函数的定义能够绘制正切函数的图像4.2 教学内容正切函数的定义:y = tan(x)正切函数的图像特点:周期性、振幅、相位、对称性4.3 教学步骤1. 引入正切函数的概念,解释正切函数的定义2. 利用数学软件或图形计算器,绘制正切函数的图像3. 分析正切函数的图像特点,引导学生理解周期性、振幅、相位、对称性4.4 练习与作业练习绘制不同振幅和相位的正切函数图像完成课后练习题,巩固对正切函数图像的理解第五章:正弦型函数的应用5.1 教学目标了解正弦型函数的应用能够解决与正弦型函数相关的问题5.2 教学内容正弦型函数在物理、工程等领域的应用解决与正弦型函数相关的问题:如振动、波动、音乐等5.3 教学步骤1. 介绍正弦型函数在物理、工程等领域的应用实例2. 解释正弦型函数在振动、波动、音乐等方面的作用3. 示例解决与正弦型函数相关的问题,引导学生应用正弦型函数的性质和图像5.4 练习与作业练习解决与正弦型函数相关的问题完成课后练习题,应用正弦型函数解决实际问题第六章:正弦型函数的积分与微分6.1 教学目标理解正弦型函数的不定积分和定积分学会计算正弦型函数的导数6.2 教学内容正弦型函数的不定积分:基本积分公式正弦型函数的定积分:利用积分公式计算面积正弦型函数的导数:求导法则6.3 教学步骤1. 介绍正弦型函数的不定积分,讲解基本积分公式2. 通过例题演示如何计算正弦型函数的定积分3. 讲解正弦型函数的导数,引导学生理解求导法则6.4 练习与作业练习计算正弦型函数的不定积分和定积分完成课后练习题,巩固对正弦型函数积分和导数的理解第七章:正弦型函数在坐标系中的应用7.1 教学目标学会在直角坐标系中绘制正弦型函数的图像能够利用正弦型函数解决实际问题7.2 教学内容利用直角坐标系绘制正弦型函数的图像解决实际问题:如测量角度、计算物理振动等7.3 教学步骤1. 讲解如何在直角坐标系中绘制正弦型函数的图像2. 通过实例演示如何利用正弦型函数解决实际问题7.4 练习与作业练习绘制不同类型的正弦型函数图像完成课后练习题,应用正弦型函数解决实际问题第八章:正弦型函数在三角变换中的应用8.1 教学目标理解三角恒等式及其应用学会利用正弦型函数进行三角变换8.2 教学内容三角恒等式:sin^2(x) + cos^2(x) = 1 等正弦型函数的三角变换:和差化积、积化和差等8.3 教学步骤1. 讲解三角恒等式的含义和应用2. 讲解如何利用正弦型函数进行三角变换8.4 练习与作业练习运用三角恒等式进行计算完成课后练习题,巩固对正弦型函数在三角变换中应用的理解第九章:正弦型函数在工程和技术中的应用9.1 教学目标了解正弦型函数在工程和技术领域的应用学会解决与正弦型函数相关的工程问题9.2 教学内容正弦型函数在信号处理、电子工程等领域的应用解决与正弦型函数相关的工程问题:如信号分析、电路设计等9.3 教学步骤1. 讲解正弦型函数在信号处理、电子工程等领域的应用实例2. 示例解决与正弦型函数相关的工程问题,引导学生应用正弦型函数的性质和图像9.4 练习与作业练习解决与正弦型函数相关的工程问题完成课后练习题,应用正弦型函数解决实际工程问题第十章:总结与拓展10.1 教学目标总结正弦型函数的图像和性质的主要内容了解正弦型函数在其他领域的拓展应用10.2 教学内容总结正弦型函数的图像和性质的关键点介绍正弦型函数在其他领域的拓展应用:如地球物理学、天文学等10.3 教学步骤1. 回顾正弦型函数的图像和性质的主要内容,强调重点和难点2. 介绍正弦型函数在其他领域的拓展应用,提供相关实例10.4 练习与作业复习正弦型函数的图像和性质的主要内容,巩固所学知识完成课后练习题,探索正弦型函数在其他领域的拓展应用重点和难点解析重点环节一:正弦函数的定义与图像理解正弦函数的定义:y = sin(x)掌握正弦函数图像的特点:周期性、振幅、相位、对称性重点环节二:正弦函数的性质掌握正弦函数的单调性:增减区间理解正弦函数的奇偶性:奇函数与偶函数认识正弦函数的周期性:周期为2π了解正弦函数的值域:[-1, 1]重点环节三:余弦函数的定义与图像理解余弦函数的定义:y = cos(x)掌握余弦函数图像的特点:周期性、振幅、相位、对称性重点环节四:正切函数的定义与图像理解正切函数的定义:y = tan(x)掌握正切函数图像的特点:周期性、振幅、相位、对称性重点环节五:正弦型函数的应用了解正弦型函数在物理、工程等领域的应用实例学会解决与正弦型函数相关的问题:如振动、波动、音乐等重点环节六:正弦型函数的积分与微分理解正弦型函数的不定积分和定积分学会计算正弦型函数的导数重点环节七:正弦型函数在坐标系中的应用学会在直角坐标系中绘制正弦型函数的图像学会利用正弦型函数解决实际问题重点环节八:正弦型函数在三角变换中的应用理解三角恒等式及其应用学会利用正弦型函数进行三角变换重点环节九:正弦型函数在工程和技术中的应用了解正弦型函数在信号处理、电子工程等领域的应用实例学会解决与正弦型函数相关的工程问题重点环节十:总结与拓展总结正弦型函数的图像和性质的关键点了解正弦型函数在其他领域的拓展应用全文总结和概括:本教案涵盖了正弦型函数的图像和性质的各个方面,从基本定义到图像特点,再到性质和应用,每个环节都进行了深入的讲解和演示。

