净化过滤器知识(DOC)

合集下载

高、中、初效过滤器知识

高、中、初效过滤器知识

过滤器是怎么区分低效、中效、高效的?过滤器一般是根据所过滤尘埃粒子料径大小及过滤效率来确定!过滤器分类:初效(低效):G1-G4 主要针对5.0μm以上颗粒的过滤效率中效:F5-F9 主要针对1.0-5.0μm颗粒的过滤效率亚高效:H10-H12 主要针对0.3-0.5μm颗粒的过滤效率高效:H13-H14 主要针对0.3μm颗粒的过滤效率超高效:U15-U17 主要针对0.12μm颗粒的过滤效率高效过滤器主要用于捕集0.5um以下的颗粒灰尘及各种悬浮物。

采用超细玻璃纤维纸作滤料,胶版纸、铝膜等材料作分割板,与木框铝合金胶合而成。

每台均PCB印刷等行业无尘净化车间的空调末端送风处。

高效和超高效过滤器均用量高效,超高效过滤器等。

另外还有三种高效过滤器,一种是超高效过滤器,能做得到净化99.9995%。

一种是抗菌型无隔板高效空气过滤器,具有抗菌作用,阻止细菌进入洁净车间,一种是亚高效过滤器,价格便宜以前多用于要求不高的净化空间。

过滤器选型的一般原则1、进出口通径:原则上过滤器的进出口通径不应小于相配套的泵的进口通径,一般与进口管路口径一致。

2、公称压力:按照过滤管路可能出现的最高压力确定过滤器的压力等级。

3、孔目数的选择:主要考虑需拦截的杂质粒径,依据介质流程工艺要求而定。

各种规格丝网可拦截的粒径尺寸查下表“滤网规格”。

4、过滤器材质:过滤器的材质一般选择与所连接的工艺管道材质相同,对于不同的服役条件可考虑选择铸铁、碳钢、低合金钢或不锈钢材质的过滤器。

5、过滤器阻力损失计算水用过滤器,在一般计算额定流速下,压力损失为0.52~1.2kpa高效过滤器检漏:高效过滤器检漏常用的仪器有:尘埃粒子计数器和5C气溶胶发生器。

尘埃粒子计数器用于测量洁净环境中单位体积空气内的尘埃粒子大小及数目,可直接检测洁净度等级为十级至三十万级的洁净环境。

体积小、重量轻、检测精度高、功能操作简单明了,微处理器控制,可贮存、打印测量结果,测试洁净环境十分便利。

过滤器基础知识

过滤器基础知识

采用高分子材料
采用高分子材料如聚丙烯、聚乙 烯等,具有耐腐蚀、耐高温、耐 氧化等优点。
使用金属过滤材料
使用金属过滤材料如不锈钢、钛 合金等,具有高强度、耐高温、 耐腐蚀等优点。
采用陶瓷和玻璃纤维 过滤材料
陶瓷和玻璃纤维过滤材料具有高 强度、高精度、耐高温等优点, 可用于特殊场合。
加强过滤器的维护与保养
06
提高过滤器的性能与效率的建议
提高过滤器的设计水平
01
优化过滤器结构设计
02
选用高效的过滤元件
根据实际工况,优化过滤器的结构设 计,提高过滤效率、流量和寿命。
选用高效的过滤元件,如深层过滤、 超滤、纳滤等,提高过滤精度和效果 。
03
合理布置过滤器
合理布置过滤器,减小流体阻力,提 高过滤效率。
采用新型的过滤材质
过滤器需要与通风系统配合使用,如何合理配置通风系统以提高过滤效率是需要解决的问题。
过滤器的成本挑战01Fra bibliotek0203
购买成本
高质量的过滤器通常价格 较高,会增加建筑物的初 始投资成本。
运行成本
过滤器在使用过程中需要 定期更换或清洗,会产生 一定的运行成本。
维护成本
过滤器需要定期清洗或更 换,需要投入人力、物力 进行维护,会增加维护成 本。
过滤器设计
涉及进出口管径、滤芯直径、滤芯高度、滤芯孔径等参数,需根据实际应用进行 选择和设计。
过滤器的性能指标
过滤精度
指过滤器能够去除的最小颗粒直径 ,精度越高,过滤效果越好。
压力损失
指液体流经过滤器时受到的阻力, 压力损失越小,过滤效率越高。
流量
指单位时间内通过过滤器的液体流 量,流量越大,过滤效率越高。

