七年级较难数学题
人教版七年级数学上册《计算重难题型》专题训练-附带答案

人教版七年级数学上册《计算重难题型》专题训练-附带答案一.易错计算强化1.计算:(1)(13−52+16)×(−36);(2)(−1)2022×3−23+(−14)2÷|−125|.试题分析:(1)根据乘法分配律计算即可;(2)先算乘方再算乘除法最后算加减法即可.答案详解:解:(1)(13−52+16)×(−36)=13×(﹣36)−52×(﹣36)+16×(﹣36)=﹣12+90+(﹣6)=72;(2)(−1)2022×3−23+(−14)2÷|−125|=1×3﹣8+116÷132=1×3﹣8+116×32=3﹣8+2=﹣3.2.计算:(1)−14−(−2)3×14−16×(12−14+38).(2)−22−2×[(−3)2−3÷12 ].试题分析:(1)先算乘方再算乘法最后算加减法即可;(2)先算乘方和括号内的式子然后计算括号外的乘法最后算减法即可.答案详解:解:(1)−14−(−2)3×14−16×(12−14+38)=﹣14﹣(﹣8)×14−16×12+16×14−16×38=﹣14+2﹣8+4﹣6=﹣22;(2)−22−2×[(−3)2−3÷1 2 ]=﹣4﹣2×(9﹣3×2)=﹣4﹣2×(9﹣6)=﹣4﹣2×3=﹣4﹣6=﹣10.3.计算:(1)﹣32÷(﹣3)2+3×(﹣2)+|﹣4|;(2)[50−(79−1112+16)×(−6)2]÷(−7)2.试题分析:(1)先算乘方再算乘除法最后算加减法即可;(2)先算乘方再根据乘法分配律计算括号内的式子最后算括号外的除法.答案详解:解:(1)﹣32÷(﹣3)2+3×(﹣2)+|﹣4|=﹣9÷9+3×(﹣2)+4=﹣1+(﹣6)+4=﹣3;(2)[50−(79−1112+16)×(−6)2]÷(−7)2 =[50﹣(79−1112+16)×36]÷49=(50−79×36+1112×36−16×36)÷49 =(50﹣28+33﹣6)÷49 =49÷49 =1.4.计算:(1)(−12)﹣(﹣314)+(+234)﹣(+512);(2)﹣8+12﹣(﹣16)﹣|﹣23|; (3)42×(−23)﹣(−34)÷(﹣0•25); (4)(134−78−712)÷(−78)+(−83);试题分析:按照有理数混合运算的顺序 先乘方后乘除最后算加减 有括号的先算括号里面的 计算过程中注意正负符号的变化.答案详解:解:(1)原式=(−12)+134+114−224 =(−12)+24=0;(2)原式=(﹣8)+12+16﹣23 =﹣3;(3)原式=(﹣28)﹣3 =﹣31; (4)原式=(4224−2124−1424)×(−87)−83=(−13)−83=﹣3. 5.计算下列各题:①−14÷(−5)2×(−53)+|0.8−1|②−52−[(−2)3+(1−0.8×34)÷(−22)×(−2)].试题分析:①原式第一项被除数表示1四次幂的相反数除数表示两个﹣5的乘积再利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算最后一项利用绝对值的代数意义化简计算即可得到结果;②原式第一项表示5平方的相反数中括号中第一项表示三个﹣2的乘积第二项算计算括号中的运算再利用乘法法则计算即可得到结果.答案详解:解:①原式=﹣1÷25×(−53)+0.2=﹣1×125×(−53)+0.2=115+15=415;②原式=﹣25﹣[﹣8+(1−35)÷(﹣4)×(﹣2)]=﹣25﹣(﹣8+25×14×2)=﹣25+8−15=−17.2.二.二进制与十进制的转化6.我们常用的数是十进制数计算机程序使用的是二进制数(只有数码0和1)它们两者之间可以互相换算如将(101)2(1011)2换算成十进制数为:(101)2=1×22+0×21+1=4+0+1=5;(1011)2=1×23+0×22+1×21+1=11;两个二进制数可以相加减相加减时将对应数位上的数相加减.与十进制中的“逢十进一”、“退一还十”相类似应用“逢二进一”、“退一还二”的运算法则如:(101)2+(11)2=(1000)2;(110)2﹣(11)2=(11)2用竖式运算如右侧所示.(1)按此方式将二进制(1001)2换算成十进制数的结果是9.(2)计算:(10101)2+(111)2=(11100)2(结果仍用二进制数表示);(110010)2﹣(1111)2=35(结果用十进制数表示).试题分析:(1)根据例子可知:若二进制的数有n位那么换成十进制等于每一个数位上的数乘以2的(n﹣1)方再相加即可;(2)关于二进制之间的运算利用“逢二进一”、“退一还二”的运算法则计算即可.答案详解:解:(1)(1001)2=1×23+0×22+0×21+1=9;(2)(10101)2+(111)2=(11100)2;(110010)2﹣(1111)2=(100011)2=1×25+1×21+1=35.所以答案是:9;(11100)2;35.7.我们常用的数是十进制数计算机程序使用的是二进制数(只有数码0和1)它们两者之间可以互相换算如将(101)2(1011)2换算成十进制数应为:(101)2=1×22+0×21+1×20=4+0+1=5;(1011)2=1×23+0×22+1×21+1×20=8+0+2+1=11.