正弦函数的图像与性质教案

正弦函数的图像与性质教案

《正弦函数的图像与性质》(教案)教学目标:1、掌握用“五点法”作正弦函数的简图;2、理解正弦函数一个周期内的性质;3、掌握利用正弦函数的图像观察其性质;4、掌握简单正弦函数的定义域、值域和单调区间;5、初步理解“数形结合”的思想;6、培养学生的观察能力、分析能力、归纳能力和表达能力等。

教学重点:1、用“五点法”画正弦函数在一个周期上的图像;2、利用函数图像观察正弦函数的性质;3、给学生逐渐渗透“数形结合”的思想教学难点:正弦函数性质的理解和应用由于正弦函数为周期函数,所以函数的定义域内单调区间有多个,将正弦函数划到同一单调区间进行判断函数值的大小是学生难以掌握的知识点,教学中应引起足够的重视。

教学方法:讲授法、启发式、讲练结合法1、应用多媒体教学手段演示描点作图过程给学生以直观感受;2、通过引导学生观察正弦曲线,发现正弦曲线的性质,通过例题分析与巩固练习,使学生加深对性质的理解。

教学过程:Ⅰ课程导入我们已经学过一次函数、二次函数、指数函数等,对于各种函数我们都讨论过它们的图像及性质,前面我们又学习了任意角的正弦、余弦和正切三角函数,那么它们的图像是什么样子的,又具有哪些性质呢?本节我们先来学习和讨论正弦函数的图像和性质。

Ⅱ知识讲授每一个实数x ,都对应着唯一确定的角(在弧度制中角的弧度数等于这个实数),根据正弦函数的定义,写出正弦函数的定义域(角x 的范围):正弦函数y=sinx 的定义域:R1、用描点法作出正弦函数在最小正周期[0, 2π]上的图像x y sin =,[]π2,0∈x(1)、列表(2)、描点以表中对应的x ,y 值为坐标,在坐标系中描点。

