机器视觉系统与数字图像处理

合集下载

数字图像处理与机器视觉

数字图像处理与机器视觉

数字图像处理与机器视觉简介数字图像处理与机器视觉是计算机科学和电子工程领域中的重要研究方向。

它关注如何通过计算机算法和技术来获取、处理、分析和理解图像以及从中提取有用信息的方法和技术。

数字图像处理与机器视觉在许多领域有着广泛的应用,包括医学影像、机器人视觉、自动驾驶、安全监控等。

数字图像处理数字图像处理是一种用数字方法对图像进行处理和操作的技术。

运用数字图像处理技术,可以对图像进行增强、恢复、修复、分割等操作,以达到对图像的理解和利用的目的。

数字图像处理的基本步骤包括图像获取、图像预处理、特征提取和图像分析等。

图像获取图像获取是指通过传感器或摄像机等设备采集图像数据。

在数字图像处理中,需要注意如何合理获取高质量的原始图像数据,以便进行后续的处理和分析。

图像获取涉及到图像的分辨率、色彩深度、噪声抑制等问题。

图像预处理图像预处理是指对原始图像进行一些基本的处理,以减少噪声、增加对比度和锐度等。

常用的图像预处理技术包括滤波、增强、校正等。

图像预处理有助于提高图像数据的质量,并为后续的处理步骤提供更好的数据基础。

特征提取特征提取是指从图像中提取出代表图像特征的信息。

在数字图像处理中,常常使用特定的算法和技术来识别和提取出具有代表性的特征,以便对图像进行进一步的分析和处理。

常见的特征提取方法包括边缘检测、角点检测、纹理分析等。

图像分析图像分析是指对图像进行定量分析和理解。

通过图像分析,可以获得图像中的有用信息,如目标位置、形状、大小等。

图像分析的目标是为了从图像中提取出有关对象、场景或事件的重要信息,以支持后续的决策和处理。

机器视觉机器视觉是指通过计算机模拟人类视觉系统的能力,从图像或视频数据中提取并理解有关对象、场景的信息。

机器视觉可以帮助计算机更好地理解和处理图像和视频数据,以实现自动化和智能化的目标。

目标检测目标检测是机器视觉领域中的一个重要任务,指的是在图像或视频中识别和定位特定的目标。

目标可以是人、车辆、物体等。

机器视觉技术的基础原理与图像处理方法

机器视觉技术的基础原理与图像处理方法

机器视觉技术的基础原理与图像处理方法机器视觉技术是指让计算机通过摄像机等设备获取图像信息,并通过图像处理算法来实现对图像的分析、理解以及决策。

在工业、医疗、安防、交通等领域,机器视觉技术发挥着越来越重要的作用。

本文将介绍机器视觉技术的基础原理和常用的图像处理方法。

机器视觉的基础原理主要包括图像的获取、图像的处理和图像的分析三个方面。

图像的获取是机器视觉的第一步,通常使用摄像机或其他传感器将物体的视觉信息转化为数字信号。

摄像机中的图像传感器负责将光信号转化为电信号,然后经过模数转换,数字信号就能被计算机处理。

在图像的获取过程中,要考虑光照、目标运动等因素,以获得清晰、准确的图像。

获得图像后,需要进行图像的处理。

图像处理的目标是增强图像特征、去除图像噪声、调整图像亮度、对比度等,以便于后续的分析。

常用的图像处理方法包括滤波、边缘检测、直方图均衡化、图像去噪等。

其中,滤波是常用的图像处理方法之一,可以去除图像中的噪声,增强图像的细节。

边缘检测能够提取出图像中的边缘信息,对于目标检测、识别等任务非常重要。

直方图均衡化可以调整图像的亮度、对比度等,使得图像更加清晰、鲜明。

图像去噪是去除图像中的干扰信号,保留图像细节的方法。

图像的分析是机器视觉的核心任务,其目的是通过对图像的处理和解析来理解图像中的内容。

图像分析的主要方法包括特征提取、目标检测与识别、图像分割等。

特征提取是指从图像中提取出具有代表性的特征,以便于后续的目标检测和识别。

常用的特征包括边缘、纹理、颜色等。

目标检测与识别是将图像中的目标进行识别和分类,常用的方法包括模板匹配、分类器(如支持向量机、卷积神经网络)等。

图像分割是将图像分成若干个具有独立意义的子区域,常用的方法有阈值分割、基于区域的分割、基于边缘的分割等。

除了基本的图像处理方法外,机器视觉还涵盖了很多高级的图像处理方法,如深度学习、三维重建、运动分析等。

深度学习是一种基于神经网络的机器学习方法,通过大量的图像数据进行训练,可以实现图像的分类、分割等任务。

机器视觉技术与图像处理

机器视觉技术与图像处理

机器视觉技术与图像处理第一章:引言随着信息技术的飞速发展,机器视觉技术及图像处理技术也在不断发展壮大,已经成为了现代制造业、物流业等领域的关键技术,对于提高工业生产效率,降低生产成本,提高产品质量等方面都起到了非常重要的作用。