空气净化器的过滤原理

空气净化器的过滤原理

空气净化器的过滤原理空气净化器是一种能够净化室内空气、去除颗粒物、异味和有害气体的设备。

而空气净化器的核心部件就是过滤器,其过滤原理是根据颗粒物的大小、密度和化学性质等特点,通过物理、化学或生物方法对空气中的污染物进行过滤和分解,从而达到净化空气的效果。

一、颗粒物过滤空气中的颗粒物主要包括灰尘、花粉、细菌、病毒等微小颗粒,它们对人体健康有直接的影响。

因此,空气净化器的过滤器首先要能有效去除这些颗粒物。

常见的颗粒物过滤器有:1. HEPA过滤器HEPA (High Efficiency Particulate Air) 过滤器是最常见的颗粒物过滤器之一。

它通过纤维网络拦截和吸附空气中的微尘、细菌、花粉等颗粒物,有效净化空气。

2. 活性炭过滤器活性炭过滤器通过吸附气态污染物,如甲醛、苯等有害气体,有效去除异味,并净化空气。

3. 静电过滤器静电过滤器利用静电吸附原理,将空气中的颗粒物带电后吸附在过滤器表面,有效去除细菌、病毒等微小颗粒。

二、有害气体分解除了颗粒物过滤,空气净化器还能通过化学反应分解空气中的有害气体,进一步提高空气的质量。

常见的有害气体分解技术有:1. 光触媒技术光触媒技术利用紫外线照射催化剂,如二氧化钛,使其具有光催化作用。

当有害气体通过光触媒反应器时,光触媒会吸附有害气体并发生催化反应,将其分解成无害物质。

2. 筛选吸附技术筛选吸附技术采用特殊的吸附材料,如分子筛、活性炭等,通过筛选和吸附有害气体,有效去除室内的污染物。

三、杀菌消毒空气中的细菌、病毒等微生物也是污染空气的重要因素。

空气净化器可通过杀菌消毒功能,有效去除空气中的有害微生物。

常见的杀菌消毒技术有:1. 紫外线杀菌紫外线杀菌技术利用紫外线的波长对微生物进行照射,破坏其DNA 和 RNA 结构,从而达到杀灭细菌、病毒的效果。

2. 离子发生器离子发生器能够释放负离子,通过与空气中的微生物结合并析出,从而达到杀菌的目的。

综上所述,空气净化器的过滤原理主要包括颗粒物过滤、有害气体分解和杀菌消毒。

过滤器工作原理

过滤器工作原理

过滤器工作原理过滤器是一种常见的设备,用于将流体、气体或固体进行分离和净化。

无论是在家庭中的空气净化器,还是在工业生产中的水处理设备,过滤器都是必不可少的。

本文将介绍过滤器的工作原理和常见的过滤器类型。

一、过滤器的工作原理过滤器的主要作用是通过物理或化学方法,将流体通过孔隙或特殊材料中,使其中的杂质或不需要的物质被滤除,以达到净化的目的。

下面将分别介绍过滤器的两种主要工作原理。

1. 物理过滤物理过滤是指通过设备中的孔隙或滤料,筛除较大的固体颗粒或其他杂质。

这种过滤方式适用于对颗粒物质进行分离和净化。

例如,家用水龙头上的网状过滤器就是一种常见的物理过滤器。

当水从水龙头流出时,网状过滤器会阻挡住其中的杂质,如沙粒、树叶等,从而保证水的清洁。