按此方式将二进制(1001)2换算成十进制数和将十进制数13转化为二进制的结果分别为()A.9 (1101)2B.9 (1110)2C.17 (1101)2D.17 (1110)2试题分析:首先理解十进制的含义然后结合有理数运算法则计算出结果然后根据题意把13化成按2的整数次幂降幂排列即可求得二进制数.答案详解:解:(1001)2=1×23+0×22+0×21+1×20=9.13=8+4+1=1×23+1×22+0×21+1×20=(1101)2所以选:A.8.计算机程序使用的是二进制数(只有数码0和1)是逢2进1的计数制二进制数与常用的十进制数之间可以互相换算如将(10)2(1011)2换算成十进制数应为:(10)2=1×21+0×20=2 (1011)2=1×23+0×22+1×21+1×20=11.按此方式则(101)2+(1101)2=18.试题分析:仿照所给的方式进行求解即可.答案详解:解:(101)2+(1101)2=1×22+0×21+1×20+1×23+1×22+0×21+1×20=4+0+1+8+4+0+1=18.所以答案是:18.三.数值转化机9.按如图所示的程序运算:当输入的数据为﹣1时则输出的数据是()A.2B.4C.6D.8试题分析:把x=﹣1代入程序中计算判断结果与0的大小即可确定出输出结果.答案详解:解:把x=﹣1代入程序中得:(﹣1)2×2﹣4=2﹣4=﹣2<0把x=﹣2代入程序中得:(﹣2)2×2﹣4=8﹣4=4>0则输出的数据为4.所以选:B.10.下图是计算机计算程序若开始输入x=﹣2 则最后输出的结果是﹣17.试题分析:把﹣2按照如图中的程序计算后若<﹣5则结束若不是则把此时的结果再进行计算直到结果<﹣5为止.答案详解:解:根据题意可知(﹣2)×4﹣(﹣3)=﹣8+3=﹣5所以再把﹣5代入计算:(﹣5)×4﹣(﹣3)=﹣20+3=﹣17<﹣5即﹣17为最后结果.故本题答案为:﹣1711.按照如图所示的操作步骤若输入值为﹣3 则输出的值为55.试题分析:把﹣3代入操作步骤中计算即可确定出输出结果.答案详解:解:把﹣3代入得:(﹣3)2=9<10则有(9+2)×5=55.所以答案是:55.四.类比推理--规律类的钥匙12.观察下列各式:1 1×2+12×3=(11−12)+(12−13)=1−13=23.1 1×2+12×3+13×4=(11−12)+(12−13)+(13−14)=1−14=34.…(1)试求11×2+12×3+13×4+14×5的值.(2)试计算11×2+12×3+13×4+⋯+1n×(n+1)(n为正整数)的值.试题分析:(1)根据已知等式得到拆项规律原式变形后计算即可得到结果;(2)原式利用拆项法变形计算即可得到结果.答案详解:解:(1)原式=1−12+12−13+14−15=1−15=45;(2)原式=1−12+12−13+..+1n−1n+1=1−1n+1=n n+1.13.阅读下面的文字完成后面的问题.我们知道11×2=1−1212×3=12−1313×4=13−14那么14×5=14−1512005×2006=1 2005−1 2006.(1)用含有n的式子表示你发现的规律1n−1n+1;(2)依上述方法将计算:1 1×3+13×5+15×7+⋯+12003×2005=10022005(3)如果n k均为正整数那么1n(n+k)=1k⋅(1n−1n+k).试题分析:观察发现每一个等式的左边都是一个分数其中分子是1 分母是连续的两个正整数之积并且如果是第n个等式分母中的第一个因数就是n第二个因数是n+1;等式的右边是两个分数的差这两个分数的分子都是1 分母是连续的两个正整数并且是第n个等式被减数的分母就是n减数的分母是n+1.然后把n=4 n=2005代入即可得出第5个等式;(1)先将(1)中发现的第n个等式的规律1n(n+1)=1n−1n+1代入再计算即可;(2)先类比(1)的规律得出1n(n+2)=12(1n−1n+1)再计算即可.(3)根据(2)的规律即可得出结论.答案详解:解:∵第一个式子:11×2=1−12;第二个式子:12×3=12−13;第三个式字:13×4=13−14… ∴14×5=14−1512005×2006=12005−12006.所以答案是:14−1512005−12006;(1)由以上得出的规律可知 第n 个等式的规律 1n(n+1)=1n−1n+1;(2)原式=12(1−13+13−14⋯+12003−12005) =12(1−12005) =10022005(3)由(2)可知n k 均为正整数1k⋅(1n−1n+k).14.类比推理是一种重要的推理方法 根据两种事物在某些特征上相似 得出它们在其他特征上也可能相似的结论.阅读感知:在异分母的分数的加减法中 往往先化作同分母 然后分子相加减 例如:12−13=32×3−23×2=3−26=16我们将上述计算过程倒过来 得到16=12×3=12−13这一恒等变形过程在数学中叫做裂项.类似地 对于14×6可以用裂项的方法变形为:14×6=12(14−16).类比上述方法 解决以下问题.