(3)、连线将所描各点顺次用光滑曲线连接起来,即完成所画图像。

2、再利用描点法在同一坐标系中画出正弦函数y=sinx 在[-2π,0]上的图像,通过比较它们的图像特征,我们发现正弦函数y=sinx 在[-2π,0]上的图像与[0, 2π]上的图像形状完全一致,只是左右位置不同。

正弦函数的图像与性质教案

正弦函数的图像与性质教案

正弦函数的图像与性质教案一、教学目标知识与技能目标:1. 理解正弦函数的定义和基本概念;2. 学会绘制正弦函数的图像;3. 掌握正弦函数的性质,并能应用于实际问题。

过程与方法目标:1. 通过观察和分析正弦函数的图像,探索其性质;2. 利用数形结合的方法,理解正弦函数的周期性、奇偶性、单调性等性质;3. 培养学生的逻辑思维能力和解决问题的能力。

情感态度与价值观目标:1. 激发学生对数学学习的兴趣;2. 培养学生的团队合作意识和交流能力;3. 使学生认识到数学在生活中的重要性。

二、教学重点与难点重点:1. 正弦函数的定义和图像;2. 正弦函数的性质。

难点:1. 正弦函数图像的绘制;2. 正弦函数性质的理解和应用。

三、教学准备教师准备:1. 正弦函数的图像和性质的相关资料;2. 教学多媒体设备。

学生准备:1. 预习正弦函数的相关知识;2. 准备笔记本和笔。

四、教学过程1. 导入:a. 引导学生回顾之前学过的函数图像和性质;b. 提问:你们认为正弦函数的图像和性质会是什么样的呢?2. 讲解:a. 讲解正弦函数的定义和基本概念;b. 利用多媒体展示正弦函数的图像;c. 引导学生观察和分析正弦函数的图像,探索其性质;d. 讲解正弦函数的周期性、奇偶性、单调性等性质;e. 举例说明正弦函数性质的应用。

3. 实践:a. 让学生独立绘制正弦函数的图像;b. 让学生分组讨论正弦函数的性质,并完成相关练习题;c. 让学生应用正弦函数的性质解决实际问题。

4. 总结:a. 回顾本节课所学的正弦函数的图像和性质;b. 强调正弦函数在实际中的应用价值。

五、作业布置1. 绘制正弦函数的图像,并标注出其周期性、奇偶性、单调性等性质;2. 运用正弦函数的性质解决实际问题,如测量角度、计算波浪高度等;3. 预习下一节课的内容。

六、教学反馈与评估1. 在课后,教师应收集学生的作业,评估学生对正弦函数图像和性质的理解程度;2. 教师可以通过课后交流或提问的方式,了解学生对课堂内容的掌握情况;3. 根据学生的反馈,教师应及时调整教学方法和策略,以便更好地帮助学生理解和掌握正弦函数的知识。

正弦函数、余弦函数的图象和性质教案

正弦函数、余弦函数的图象和性质教案

正弦函数、余弦函数的图象和性质教案第一章:正弦函数的定义与图象1.1 教学目标了解正弦函数的定义能够绘制正弦函数的图象1.2 教学内容正弦函数的定义:正弦函数是直角三角形中,对于一个锐角,其对边与斜边的比值。

正弦函数的图象:正弦函数的图象是一条波浪形的曲线,它在每个周期内上下波动,波动的最大值为1,最小值为-1。

1.3 教学活动讲解正弦函数的定义,并通过实际例子进行解释。

使用图形计算器或者绘图软件,让学生自己绘制正弦函数的图象,并观察其特点。

1.4 作业与练习让学生完成一些关于正弦函数的练习题,包括选择题和解答题。

第二章:余弦函数的定义与图象2.1 教学目标了解余弦函数的定义能够绘制余弦函数的图象2.2 教学内容余弦函数的定义:余弦函数是直角三角形中,对于一个锐角,其邻边与斜边的比值。