2. 化学过滤化学过滤是指利用特殊材料对流体中某些组分进行吸附、吸收或反应,从而将这些物质从流体中去除。

化学过滤器常用于处理气体或液体中的有害气体或溶解性杂质。

例如,活性炭过滤器常用于去除空气中的异味、有害气体以及水中的有机污染物。

二、常见的过滤器类型根据过滤器的不同工作原理和应用场景,可以将过滤器分为多种类型。

下面将介绍几种常见的过滤器,并简要说明其工作原理和应用领域。

1. 空气过滤器空气过滤器是用于过滤空气中的颗粒物质和污染物的设备。

它常用于家用和商用空调系统、空气净化器以及工业车间的通风设备中。

空气过滤器通常采用物理过滤的方式,通过滤网将空气中的颗粒物过滤掉,从而提供干净的空气供应。

2. 液体过滤器液体过滤器主要用于处理水、化学品、食品和药品等液体中的杂质。

它们常被应用于家用自来水过滤器、饮水机、化学工厂和制药厂等场合。

液体过滤器可以采用物理过滤或化学过滤的方式,具体类型包括滤筒式过滤器、滤袋式过滤器和膜分离过滤器等。

3. 油滤器油滤器主要用于去除润滑油中的杂质和重要机械设备中的沉积物。

它们广泛应用于汽车引擎、液压系统和工业机械等领域。

油滤器通常采用物理过滤的方式,利用滤纸或滤网来阻拦油中的颗粒物和沉积物。

过滤操作的要点(1)

过滤操作的要点(1)
难点教学方法
1.通过视频的透明化,用图文结合的方法,将过滤操作的要点(一贴,二低,三靠)直观的呈现在学生面前,让学生在观看演示操作的同时,认识记忆过滤操作中的要点。
教学环节
教学过程
导入
1.以一段舒缓的音乐创造一个安宁的学习的氛围,然后讲授过滤操作的要点。
知识讲解(难Leabharlann 突破)2.讲授,过滤操作的要点
①在视频播放放到制作过滤器这一段时,同时带出过滤操作的要点,一贴,滤纸紧贴漏斗内壁,防止滤纸和漏斗间有气泡导致过滤太慢;并且让学生看到是怎么做到这一点的,可以加深学生的记忆
②当视频播放到放置下方烧杯的时候,自然地告诉学生过滤操作的要点一靠(实则有三靠,一点一点的分析出来),漏斗下端紧靠烧杯内壁,防止液体飞溅。随着过滤的开始,引出,第二靠,玻璃棒靠在滤纸的三层处,接着在倾倒液体的时候,带出第三靠,烧杯紧靠玻璃棒,起到引流的作用。(每出一靠,画面上以盖章的特效在同一处盖下,最后显示三靠)
③开始过滤之后,在被过滤液体倒下后,指出,过滤的要点,二低滤液液面要低于滤纸的边缘,防止液体从滤纸和漏斗的缝隙中流下。滤纸要低于漏斗。
3.总结
一贴 滤纸紧贴漏斗内壁
二低 滤液液面低于滤纸 滤纸低于漏斗
三靠 漏斗下端紧靠烧杯内壁 玻璃棒靠在滤纸的三层处 烧杯紧靠玻璃棒
课堂练习
(难点巩固)
让学生完成下列连线题(快速高效)
过滤操作要点具体措施 起到作用
一( ) 玻璃棒靠在滤纸的三层处 防止被过滤的液体从滤纸和漏斗间流下
滤纸紧贴漏斗内壁 防止弄破滤纸
二( ) 烧杯紧靠玻璃棒 起到引流作用
漏斗下端紧靠烧杯内壁 防止滤纸和漏斗间有气泡导致过滤太慢
滤液液面低于滤纸 防止滤液漏出
三( ) 滤纸低于漏斗 防止液体飞溅