【类比探究】(1)猜想并写出:1n×(n+1)=1n −1n+1; 【理解运用】(2)类比裂项的方法 计算:11×2+12×3+13×4+⋯+199×100;【迁移应用】(3)探究并计算:1−1×3+1−3×5+1−5×7+1−7×9+⋯+1−2021×2023.试题分析:(1)根据题目中的例子 可以写出相应的猜想; (2)根据式子的特点 采用裂项抵消法可以解答本题; (3)将题目中的式子变形 然后裂项抵消即可解答本题. 答案详解:解:(1)1n×(n+1)=1n−1n+1所以答案是:1n−1n+1;(2)由(1)易得:(1−12)+(12−13)+(13−14)+⋯+(199−1100) =1−12+12−13+13−14+⋯+199−1100 =1−1100 =99100; (3)1−1×3+1−3×5+1−5×7+1−7×9+...+1−2021×2023=−12×(21×3+23×5+25×7+27×9+⋯+22021×2023)=−12×(1−13+13−15+15−17+17−19+⋯+12021−12023) =−12×(1−12023) =−12×20222023=−10112023. 15.“转化”是一种解决问题的常用策略 有时画图可以帮助我们找到转化的方法.例如借助图① 可以把算式1+3+5+7+9+11转化为62=36.请你观察图② 可以把算式12+14+18+116+132+164+1128转化为127128.试题分析:根据图形观察发现 把正方形看作单位“1” 即算式可以转化成1−1128 再求出答案即可.答案详解:解:12+14+18+116+132+164+1128=1−1128=127128所以答案是:127128.16.观察下列等式:第1个等式:a 1=11×2=1−12; 第2个等式:a 2=12×3=12−13; 第3个等式:a 3=13×4=13−14; 第4个等式:a 4=14×5=14−15⋯ 请解答下列问题:(1)按以上规律写出:第n 个等式a n = 1n(n+1)=1n−1n+1(n 为正整数);(2)求a 1+a 2+a 3+a 4+…+a 100的值; (3)探究计算:11×4+14×7+17×10+⋯+12020×2023.试题分析:(1)对所给的等式进行分析 不难总结出其规律; (2)利用所给的规律进行求解即可;(3)仿照所给的等式 对各项进行拆项进行 再运算即可. 答案详解:解:(1)∵第1个等式:a 1=11×2=1−12; 第2个等式:a 2=12×3=12−13; 第3个等式:a 3=13×4=13−14; 第4个等式:a 4=14×5=14−15; …∴第n 个等式:a n =1n(n+1)=1n −1n+1 所以答案是:1n(n+1)=1n−1n+1;(2)a 1+a 2+a 3+a 4+…+a 100=11×2+12×3+13×4+14×5+⋯+1100×101 =1−12+12−13+13−14+14−15+⋯+1100−1101=1−1101 =100101; (3)11×4+14×7+17×10+⋯+12020×2023 =13×(1−14+14−17+17−110+⋯+12020−12023) =13×(1−12023)=13×20222023=6742023.五.阅读类--化归思想17.阅读下列材料:计算5÷(13−14+112)解法一:原式=5÷13−5÷14+5÷112 =5×3﹣5×4+5×12=55解法二:原式=5÷(412−312+112) =5÷16=5×6=30解法三:原式的倒数=(13−14+112)÷5=(13−14+112)×15 =13×15−14×15+112×15=130∴原式=30(1)上述的三种解法中有错误的解法 你认为解法 一 是错误的(2)通过上述解题过程 请你根据解法三计算(−142)÷(16−314−23+37)试题分析:(1)根据运算律即可判断;(2)类比解法三计算可得.答案详解:解:(1)由于除法没有分配律所以解法一是错误的所以答案是:一;(2)原式的倒数=(16−314−23+37)÷(−142) =(16−314−23+37)×(﹣42) =16×(﹣42)−314×(﹣42)−23×(﹣42)+37×(﹣42) =﹣7+9+28﹣18=12∴原式=112.18.先阅读下面材料 再完成任务:【材料】下列等式:4−35=4×35+1 7−34=7×34+1 … 具有a ﹣b =ab +1的结构特征 我们把满足这一特征的一对有理数称为“共生有理数对” 记作(a b ).例如:(4 35)、(7 34)都是“共生有理数对”.【任务】(1)在两个数对(﹣2 1)、(2 13)中 “共生有理数对”是 (2 13) ; (2)请再写出一对“共生有理数对” (−12 ﹣3) ;(要求:不与题目中已有的“共生有理数对”重复)(3)若(x ﹣2)是“共生有理数对” 求x 的值;(4)若(m n )是“共生有理数对” 判断(﹣n ﹣m ) 是 “共生有理数对”.(填“是”或“不是”)试题分析:(1)读懂题意 根据新定义判断即可;(2)随意给出一个数 设另一个数为x 代入新定义 求出另一个数即可;(3)根据新定义列等式求出x的值;(4)第一对是“共生有理数对”列等式通过等式判断第二对数是否符合新定义.