余弦函数的图象:余弦函数的图象也是一条波浪形的曲线,它在每个周期内上下波动,波动的最大值为1,最小值为-1。

2.3 教学活动讲解余弦函数的定义,并通过实际例子进行解释。

使用图形计算器或者绘图软件,让学生自己绘制余弦函数的图象,并观察其特点。

2.4 作业与练习让学生完成一些关于余弦函数的练习题,包括选择题和解答题。

第三章:正弦函数和余弦函数的性质3.1 教学目标了解正弦函数和余弦函数的性质3.2 教学内容正弦函数和余弦函数的周期性:正弦函数和余弦函数都是周期函数,它们的周期都是2π。

正弦函数和余弦函数的奇偶性:正弦函数是奇函数,余弦函数是偶函数。

正弦函数和余弦函数的单调性:正弦函数和余弦函数在一个周期内都是先增后减。

3.3 教学活动讲解正弦函数和余弦函数的性质,并通过实际例子进行解释。

让学生通过观察图象,总结正弦函数和余弦函数的性质。

3.4 作业与练习让学生完成一些关于正弦函数和余弦函数性质的练习题,包括选择题和解答题。

第四章:正弦函数和余弦函数的应用4.1 教学目标能够应用正弦函数和余弦函数解决实际问题4.2 教学内容正弦函数和余弦函数在物理学中的应用:正弦函数和余弦函数可以用来描述简谐运动,如弹簧振子的运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教案 正弦型函数的图像和性质
1.,,A ωϕ的物理意义
当sin()y A x ωϕ=+,[0,)x ∈+∞(其中0A >,0ω>)表示一个振动量时,A 表示这个量振动时离开平衡位置的最大距离,通常称为这个振动的振幅,往复振动一次需要的时间2T π
ω
=
称为这个振动的周期,单位时间内往复振动的次数12f T ω
π
=
=
,称为振动的频率。

x ωϕ+称为相位,0x =时的相位ϕ称为初相。

2.图象的变换
例 : 画出函数3sin(2)3
y x π
=+的简图。

解:函数的周期为22
T π
π=
=,先画出它在长度为一个周期内的闭区间上的简图,再左右拓展即可,先用五点法画图:
x
6
π-
12π 3π 712π 56
π 23
x π
+
0 2
π
π 32
π 2π 3sin(2)3
x π
+
3 0
3-
函数3sin(2)3
y x π
=+
的图象可看作由下面的方法得到的:
①sin y x =图象上所有点向左平移
3
π
个单位,得到sin()3y x π=+的图象上;②再把
图象上所点的横坐标缩短到原来的12,得到sin(2)3
y x π
=+的图象;③再把图象上所有点
的纵坐标伸长到原来的3倍,得到3sin(2)3
y x π
=+的图象。

x y
O π
3
π-
6
π- 53
π

sin()3
y x π
=+
sin(2)3
y x π
=+
sin y x = 3sin(2)3
y x π
=+
一般地,函数sin()y A x ωϕ=+,x R ∈的图象(其中0A >,0ω>)的图象,可看作由下面的方法得到:
①把正弦曲线上所有点向左(当0ϕ>时)或向右(当0ϕ<时)平行移动||ϕ个单位长度;
②再把所得各点横坐标缩短(当1ω>时)或伸长(当01ω<<时)到原来的
1
ω
倍(纵坐标不变); ③再把所得各点的纵坐标伸长(当1A >时)或缩短(当01A <<时)到原来的A 倍(横坐标不变)。