过滤器知识学习

过滤器知识学习

一、过滤概述过滤材料既有效地拦截尘埃粒子,又不对气流形成过大的阻力。

杂乱交织的纤维形成对粒子的无数道屏障,纤维间宽阔的空间允许气流顺利通过。

效率过滤器捕集粉尘的量与未过滤空气中的粉尘量之比为“过滤效率”。

小于0.1μm(微米)的粒子主要作扩散运动,粒子越小,效率越高;大于0.5μm的粒子主要作惯性运动,粒子越大,效率越高。

阻力纤维使气流绕行,产生微小阻力。

无数纤维的阻力之和就是过滤器的阻力。

过滤器阻力随气流量增加而提高,通过增大过滤材料面积,可以降低穿过滤料的相对风速,减小过滤器阻力。

动态性能被捕捉的粉尘对气流产生附加阻力,于是,使用中过滤器的阻力逐渐增加。

被捕捉到的粉尘形成新的障碍物,于是,过滤效率略有改善。

被捕捉的粉尘大都聚集在过滤材料的迎风面上。

滤料面积越大,能容纳的粉尘越多,过滤器寿命越长。

使用寿命滤料上积尘越多,阻力越大。

当阻力大到设计所不允许的程度时,过滤器的寿命就结束。

有时,过大的阻力会使过滤器上已捕捉到的灰尘飞散,出现这种二次污染时,过滤器也该报废。

静电若过滤材料带静电或粉尘带静电,过滤效果可以明显改善。

因静电使粉尘改变运动轨迹并撞向障碍物,静电力参与粘住的工作。

◎过滤效率在决定过滤效率的因素中,粉尘“量”的含义多种多样,由此计算和测量出来的过滤器效率数值也就不同。

实用中,有粉尘的总重量、粉尘的颗粒数量;有时是针对某一典型粒径粉尘的量,有时是所有粉尘的量;还有用特定方法间接地反映浓度的通光量(比色法)、荧光量(荧光法);有某种状态的瞬时量,也有发尘全过程变化效率值的加权平均量。

对同一只过滤器采用不同的方法进行测试,测得的效率值就会不一样。

离开测试方法,过滤效率就无从谈起。

◎过滤器阻力过滤器对气流形成阻力。

过滤器积灰,阻力增加,当阻力增大到某一规定值时,过滤器报废。

新过滤器的阻力称“初阻力”;对应过滤器报废时的阻力值称“终阻力”。

终阻力终阻力的选择直接关系到过滤器的使用寿命、系统风量变化范围、系统能耗。

过滤器基本知识

过滤器基本知识

基本知识一、过滤器可实现的功能1、过滤:除去液体或气体等流体中的杂质。

2、混合:按要求将不同的流体混合在一起。

3、油气分离:除去气体中的油污等杂质。

4、缓冲:保护测量仪器免遭高压脉动压力的破坏。

5、发泡:使空气或气体在液体中均匀产生所需要的气泡。

6、消音:消除排气装置中的噪音。

二、过滤器适用范围1、石油、化工系统2、化纤、纺织系统3、工程机械系统4、电子、电力系统5、冶金系统6、感光材料系统7、制药系统8、烟草、食品、饮料、造酒系统9、矿山、能源系统三、过滤器种类及主要性能1、油气分离过滤器主要用于空气压缩机。

当螺杆压缩机工作时,靠油液密封。

油气混合物在高速旋转的螺杆挤压下产生雾化、气化,从而使螺杆出气口的压缩空气中含有较多的油分。

为使油液回收循环使用及净化压缩空气,必须使用油气分离器。

规格:处理风量0、1~40 M3 /min(米3 /分钟)过滤精度:1、3、5、10、25、40、50μm(微米)分离率:99、9%~99、999%2、空气过滤器 用在空气压缩机入口。