答案详解:解:(1)(﹣2 1)∵(﹣2)﹣1=﹣3 (﹣2)×1+1=﹣1 ﹣3=﹣1∴(﹣2 1)不是“共生有理数对”;(2 1 3)∵2−13=532×13+1=5353=53∴(2 13)是“共生有理数对”;所以答案是:(2 13);(2)设一对“共生有理数对”为(x﹣3)∴x﹣(﹣3)=﹣3x+1∴x=−1 2∴这一对“共生有理数对”为(−12﹣3)所以答案是:(−12﹣3);(3)∵(x﹣2)是“共生有理数对”∴x﹣(﹣2)=﹣2x+1∴x=−1 3;(4)∵(m n)是“共生有理数对”∴m﹣n=mn+1∴﹣n﹣(﹣m)=(﹣n)(﹣m)+1∴(﹣n﹣m)是“共生有理数对”所以答案是:是.19.阅读材料解决下列问题:【阅读材料】求n个相同因数a的积的运算叫做乘方记为a n.若10n=m(n>0 m≠1 m>0)则n叫做以10为底m的对数记作:lgm=n.如:104=10000 此时4叫做以10为底10000的对数记作:lg10000=lg104=4 (规定lg10=1).【解决问题】(1)计算:lg100=2;lg1000=3;lg100000=5;lg1020=20;(2)计算:lg10+lg100+lg1000+⋅⋅⋅+lg1010;【拓展应用】(3)由(1)知:lg100+lg1000与lg100000之间的数量关系为:lg100+lg1000=lg100000;猜想:lga+lgb=lgab(a>0 b>0).试题分析:(1)应用题目所给的计算方法进行计算即可得出答案;(2)应用题目所给的计算方法和有理数乘方法则进行计算即可得出答案;(3)应用题目所给的计算方法进行计算即可得出答案.答案详解:解:(1)根据题意可得lg100=2;lg1000=3;lg100000=5;lg1020=20;所以答案是:2 3 5 20;(2)lg10+lg100+lg1000+⋅⋅⋅+lg1010=1+2+3+……+10=55;(3)∵lg100+lg1000=2+3=5lg100000=5∴lg100+lg1000=lg100000;所以答案是:lg100+lg1000=lg100000;lga+lgb=lgab.所以答案是:lgab.20.阅读下列各式:(a•b)2=a2b2(a•b)3=a3b3(a•b)4=a4b4…回答下列三个问题:(1)验证:(2×12)100=12100×(12)100=1;(2)通过上述验证归纳得出:(a•b)n=a n b n;(abc)n=a n b n c n.(3)请应用上述性质计算:(﹣0.125)2017×22016×42015.试题分析:(1)先算括号内的乘法再算乘方;先乘方再算乘法;②根据有理数乘方的定义求出即可;③根据同底数幂的乘法计算再根据积的乘方计算即可得出答案.答案详解:解:(1)(2×12)100=1 2100×(12)100=1;②(a•b)n=a n b n(abc)n=a n b n c n③原式=(﹣0.125)2015×22015×42015×[(﹣0.125)×(﹣0.125)×2]=(﹣0.125×2×4)2015×1 32=(﹣1)2015×1 32=﹣1×1 32=−132.所以答案是:1 1;a n b n a n b n c n.。
七年级数学试卷超难的题目

一、选择题(每题5分,共25分)1. 下列各数中,不是有理数的是()A. 3/5B. √4C. -2.5D. π2. 已知一个正方形的边长为a,那么它的面积是()A. a^2B. a^3C. 2aD. 4a3. 若一个等腰三角形的底边长为b,腰长为c,那么它的周长是()A. 2b + cB. b + cC. 2c + bD. b + b + c4. 下列方程中,无解的是()A. 2x + 3 = 7B. 5x - 2 = 3x + 4C. 3x^2 - 4x + 4 = 0D. 4x + 2 = 2x + 65. 已知一个等差数列的首项为a,公差为d,那么它的第n项是()A. a + (n - 1)dB. a - (n - 1)dC. a + ndD. a - nd二、填空题(每题10分,共20分)6. 已知x^2 - 5x + 6 = 0,求x的值。
7. 一个等边三角形的周长为24cm,求它的边长。
三、解答题(每题15分,共45分)8. (15分)已知一个数列的前三项分别为1,-2,3,求该数列的第四项。
9. (15分)一个梯形的上底为a,下底为b,高为h,求梯形的面积。
10. (15分)已知一个圆的半径为r,求圆的周长和面积。
四、综合题(每题20分,共40分)11. (20分)一个长方形的长为2x,宽为x+3,求长方形的面积。
12. (20分)已知一个直角三角形的两个直角边分别为a和b,斜边为c,求三角形的面积。
答案:一、选择题1. D2. A3. C4. D5. A二、填空题6. x = 2 或 x = 37. 8cm三、解答题8. 第四项为69. 梯形面积为 (a + b)h/210. 周长为2πr,面积为πr^2四、综合题11. 长方形面积为 2x(x + 3) = 2x^2 + 6x12. 三角形面积为 ab/2。
七年级上册数学难题及答案