即先作相位变换,再作周期变换,再作振幅变换。

问题:以上步骤能否变换次序?
∵3sin(2)3sin 2()36y x x π
π=+
=+,所以,函数3sin(2)3
y x π
=+的图象还可看作
由下面的方法得到的: ①sin y x =图象上所点的横坐标缩短到原来的
1
2
,得到函数sin 2y x =的图象;
②再把函数sin 2y x =图象上所有点向左平移6
π
个单位,得到函数sin 2()6y x π=+的
图象;
③再把函数sin 2()6y x π
=+的图象上所有点的纵坐标伸长到原来的3倍,得到3sin 2()
6
y x π=+的图象。

3.实际应用
例1:已知函数sin()y A x ωϕ=+(0A >,0ω>)一个周期内的函数图象,如下图 所示,求函数的一个解析式。

解:由图知:函数最大值为3,最小值为3-,
又∵0A >,∴3A =, 由图知
52632
T πππ=-= ∴2T π
πω
==,∴2ω=,
又∵157()23612
πππ+=, ∴图象上最高点为7(
,3)12
π
, ∴733sin(2)12πϕ=⨯+,即7sin()16πϕ+=,可取23
πϕ=-, 所以,函数的一个解析式为23sin(2)3
y x π
=-.
2.由已知条件求解析式 例2: 已知函数cos()y A x ωϕ=+(0A >,0ω>,0ϕπ<<)
的最小值是5-, 图x 3 3
π
56
π 3
O
象上相邻两个最高点与最低点的横坐标相差4
π
,且图象经过点5(0,)2-,求这个函数的解析
式。

解:由题意:5A =,
24T π=, ∴22T ππ
ω
==
, ∴4ω=, ∴5cos(4)y x ϕ=+,
又∵图象经过点5(0,)2-, ∴55cos 2ϕ-=, 即1
cos 2
ϕ=-,
又∵0ϕπ<<, ∴23
π
ϕ=,
所以,函数的解析式为25cos(4)3
y x π
=+.
例3:已知函数sin()y A x B ωϕ=++(0A >,0ω>,||ϕπ<
)的最大值为,
最小值为,周期为23
π
,且图象过点(0,)4-,求这个函数的解析式。

解:A B A B ⎧+=⎪⎨-+=⎪
⎩22
A B ⎧=⎪⎪⇒⎨
⎪=⎪⎩,
又∵223T ππ
==
, ∴
3ω=, ∴
)22
y x ϕ=++,
又∵图象过点
(0,4
-,
∴422ϕ-=+, ∴1sin 2
ϕ=-, 又∵||ϕπ<,∴6πϕ
=-或56
π
ϕ=-,
所以,函数解析式为
sin(3)262
y x π=
-+或5)262
y x π=-+. 五、小结:
1.函数sin()y A x ωϕ=+与sin y x =的图象间的关系。

2.由已知函数图象求解析式; 3.由已知条件求解析式。

六、作业:
(1)函数sin(2)2y x π
=+
的图象可由函数sin y x =的图象经过怎样的变换得到? (2)函数3cos(2)4
y x π
=+的图象可由函数cos y x =的图象经过怎样的变换得到?
(3)将函数sin y x =的图象上所有的点 得到sin()3
y x π=-的图象,再将
1sin()23y x π=- 的图象上的所有点 可得到函数11sin()223
y x π
=-的图
象。

(4)由函数2sin(3)2
y x π
=+
的图象怎样得到sin y x =的图象
(5)已知函数sin()y A x ωϕ=+(0A >,0ω>,||ϕπ<)的周期是23
π
,最小值是2-,且图象过点5(
,0)9
π
,求这个函数的解析式; (6)函数sin()y A x ωϕ=+(0A >,0ω>,||2
π
ϕ<
)的最小值是2-,其图象相邻的最高点和最低点的横坐标的差是3π,又图象经过点(0,1),求这个函数的解析式。

(7)如图为函数sin()y A x ωϕ=+(||2
π
ϕ<
,x R ∈)的图象中的一段,根据图象求它的
解析式。

x
y O


– –
5
1 2 1- 2- 1 3。

相关文档
最新文档