用于洁净厂房空调系统、气体送料 系统、自动喷漆房、车船发动机进气口等空气净化领域。

效率:45%~99、99%3、高、中、低压过滤器带有外壳体,适用于有压力的液压系统。

一般带有压差指示器。

滤芯采用不锈钢超细纤维烧结毡,强度高,耐高温,耐腐蚀,纳污量大,过滤性能好,滤芯可反复清洗。

 (1) YPH系列高压过滤器 工作压力:42Mpa (420公斤/平方厘米) 温度:-10℃~+100℃ 精度:5、10、20μm 滤芯耐压差:21Mpa工作介质:一般液压油 电讯号压差指示器指示压差:0、7±0、07Mpa电讯号压差指示器工作电压:24V  电讯号压差指示器工作电流:0、2A(2)YPM系列中压过滤器 工作压力:21MPa温度:—10℃~+100℃精度:3~40μm流量:60~660L/min工作介质:一般液压油 电讯号压差指示器指示压差: 电讯号压差指示器工作电压:24V 电讯号压差指示器工作电流:0、2A(3)YPL系列低压过滤器 工作压力:1、6MPa温度:-10℃~+100℃ 精度:10~25μm流量:60~660L/min 工作介质:一般液压油电讯号压差指示器指示压差0、2±0、02MPa电讯号压差指示器工作电压:24V 电讯号压差指示器工作电流:0、2A四、粉末冶金多空过滤器特点:强度高,抗震性能好,耐腐蚀性强。

高效过滤器知识

高效过滤器知识

净化空调中高效过滤器方面的知识空气过滤器是空调净化系统的核心设备,过滤器对空气形成阻力,随着过滤器积尘的增加,过滤器阻力将随着增大。

当过滤器积尘太多,阻力过高,将使过滤器通过风量降低,或者过滤器局部被穿透,所以,当过滤器阻力增大到某一规定值时,过滤器将报废。

因此,使用过滤器,要掌握合适的使用周期。

在过滤器没有损坏的情况下,一般以阻力判定使用寿命。

过滤器的使用寿命除了取决于其本身的优劣,如:过滤材料、过滤面积、结构设计、初始阻力等,还与空气中的含尘浓度,实际使用风量,终阻力的设定等因素有关。

掌握合适的使用周期,必须了解其阻力的变化情况,首先必须了解如下定义:1. 额定初阻力:在额定风量下,过滤器样本、过滤器特性曲线或过滤器检测报告所提供的初阻力。

2. 设计初阻力:系统设计风量下,过滤器阻力(应由空调系统设计师提供)。

3. 运行初阻力:系统运行之初,过滤器的阻力,如果没有测量压力的仪表,就只能取设计风量下的阻力作为运行初阻力(实际运行的风量不可能完全等于设计风量);运行中应定期检查过滤器的阻力超出初阻力的情况(每个过滤段都应安装阻力监测装置),以决定何时更换过滤器。

过滤器更换周期,见下表(仅供参考):特别说明:低效率过滤器一般使用粗纤维滤料,纤维间空隙大,过大的阻力有可能将过滤器上的积尘吹散,这种情况下,过滤器阻力不再增高,但过滤效率降到几乎为零,因此要严格控制粗效过滤器的终阻力值!确定终阻力要综合考虑几种因素。

终阻力定的低,使用寿命短,长期更换费用(过滤器费用、人工费用,和废弃处理费用)相应就高,但运行能耗低,因此每种过滤器应该有最经济的终阻力值。

过滤器越脏,阻力增长越快。

过高的终阻力不意味着过滤器使用寿命会延长,过高阻力会使空调系统风量锐减。

过高的终阻力是不可取的。

顾客关于过滤器使用寿命短的抱怨:主要由三种原因造成a、过滤器的过滤材料面积太小或单位容尘能力太小;b、预过滤器的过滤效率偏低;c、用户对过滤器的使用寿命期望过高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