七年级上册数学难题及答案1. 若干学生住若干间房间,如果每间住4人,则有20人没有地方住,如果每间房住8人,则有一间只有4人住,问共有多少个学生?2.甲对乙说:“你给我100元,我的钱将比你多1倍。
”乙对甲说:“你只要给我10元,我的钱将比你多5倍。
”问甲乙两人各有多少元钱?3.小王和小李从AB两地,相向而行,80分钟后相遇,小王先出发60分钟后小李在出发,40分钟后相遇,问小李和小王单独走完这段距离需要多长时间?4.一天,猫发现前面20米的地方有只老鼠,立即去追,同时,老鼠也发现了猫,马上就跑。
猫每秒跑7米,用了10秒追上老鼠。
老鼠每秒跑多少米?5.一项工程,甲单独做10天完成,乙单独做6天完成。
先由甲先做2天,然后甲乙合作,问:甲乙合作还需要多少天完成工作?6.某商场经销一种商品,由于进货时价格比原来进价降低了6.4%,使得利润率增加了8个百分点,求经销这种商品原来的利润率是多少?7.某商场购进甲,乙两种商品50件,甲种商品进价每件35元,利润率是20%,乙种商品的进价每件20元,利润率是15%,共获利278元,问甲乙两种商品各购进了多少件?8.时钟从9点走到9点25分,时针转过的角度是?分针转过的角度是?9.现有某位储户按零存整取的存款方式每月存入500元,存期为3年,存入时三年期零存整取方式的月利率为1.725‰。
此储户在期满时应得的本息和是多少元?参考答案1.设有x间宿舍每间住4人,则有20人无法安排所以有4x+20人每间住8人,则最后一间不空也不满所以x-1间住8人,最后一间大于小于8所以0<(4x+20)-8(x-1)<80<-4x+28<8 乘以-1,不等号改向-8<4x-28<0加上28 20<4x<28 除以4 5<x<7x是整数所以x=6 4x+20=44所以有6间宿舍,44人2.设甲原有x元,乙原有y元.x+100=2*(y-100) 6*(x-10)=y+10 x=40 y=1703.解:设小王的速度为x,小李的速度为y根据:路程=路程,可列出方程:80(x+y)=60x+40(x+y)解得y=1\2x 设路程为单位1,则:80(1\2x+x)=1 解得x=1\120 所以y=1\240所以小王单独用的时间:1*1\120=120(分)小李单独用的时间:1*1\240=240(分)4.解:设老鼠每秒跑X米7*10=10X+20 10X=70-20 X=5 答:老鼠每秒跑5米。
七年级数学练习题含答案(难)

七年级数学练习题(难)七年级数学练习题(难)一、选择题:一、选择题:1、若的值是,则a a a 12=( ) A 、1 B 、-1 C 、1或-1 D 、以上都不对、以上都不对2、方程132=-+-x x 的解的个数是( ) A 、0 B 、1 C 、2 D 、3 E 、多于3个3、下面有4个命题:个命题:①存在并且只存在一个正整数和它的相反数相同。
①存在并且只存在一个正整数和它的相反数相同。
②存在并且只存在一个有理数和它的相反数相同。
②存在并且只存在一个有理数和它的相反数相同。
③存在并且只存在一个正整数和它的倒数相同。
③存在并且只存在一个正整数和它的倒数相同。
④存在并且只存在一个有理数和它的倒数相同。
④存在并且只存在一个有理数和它的倒数相同。
其中正确的命题是:( )(A )①和②)①和② (B )②和③)②和③(C )③和④)③和④ (D )④和①)④和①4、两个质数的和是49,则这两个质数的倒数和是( ) A 、4994B 、9449C 、4586D 、86455、设y=ax 15+bx 13+cx 11-5(a 、b 、c 为常数),已知当x=7时,y=7,则x= -7时,y 的值等于( ) A 、-7 B 、-17 C 、17 D 、不确定、不确定6、若a 、c 、d 是整数,b 是正整数,且满足a+b=c ,b+c=d ,c+d=a ,则a+b+c+d 的最大值是( ) A 、-1 B 、0C 、1 D 、-5 二、填空题二、填空题7、设a<0,且x ≤21 ,--+x x a a则= =8、a 、b 是数轴上两个点,且满足a ≤b 。
点x 到a 的距离是x 到b 的距离的2倍,则x= 9、 若()236-+m a 与互为相反数,则=ma 10、计算:=+++++++++++++10032113211321121111、若a 是有理数,则|)|(||||)(a a a a -+-++-的最小值是___的最小值是___..12、有理数c b a ,,在数轴上的位置如图所示,化简._____|1||||1|||=------+c c a b b a三、解答题三、解答题1212、有理数、有理数c b a ,,均不为0,且.0=++c b a 设试求代数式++x x 99192000之值。
七年级数学较难应用题

七年级数学较难应用题
当然可以,以下是一个七年级数学的应用题:
某大型超市开展了一项促销活动,顾客消费满100元可以获得一次转盘抽奖的机会。
转盘分为10个部分,其中6个部分标有“谢谢参与”,4个部分标有不同的优惠券金额。
如果顾客抽中了优惠券,可以按照优惠券的金额在下次购物时抵扣。
现在,有一位顾客已经消费了150元,他希望通过抽奖来决定是否进行再次购物。
请问,这位顾客获得优惠券的概率是多少?