本文旨在介绍机器视觉技术和图像处理技术的基本概念、发展历程以及应用领域,并分析它们在实际应用中所遇到的问题和发展趋势。

第二章:机器视觉技术2.1 基本概念机器视觉技术是通过模拟人类视觉系统,对于图像进行处理和理解的一种技术。

它是一种复杂的、跨学科的技术,涉及到图像获取、图像处理、模式识别等多个领域。

2.2 发展历程机器视觉技术的发展可以追溯到20世纪60年代中期。

在其发展过程中,又分别经历了以下阶段:(1)人工特征提取阶段:这一阶段的核心是从图像中提取出有用的特征,然后利用分类器进行分类。

这种方法需要人为设定一些特征提取算法,且效果不佳。

(2)机器学习阶段:这一阶段为机器视觉技术的发展带来了显著的进展,其中深度学习是最为重要的发展方向。

利用深度学习可以有效地从图像中提取出高层次特征,并且有着出色的分类效果。

2.3 应用领域机器视觉技术在众多应用领域都有着广泛的应用,包括但不限于以下几个方面:(1)物体识别:通过对图像中物体的特征提取和识别,实现对物体的识别和分析。

(2)车辆识别:通过对车辆的特征提取和识别,实现对车辆的分类和跟踪。

(3)生产线监控:通过对生产线上图像的获取和处理,实现对生产过程的监控和控制。

第三章:图像处理技术3.1 基本概念图像处理技术是将数字图像进行采集、处理、分析和输出的一种技术。

它包含了图像处理的各种方法和技术,比如滤波、增强、分割、变换等。

3.2 发展历程图像处理技术的发展可以追溯到20世纪60年代末。

随着计算机的普及,图像处理开始进入一个快速发展的阶段,又分别经历了以下几个发展阶段:(1)直接处理阶段:最初的图像处理技术是通过直接利用硬件对图像进行处理。

机器视觉与图像处理技术

机器视觉与图像处理技术

机器视觉与图像处理技术随着科技的不断发展,计算机的处理能力不断增强,机器视觉技术和图像处理技术也得到了快速发展。

机器视觉技术是一种通过利用摄像机等设备获取图像信息,然后通过信息处理,完成图像识别和提取等功能的技术。

而图像处理技术则是对图像进行一定的转换和处理,从而获得更有用的信息。

一、机器视觉技术的应用机器视觉技术的应用范围很广,它可以用于工业制造、医疗、汽车驾驶辅助、安防等领域。

其中,工业制造是机器视觉技术的最大应用领域之一,它可以用于产品外观的检测、质量控制、自动化生产等方面。

比如,对于某些高精度零件,使用机器视觉技术可以检测微小的缺陷,从而提高产品的质量。

另外,机器视觉技术还可以用于医疗领域。

例如,医疗影像中往往需要对X光片、MRI图像等进行分析和处理,这就需要借助机器视觉技术。

利用这项技术,可以有效地诊断各种疾病和损伤,提高医疗质量和效率。

二、图像处理技术的发展随着计算机技术的不断发展,图像处理技术也在不断地演进和完善。

最初的图像处理技术主要包括数字图像增强、图像滤波、图像分割等基础方法。

随着人工智能技术的发展,图像处理技术不断得到改进和突破,例如深度学习等技术的发展,使得图像识别和分析能力不断提高。

三、机器视觉与图像处理技术的结合机器视觉技术和图像处理技术在一定程度上是相通的,它们之间的区别可能更多在于应用领域和目的。

但是,随着两者的不断发展,它们之间也逐渐开始了深入的结合。

例如,利用深度神经网络模型,可以对医疗影像中的肿瘤进行自动检测和分类。

同时,机器视觉技术可以通过自动识别某些特定物品的位置和方向等信息,并对其进行识别和分析,进而实现自动化控制和智能化管理等功能。

四、机器视觉与图像处理技术的挑战虽然机器视觉技术和图像处理技术得到了快速发展,但是它们所面临的挑战也极其严峻。

其中,机器视觉技术涉及到的大量图像数据的处理和分析,需要更加高效的算法和硬件支持,同时也需要更加成熟的云计算等技术,才能满足业界的需求和发展。

数字图像处理与计算机视觉技术

数字图像处理与计算机视觉技术

数字图像处理与计算机视觉技术数字图像处理与计算机视觉技术是现代科学和技术领域的重要分支,广泛应用于图像识别、模式识别、人脸识别、智能监控、医学图像处理等各个领域。

本文将以此为主题,介绍数字图像处理与计算机视觉技术的基本概念、原理和应用。

数字图像处理是指使用计算机对数字图像进行各种处理和分析的过程。

数字图像是由离散的像素点组成的,每个像素点都包含图像上某一位置的亮度值或颜色值。

通过数字图像处理技术,我们可以对图像进行增强、滤波、去噪、边缘检测等操作,使得图像更加清晰、准确。

计算机视觉是通过计算机模拟人类视觉系统进行图像识别和智能分析的过程。

计算机视觉技术借鉴了人类视觉系统的工作原理,通过图像采集、图像处理、特征提取和模式识别等过程,将图像转化为计算机可以理解和处理的数据,从而实现对图像内容的自动分析和理解。