净化过滤器知识基本常识◎过滤概述过滤材料既有效地拦截尘埃粒子,又不对气流形成过大的阻力。

杂乱交织的纤维形成对粒子的无数道屏障,纤维间宽阔的空间允许气流顺利通过。

效率过滤器捕集粉尘的量与未过滤空气中的粉尘量之比为“过滤效率”。

小于0.1?m(微米)的粒子主要作扩散运动,粒子越小,效率越高;大于0.5?m的粒子主要作惯性运动,粒子越大,效率越高。

阻力纤维使气流绕行,产生微小阻力。

无数纤维的阻力之和就是过滤器的阻力。

过滤器阻力随气流量增加而提高,通过增大过滤材料面积,可以降低穿过滤料的相对风速,减小过滤器阻力。

动态性能被捕捉的粉尘对气流产生附加阻力,于是,使用中过滤器的阻力逐渐增加。

被捕捉到的粉尘形成新的障碍物,于是,过滤效率略有改善。

被捕捉的粉尘大都聚集在过滤材料的迎风面上。

滤料面积越大,能容纳的粉尘越多,过滤器寿命越长。

使用寿命滤料上积尘越多,阻力越大。

当阻力大到设计所不允许的程度时,过滤器的寿命就结束。

有时,过大的阻力会使过滤器上已捕捉到的灰尘飞散,出现这种二次污染时,过滤器也该报废。

静电若过滤材料带静电或粉尘带静电,过滤效果可以明显改善。

因静电使粉尘改变运动轨迹并撞向障碍物,静电力参与粘住的工作。

◎过滤效率在决定过滤效率的因素中,粉尘“量”的含义多种多样,由此计算和测量出来的过滤器效率数值也就不同。

实用中,有粉尘的总重量、粉尘的颗粒数量;有时是针对某一典型粒径粉尘的量,有时是所有粉尘的量;还有用特定方法间接地反映浓度的通光量(比色法)、荧光量(荧光法);有某种状态的瞬时量,也有发尘全过程变化效率值的加权平均量。

对同一只过滤器采用不同的方法进行测试,测得的效率值就会不一样。

离开测试方法,过滤效率就无从谈起。

◎过滤器阻力过滤器对气流形成阻力。

过滤器积灰,阻力增加,当阻力增大到某一规定值时,过滤器报废。

新过滤器的阻力称“初阻力”;对应过滤器报废时的阻力值称“终阻力”。

终阻力终阻力的选择直接关系到过滤器的使用寿命、系统风量变化范围、系统能耗。

大多数情况下,终阻力是初阻力的2~4倍。

终阻力建议值效率规格建议终阻力PaG3(粗效) 100~200G4(初中效)150~250F5~F6(中效)250~300F7~F8(高中效)300~400F9~H11(亚高效)400~450高效与超高效400~600过滤器越脏,阻力增长越快。

过高的终阻力值并不意味着过滤器的使用寿命会明显延长,但它会使空调系统风量锐减。

因此,没有必要将终阻力值定得过高。

低效率过滤器常使用直径≥10?m的粗纤维滤料。

由于纤维间空隙大,过大的阻力有可能将过滤器上的积灰吹散,此时,阻力不再增高,但过滤效率降为零。

因此,要严格限制G4以下过滤器的终阻力值。

每个过滤段都应安装阻力监测装置。

终阻力要靠仪表来判定,不能仅凭操作者的感觉。

◎容尘量容尘量是在特定试验条件下,过滤器容纳特定试验粉尘的重量。

这里的“特定”是指:a. 标准试验风洞,以及相关试验与测量设备;b. 比实际大气粉尘颗粒大得多的标准“道路尘”;c. 委托方与试验方商定、或标准规定的试验方法与计算方法;d. 委托方与试验方商定的终止试验的条件。

容尘量与过滤器实际容纳粉尘的重量没有直接对应关系,孤立的容尘量数据对用户没有任何意义。

◎可吸入颗粒物空气中的大颗粒粉尘被人的鼻腔阻拦,小颗粒粉尘可能随气流进入气管和肺部,这些粉尘被气管和肺部的“巨噬细胞”吞食并消化,巨噬细胞吃不净的那些细菌和病毒还会被白血球消灭掉。