为了解决这个问题,我们需要先明确概率的计算方法。
概率是成功事件的数量与所有可能事件的数量之比。
在这个问题中,成功事件是抽中优惠券,数量为4;所有可能事件是转盘的10个部分,数量为10。
因此,获得优惠券的概率为:
$P(\text{优惠券}) = \frac{\text{优惠券的数量}}{\text{转盘的部分数量}} = \frac{4}{10} = $
所以,这位顾客获得优惠券的概率为或40%。
七年级数学方程应用题难题

七年级数学方程应用题难题七班级数学方程应用题难题1:市场经济、打折销售问题(1)商品利润=商品售价-商品成本价 (2)商品利润率=×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售(按原价的0.8倍出售.)1.一家商店将一种自行车按进价提高45%后标价,又以八折特惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?假设设这种自行车每辆的进价是*元,那么所列方程为( )A.45% ×(1+80%)*-*=50B. 80%×(1+45%)* - * = 50C. *-80%×(1+45%)* = 50D.80%×(1-45%)* - * = 502. 某商店开张,为了吸引顾客,全部商品一律按八折特惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?特惠价是多少元?3. 一家商店将某种服装按进价提高40%后标价,又以8折特惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?4.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店预备打折出售,但要保持利润率不低于5%,那么至多打几折.七班级数学方程应用题难题2:方案选择问题1. 某蔬菜公司的一种绿色蔬菜,假设在市场上径直销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产技能是:假如对蔬菜进行精加工,每天可加工16吨,假如进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司需要在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,•在市场上径直销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多 ?为什么?2.某市移动通讯公司开设了两种通讯业务:“全球通”运用者先缴50•元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1•分钟需付话费0.4元(这里均指市内电话).假设一个月内通话*分钟,两种通话方式的费用分别为y1元和y2元.(1)写出y1,y2与*之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的`费用相同?(3)假设某人估计一个月内运用话费120元,那么应选择哪一种通话方式较合算?3.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C 种每台2500元.(1)假设家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你讨论一下商场的进货方案.新-课- -第-一 -网(2)假设商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?4.小刚为书房买灯。
七年级奥数题10道巨难

七年级奥数题10道巨难摘要:1.介绍七年级奥数题的难度2.列举10 道巨难的奥数题目3.分析这些题目的难点4.提出解决这些题目的建议正文:对于很多初中生来说,奥数是一项极具挑战性的任务。
尤其是七年级的奥数题,难度相对较大,对学生的思维能力和解题技巧有很高的要求。
在这里,我们将介绍10 道七年级奥数题中的“巨难”题目,并分析它们的难点以及如何解决。
1.题目一:一个长方体的长、宽、高分别为a、b、c,求证:abc = (a+b+c)(a+b-c)(a-b+c)(-a+b+c)。
2.题目二:一个车队行驶在无限长的直线道路上,每辆车的速度是前一辆车的2 倍,如果第一辆车的速度是1,那么第10 辆车的速度是多少?3.题目三:已知函数f(x) = x^3 - 3x^2 + 2x - 1,求解f(x) 的零点。
4.题目四:有一个矩阵,其元素满足:a1b2 + a2b3 + a3b1 = 0,a1c2 + a2c3 + a3c1 = 0,求证:矩阵的行列式为零。
5.题目五:一个球体的半径是1,一个立方体的边长是1,求球体可以放入立方体的最大角度。
6.题目六:已知一个等差数列的前5 项和为15,前10 项和为55,求第15 项的值。
7.题目七:一个凸多边形的所有内角和为(n-2)×180°,求证:这个凸多边形至少有一个对角线存在,使得该对角线的两端所在角的和大于180°。
8.题目八:已知函数g(x) = x^2 - 3x + 2,求解不等式|g(x)| < 1 的解集。
9.题目九:一个机器人从原点出发,每次向右移动一个单位,然后向上移动一个单位,问机器人在第n 次移动后,离原点的最大距离是多少?10.题目十:已知一个正整数n,满足n^2 - n + 1 可以被4 整除,求证:n^2 - n + 1 可以被8 整除。
这些题目涵盖了七年级奥数的多个领域,包括代数、几何、组合等。
对于这些难题,学生需要具备扎实的基础知识,善于观察和发现题目中的规律,同时要有耐心和毅力。
七年级下册数学最难的题目

七年级下册数学最难的题目
七年级下册数学难题:
一、假设题
1、有四张卡片,每张上分别印有数字1、
2、
3、4,从中抽三张,求抽到相同数字的概率是多少?