计算机视觉技术是人工智能领域的重要组成部分,具有广泛的应用前景。

数字图像处理与计算机视觉技术的应用范围十分广泛。

在工业领域,它可以用于产品质量检测、缺陷检测、自动化生产等方面。

在医学领域,它可以用于医学图像的分析和诊断,如CT扫描、MRI等。

在安防领域,它可以用于智能监控系统的设计和优化,实现对异常行为的自动检测和报警。

在交通领域,它可以用于车辆识别、交通流量统计等方面。

在生物医学工程领域,它可以用于细胞图像分析、生物识别等。

在互联网领域,它可以用于图像搜索、人脸识别、虚拟现实等方面。

在人工智能领域,它可以用于图像识别、物体跟踪、行为分析等。

数字图像处理与计算机视觉技术的实现主要依赖于算法和软件工具的开发。

常用的数字图像处理算法包括直方图均衡化、滤波算法、边缘检测算法、图像分割算法等。

计算机视觉方面,常用的算法包括特征提取算法、模式识别算法、深度学习算法等。

此外,还有一些常用的软件工具,如OpenCV、Matlab等,可以提供方便的图像处理和计算机视觉开发环境。

然而,数字图像处理与计算机视觉技术也面临一些挑战和问题。

机器视觉与图像处理

机器视觉与图像处理

机器视觉与图像处理一、介绍机器视觉和图像处理是一个快速发展的领域,已经成为当今所有领域中不可或缺的一部分。

随着时间的推移,越来越多的技术被开发出来,这最终导致了在这个领域中的巨大应用。

本文将介绍机器视觉和图像处理的定义、应用以及相关技术。

二、机器视觉的定义机器视觉可以被定义为一种技术,该技术可以将图像信号转换为有意义的信息。

这种信息可以被用来辨别不同的对象、检测错误、进行排序、分类、跟踪等各种任务。

这种技术是使计算机能够理解和提取丰富的信息,和人类视觉类似。

三、机器视觉的应用机器视觉的应用涵盖了很多领域,如医疗、能源、安全、石油和天然气、农业和生物学。

下面是一些机器视觉被广泛应用的领域的实例:1、医疗:机器视觉能够帮助医生在MRI和CT等影像学检查中确诊和筛选疾病,例如癌症、肿瘤等。

2、能源:机器视觉可以用于检测管道和设备的裂纹,这有助于提高安全性,并防止泄漏和事故的发生。

3、安全:机器视觉已经在许多安全系统中得到了广泛应用,如安全摄像头、安保门禁等。

4、石油和天然气:机器视觉可以用于检测管道和油井是否有渗漏,这可以提高能源生产的效率,降低失误率。

5、农业:机器视觉能够对农场或果园进行监测,检测植物的生长情况,检测病虫害以及检测作物的成熟程度。

6、生物学:机器视觉可以帮助生物学家自动分类和鉴定各种不同的细胞和组织,它可以用于现场检查或实验室检查,从而有助于提高研究的准确度和效率。

四、图像处理的定义图像处理是对图像进行操作以提取信息或优化图像的方法。

这种处理可以被用于许多领域,如数字摄影、印刷、电影和离散信号处理等。

五、图像处理的应用1、数字摄影:图像处理可以用于数码相机的后期处理,使照片的色彩、对比度、曝光等更好地呈现。

2、印刷:图像处理可以用于在印刷操作中增加对比度,提高颜色的饱和度或减少噪声,从而获得更优质的印刷品。

3、电影:图像处理可以用于电影后期制作,从而改变电影的外观和感觉。

4、离散信号处理:图像处理可以被用于数字信号处理中,如图像压缩、功率谱、频率过滤器等。

机器视觉与图像处理技术的应用

机器视觉与图像处理技术的应用

机器视觉与图像处理技术的应用一、引言机器视觉与图像处理技术是现代科技领域中的重要应用技术。

这种技术是将光学、计算机、控制技术和人工智能等学科相结合,以解决人类感知、控制和人机交互等问题为目标,对于生产制造、信息处理、医疗、安防等领域都有着重要的应用价值。