人的鼻子的鼻毛、分泌物和黏膜可以将大多数大于10?m的粉尘过滤掉,只有小于10?m 的颗粒物才会随气流进入气管和肺部。

因此,人们将“可吸入颗粒物”定义为“空气中≤10?m的颗粒物”。

空气中的全部粉尘量为“总悬浮颗粒物”,去掉10?m以上的颗粒物,剩下的就是“可吸入颗粒物”,技术上标为TM10。

我们经常听到的“可吸入颗粒物”就是这个TM10。

如果将5?m以上的颗粒物去掉,剩下的“可吸入颗粒物”为TM5。

可吸入颗粒物与健康效应浓度mg/m3 健康效应总悬浮颗粒物可吸入颗粒物>0.29 >0.20 免疫功能改变的阈浓度,居民呼吸道疾病患病率开始增加。

0.21 0.15 居住区空气日平均最高允许浓度。

<0.16 <0.11 不引起小学生免疫功能改变的阈下浓度,不引起人群呼吸道患病率增加。

◎化学过滤器化学过滤器清除空气中的气体污染物。

在通风和空调领域,化学过滤器使用活性炭作为主要过滤材料。

化学过滤器典型应用场所有:芯片厂、核工业、飞机场、环保、博物馆等,有些家电中也使用了化学过滤材料。

化学过滤原理化学过滤器有选择性地吸附有害气体分子,而不是像普通过滤器那样机械地清除杂质。

活性炭材料中有大量肉眼看不见的微孔,其中绝大部分微孔的孔径在5?~500?之间,单位材料中微孔的总内表面积可高达700~2300m2/g,也就是说,在一个米粒大小的活性炭颗粒中,微孔的内表面积相当于一个大客厅内墙面的大小。

没有明显化学反应的吸附称为物理吸附,这种吸附主要靠的是范德瓦尔斯力。

空气中沸点高(常温或更高)的游离分子接触活性炭后,有些在微孔中凝聚成液体并因毛细管原理呆在那,有些填满与分子尺寸相当的微孔而与材料成为一体。

大气中的氮气、氧气、二氧化碳、氢气、氩气等主要成分的沸点都很低,活性炭吸附不了它们。

普通活性炭是疏水性材料,所以对水蒸汽的吸附能力也有限。

此外,活性炭还能吸附某些空气微生物并杀死它们。

经化学处理而使材料与有害气体产生化学反应的吸附称化学吸附。

活性炭靠范德瓦尔斯力抓到气体分子,材料上的化学成分与污染物起反应,生成固体成分或无害的气体。

进行化学处理的主要方法是在活性炭中均匀地掺入特定的试剂,所以经化学处理的活性炭也称“浸渍炭”。

使用过程中,吸附能力会不断减弱,当减弱到某一程度,过滤器报废。

如果仅为物理吸附,用加热或水蒸汽熏蒸的办法可使有害气体脱离活性炭,使活性炭再生。

活性炭材料活性炭材料分颗粒炭、纤维炭、粉炭。

纤维活性炭由含碳有机纤维制成。

它的孔径小(<50?)、吸附容量大、吸附快、再生快。

常用的纤维基材有酚醛、植物纤维、聚丙烯腈、沥青。

吸附性能吸附容量。

单位活性炭所能吸附污染物的最大量称吸附容量。

不同材料的吸附容量会不同;同一材料对不同气体的吸附容量会不同;温度、背景浓度改变,吸附容量也会变化。

滞留时间。

空气在活性炭层中逗留的时间称滞留时间。

滞留时间越长,吸附越充分。

为保持足够的滞留时间,炭层要足够厚,过滤风速要尽可能低。

使用寿命。

新的活性炭吸附效率高,使用中效率不断衰减,当过滤器下游有害气体接近允许的浓度极限时,过滤器报废。

报废前的使用时间就是使用寿命,也称有效防护时间。

选择性。

一般说来,在物理吸附中易被吸附的有:分子量大的气体、沸点高的气体、挥发性有机气体。

若活性炭经化学浸渍,还可以清除平时难以对付的气体,或突出对某类气体的吸附能力。

活性炭过滤器的选用影响活性炭过滤器吸附效果和使用寿命的主要因素有:污染物的种类和浓度、气流在过滤材料中的滞留时间、空气的温度和湿度。

实际选用时,要根据污染物种类、浓度和处理风量等条件,确定过滤器形式和活性炭种类。

活性炭过滤器的上下游均应有好的除尘过滤器,其效率规格应不低于F7。

上游过滤器防止灰尘堵塞活性炭材料;下游过滤器拦住活性炭本身的发尘过滤效率试验方法计重法Arrestance试验尘源为大粒径、高浓度标准粉尘。

粉尘的主要成分是经筛选的、规定地区的浮尘,再掺入规定量的细碳黑和短纤维。

大多数国家规定使用美国亚利桑那荒漠地带的“道路尘”(Arizona Road Dust),中国标准曾规定使用黄土高原某村落的尘土,日本标准规定使用源于日本的“关东亚黏土”。