2、如果一个多边形有10个顶点,求它的内角和是多少?
3、一个口袋里有4个红球,4个白球和4个黑球,求不看颜色的情况
下抽出2个球求含有不同颜色球的概率是多少?
4、已知△ABC,∠B=90°,AB=AC,求∠C是多少度?
二、数列题
1、已知数列{1, 3, 5, 7, 9,...},求101项所代表的数字
2、已知数列{2, 4, 8, 16, 32...},求1000项所代表的数字
3、已知数列{1, 1.5, 2.25, 4.0625, 8.234375…},求最多保留4位小数后,100项所代表的数字
4、已知数列{2, 7, 18, 37, 66...},求第18项代表的数字
三、几何题
1、已知三角形的两个内角的度数分别是15°和24°,求第三个内角的大小
2、已知长方体的面积是600,求它的体积
3、如果椭圆的长轴的长度是10,短轴的长度是8,求它的面积
4、圆心角π,半径是R,求圆的周长
四、方程题
1、求解1/2x+3/5=2/5
2、3x+2y=20,求x、y的值
3、求解 man+mxn+2m=51
4、求解 y+29=2x-4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
XX 实验学校2009-2010学年度第二学期期中质量检测七年级数学问卷(时间:120分钟,满分100分)命题者:支柳香 何健 审题者:陈健(考试说明:试卷共7页,共28题,考试时间120分钟,满分100分,请用黑色的圆珠笔或钢笔作答,试卷不允许使用涂改工具,不可以使用计算器,请将答案写在答卷指定的区域内)一、选择题(每小题2分,共20分)1. 在下列多边形材料中,不能..单独用来铺满地面的是( * ) A .三角形 B .四边形 C .正六边形 D .正八边形2. 如图AB ∥CD ,EF ∥GH ,下列结论中不正确...的是( * ) A. ∠1=∠4 B. ∠1=∠2 C. ∠3+∠5=180° D. ∠1+∠3=180°3. 在以下四点中,哪一点与点(-3,4)的连结线段与x 轴和y 轴都不相交...( * ) A.(-2,3) B.(2,-3) C.(2,3) D.(-2,-3)4. 在平面直角坐标系上,点P (-3,4)到x 轴的距离是( * )个单位长度 A. 3 B. 4 C. 5 D. 75. 二元一次方程248x y +=有( * )组整数解... A. 1 B. 2 C. 3 D. 无数6. 一个三角形的两边长为3和8,第三边长为奇数,则第三边长为( * ) A. 5或7 B. 7或9 C. 7 D. 97. 某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x 人,组数为y 组,则列方程组为( * )A. 7385y x y x =-⎧⎨=+⎩B. 7385y x y x =+⎧⎨-=⎩C. 7385y x y x =+⎧⎨+=⎩D. 7385y x y x =-⎧⎨=-⎩8. 在△ABC 中,三个外角度数的比为3:4:5,那么△ABC 是( * ) A. 锐角三角形 B. 直角三角形 C. 钝角三角形 D. 不能确定 9. 图中共有( * )个三角形A. 4B. 6C. 8D. 10PACBD10. 在一个n 边形中,除了一个内角外,其余(n -1)个内角和为2750°,则n =( * ) A .15B .16C .17D .18二、填空题(每小题2分,共20分)11. 如图,计划把河中的水引到水池M 中,可以先过M 点作MC ⊥AB ,垂足为C ,然后沿MC 开渠,则能使所开 的渠最短,这种设计方案的根据是 *12. 在平面直角坐标系内,把点P (-5,-2)先向左平移2个单位度,再向上平移4个单位长度后得到的点的坐标是 * 13. 已知点P (a ,b )在第四象限,则点Q (b -1,-a )在第 * 象限14. 将命题“邻补角的角平分线互相垂直”改写成“如果…,那么…”的形式: * 15. 如图AB ∥CD ,AD ∥BC ,则∠1、∠2与∠3之间的数量关系是 *16. 如图,AB ∥CD ,且60BAP α∠=︒-,45APC α∠=︒+,30PCD α∠=︒-,则α= *17. 已知32x k =-,22y k =+,则用含x 的代数式表示y 的式子是 * 18. 如图,小亮从A 点出发前进10m ,向右转15°, 再前进10m ,又向右转15°…… 这样一直走下去, 他第一次回到出发点A 时,一共走了 * m19. 如图,七星形中∠A+∠B+∠C+∠D+∠E+∠F+∠G = *20. 如图,BG 、CG 是四边形ABFC 的两条外角平分线,分别平分∠DBE 和∠ECD , BE 和CD 交于点F ,若∠A =α,∠BFC =β,则∠G = *A1515CBA B EAD GC F FABC第19题第20题第21题三、画图题(6分)21. (1)画出图中△ABC的高AD;(2)画出把△ABC沿射线AD方向平移2cm后得到的△A1B1C1(3)根据“图形平移”的性质,得BB1= * cm,AC与A1C1的关系是 *四、解答题(第23题6分,其余各题8分,共54分)22. 