本文将从机器视觉基础知识、图像处理技术的应用场景以及未来发展趋势三个方面,探讨机器视觉与图像处理技术的应用。

二、机器视觉基础知识机器视觉的核心技术是数字图像处理技术。

数字图像处理技术是将图像数据通过数字化处理的手段,在计算机中进行图像分析、处理和识别的技术。

数字图像处理技术常用的流程包括图像采集、图像预处理、图像增强、图像分割、特征提取和目标识别等步骤。

1. 图像采集图像采集是将外部光学输入转化成电信号输入的环节。

常见的图像采集方式包括相机、激光测距和雷达成像等技术。

2. 图像预处理图像预处理是将采集到的图像进行信号重构、去噪、矫正和增强等步骤。

常用的图像预处理方法包括平滑、滤波、积分变换和锐化等方法。

3. 图像增强图像增强是指通过增加图像的对比度、清晰度和亮度等方法,提高图像的可读性和识别性。

常见的图像增强技术包括灰度变换、直方图均衡和滤波等方法。

4. 图像分割图像分割是对图像进行区域划分的过程,将图像中的前景和背景分离出来。

常见的图像分割方法有阈值分割、边缘检测和区域生长等方法。

5. 特征提取特征提取是将图像中的目标从背景中分离,并提取出目标的特征参数。

常用的特征提取方法包括边缘检测、角点检测和轮廓提取等方法。

6. 目标识别目标识别是将特征提取得到的目标特征与预先设定的目标模板进行匹配,确定图像中的目标所属类别的过程。

三、图像处理技术的应用场景机器视觉与图像处理技术的应用范围较广,其中主要应用场景包括自动化生产制造、智能交通、医疗影像和安防监控等领域。

1. 自动化生产制造在自动化生产制造领域,机器视觉技术主要应用于自动化检测和质量控制等环节。

计算机视觉与图像处理

计算机视觉与图像处理

计算机视觉与图像处理计算机视觉与图像处理是一门涉及数字图像处理、图像分析和机器视觉等多学科交叉领域的学科。

它通过对图像和视频进行获取、处理、分析和理解,使计算机可以模拟人类视觉,实现图像的识别、理解和应用。

一、图像采集与获取图像是由像素点组成的二维数字矩阵,而图像采集是指使用传感器、相机等设备获取模拟图像并转换成数字图像的过程。

传感器可以直接将光信号转换为电信号,相机则是通过透镜、快门等光学元件捕捉图像,并通过数字转换器将图像信号转换为数字信号。

在图像获取过程中,需要考虑光照、曝光、对焦等参数,以获得高质量的图像数据。

二、图像处理与特征提取图像处理是指对数字图像进行各种操作和处理,包括去噪、增强、压缩、分割、配准等。

通过对图像的处理可以改善图像质量、突出图像特征、减少数据量等。

而特征提取则是从图像中提取出具有代表性的特征,用于描述图像的形状、纹理、颜色等信息。

常用的特征提取方法包括边缘检测、角点检测、直方图特征等。