测量的“量”为粉尘重量。

过滤器装在标准试验风洞内,上风端连续发尘。

每隔一段时间,测量穿过过滤器的粉尘重量或过滤器上的集尘量,由此得到过滤器在该阶段按粉尘重量计算的过滤效率。

最终的计重效率是各试验阶段效率依发尘量的加权平均值。

计重法试验的终止试验的条件为:约定的终阻力值,或效率明显下降时。

这里的所谓“约定”是指客户与试验者间的约定,或试验者自己的规定。

显然,约定终止试验的条件不同,计重效率值就不同。

终止试验时,过滤器容纳试验粉尘的重量称为“容尘量”。

计重法用于测量低效率过滤器,那些过滤器一般用于中央空调系统中的预过滤。

计重法试验是破坏性试验,不能用于制造厂的日常产品性能检验。

相关标准:美国ANSI/ASHRAE 52.1-1992,欧洲EN779-1993,中国GB12218-89。

比色法Dust-spot试验台和试验粉尘与计重法所用相同。

粉尘“量”为采样点高效滤纸的通光量。

在过滤器前后采样,采样头上有高效滤纸,显然,过滤器前后采样点高效滤纸的污染程度会不同。

试验中,每经过一段发尘试验,测量不发尘状态下过滤器前后采样点高效滤纸的通光量,通过比较滤纸通光量的差别,用规定计算方法得出所谓“过滤效率”。

最终的比色效率是试验全过程各阶段效率值依发尘量的加权平均值。

终止试验的条件与计重法条件相似:约定的终阻力值,或效率明显下降时。

比色法用于测量效率较高的一般通风用过滤器,空调系统中的大部分过滤器属于这种过滤器。

比色法曾是国外通行的试验方法,这种方法逐渐被计数法所取代。

严格的比色法是破坏性试验。

相关标准:美国ANSI/ASHRAE 52.1-1992,欧洲EN 779-1993。

大气尘计数法尘源为自然大气中的“大气尘”。

粉尘的“量”为大于等于某粒径的全部颗粒物个数。

测量粉尘的仪器为普通光学或激光尘埃粒子计数器。

效率值为新过滤器的初始效率。

名称解释A,B,C ,D集成电路制造业对气载分子污染物的分类。

A代表酸性气体(Acids),B代表碱性气体(Bases),C代表可凝聚化合物(Condensables),D代表其它掺杂气体(Dopants)。

Absolute Filter,绝对过滤器早期国外某公司为有隔板高效过滤器起的商品名,对应过滤效率99.97%(0.3mm DOP)。

AC fine (Air Cleaner Test Dust, fine),AC细灰美国规定用于过滤与除尘设备性能试验的标准粉尘,除中国和日本之外各国通用。

该粉尘取自美国亚利桑那荒漠地区,俗称Arizona Road Dust。

在AC细灰中掺入规定量的短纤维和碳黑,就成了过滤器试验常用的ASHRAE标准粉尘。

国际标准化组织ISO规定用AC细灰测量汽车滤清器的过滤效果。

Aerosol,气溶胶固体或液体颗粒物与气体形成的一种相对稳定的悬浮体系。

国际上,搞过滤理论的人多数参与气溶胶学会的活动,但搞过滤应用的人更喜欢在暖通空调行业扎堆儿。

AFI (Air Filter Institute),美国空气过滤研究所过滤效率的试验方法计重法和比色法首先由AFI使用,有人称AFI效率。

相关文档
最新文档