解下列方程组:(1)237x yx y=-⎧⎨-=⎩(2)1134934x y x yx y x y+-⎧+=⎪⎪⎨+-⎪-=⎪⎩23. 如图,已知点A的坐标是(3,-2),一格一个单位长度.(1)画出平面直角坐标系,并写出点B,C的坐标.(2)连结AB,BC,CA,求三角形ABC的面积.24. 如图,已知∠B=∠C,AD与BC交于点G,∠BAE=∠CDF. 求证:AE∥FDFE GA BC D25. 在△ABC中,AB=AC,AC上的中线BD把三角形分成的两个三角形周长之差为4,且△ABC的周长为16,求△ABC的各边长.26. 列方程组解题:甲乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价。
在实际出售时,应顾客要求两件服装均按9折出售,这样商店共获利157元。
求甲乙两件服装的成本各是多少元.27. 如图,在△ABC中AD平分∠BAC,CD⊥AD.比较∠ACD与∠B的大小关系.28. 如图,在△ABC中,点D是BC延长线上的点,点F是AB延长线上的点. ∠ACD的平分线交BA 延长线于点E,∠FBC的平分线交AC延长线于点G.. 若∠G=∠GCB,∠E=∠EBC,求∠ABC的度数CXX 实验学校2009-2010学年度第二学期期中质量检测七年级数学 答案一、选择题(共10小题,每题2分,共20分)题号 1 2 3 4 5 6 7 8 9 10 答案DCABDBABCD二、填空题(共10小题,每小题2分,共20分)11. 垂线段最短 12. (-7,2) 13. 三 14._如果两个角是邻补角,那么它们的角平分线互相垂直(如果两条射线是两个邻补角的角平分线,那么它们互相垂直) ; 15.312 16. 15° 17.5y x18. 240 19. 180° 20.22三、21.(1)画图(略)……2分 (2)画图(略)……2分(3) 2; AC ∥A 1C 1 且AC =A 1C 1(平行且相等) ……2分 四、22.(1)解:将①代入②得: (2)解: ①+②得:67y y 30x y ③ ……1分 1y ……2分 4xy④ ……1分将1y代入①得: ③+④得: 17x ……1分2x……2分 将17x 代入③得:∴21x y是方程组的解 13y……1分∴1713x y是方程组的解23. 解:(1)如图:B(-6,0);C(-4,4) ……2分 (2)如图:ABCDBCBEAACFSS SSS四边形DEAF111222DE AEDC DB BE AE FC FA=11169242967222=20 ……4分24. 解:∵∠B=∠C∴AB ∥CD (内错角相等,两直线平行)……2分 ∴∠BAD=∠ACD (两直线平行,内错角相等)……2分 即∠1+∠2=∠3+∠4 ∵∠1=∠4∴∠2=∠3 ……2分∴AE ∥DF (内错角相等,两直线平行) ……2分 25. 解:由BD 是AC 上的中线,设AD=DC=x 则AB=AC=2x ∵AB+AC+BC =16 ∴BC =164x依题意得: 2(164)4xx 或 (164)24x x103x2x ……4分 ∴三角形的三边长分别为: 20208,,333或 4,4,8但4+4=8,不满足三角形任意两边之和大于第三边的关系,所以需舍去 ……2分∴三角形三边长分别为20208,,333……2分26. 解:设甲乙两件服装的成本分别为x 元和y 元.50090%(150%)90%(140%)500157xy x……4分解得:300200x y……4分答: 甲乙两件服装的成本分别为200元,300元.27. 解: ∠3>∠B ……2分延长CD 交AB 于点E ……2分 ∵∠4是△BEC 的一个外角∴∠4>∠B (三角形的一个外角大于与它不相邻的任意一个内角) ……2分 ∵AD 平分∠BAC ∴∠1=∠2 ∵CD ⊥AD ∴∠ADC=∠ADE=90° ∵∠1+∠4+∠ADE=180° ∠2+∠3+∠ADC=180° ∴∠3=∠4 ……2分 ∴∠3>∠B28. 解:设∠ABC =x ,则∠E =∠EBC =x ∵∠DCE 是△BEC 的一个外角∴∠DCE =∠E +∠EBC =2x(三角形的一个外角等于与它不相邻的两个内角和)∵CE 平分∠DCA∴∠DCA =2∠DCE =4x ……2分 ∵∠DCA 是△ABC 的一个外角∴∠DCA =∠CAB +∠CBA (三角形的一个外角等于与它不相邻的两个内角和) 有∠CAB =∠DCA -∠CBA =4x -x =3x ……2分GC D∵∠G=∠GCB ∠GCB=∠DCA(对顶角相等)∴∠G=∠GCB=∠DCA=4x(等量代换)∵∠GBF是△GAB的一个外角∴∠GBF=∠G+∠GAB=4x+3x=7x(三角形的一个外角等于与它不相邻的两个内角和)……2分∵BG平分∠FBC∴∠GBC=∠GBF=7x∵在△BCG中,∠GBC+∠G+∠GCB=180°∴ 7x+4x+4x=180°x=12°∴∠ABC=12°……2分。