三、图像分析与识别图像分析是通过对图像及其特征进行计算和分析,对图像进行理解和解释的过程。

图像识别则是通过模式识别、机器学习等技术,将输入图像与已知图像进行比对,识别图像中的目标或内容。

常见的图像识别任务包括人脸识别、车牌识别、行人检测等。

四、机器视觉与人工智能机器视觉是计算机视觉的应用领域之一,它将计算机视觉技术运用到自动化、机器人、智能交通、医疗影像、安防监控等领域。

机器视觉系统利用摄像头、传感器等设备获取图像信息,并通过图像处理和分析实现智能化决策和控制。

人工智能技术如深度学习、神经网络等被广泛应用于机器视觉系统中,提升了自动化、智能化的水平。

五、应用领域与发展趋势计算机视觉与图像处理技术已在各个领域得到广泛应用,如智能驾驶、无人机航拍、医疗影像分析、安防监控、虚拟现实等。

随着人工智能技术的飞速发展,计算机视觉与图像处理将在更多领域深化应用,推动科技创新,改善人类生活。

以上是关于计算机视觉与图像处理的相关内容,希望对您有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2章机器视觉系统与数字图像处理
2.1机器视觉系统
2.1.1机器视觉系统简介
机器视觉系统是指利用机器替代人眼做出各种测量和判断。

机器视觉是工程领域和科学领域中的一个非常重要的研究领域,它是一门涉及光学、机械、计算机、模式识别、图像处理、人工智能、信号处理以及光电一体化等多个领域的综合性学科,其能以及应用范围随着工业自动化的发展逐渐完善和推广,其中母子图像传感器、CMOS和CCD摄像机、DSP、ARM嵌入式技术、图像处理和模式识别等技术的快速发展,有力地推动了机器视觉的发展。

机器视觉是一种比较复杂的系统。

因为大多数系统监控对象都是运动物体,系统与运动物体的匹配和协调动作尤为重要,所以给系统各部分的动作时间和处理速度带来了严格的要求。

在某些应用领域,例如机器人、飞行物体导制等,对整个系统或者系统的一部分的重量、体积和功耗都会有严格的要求。

机器视觉系统通过图像摄取装置将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号。

机器视觉系统可以快速获取大量信息,而且易于自动处理,也易于同设计信息以及加工控制信息集成。

在生产线上,人来做此类测量和判断会因疲劳、个人之间的差异等产生误差和错误,但是机器却会不知疲倦地、稳定地进行下去;在一些不适合人工作业的危险工作环境或人工视觉难以满足要求的场合,常用机器视觉来替代人工视觉。

机器视觉系统就其检测性质和应用范围而言,分为定量和定性检测两大类,每类又分为不同的子类。

机器视觉在工业在线检测的各个应用领域十分活跃,如:印刷电路板的视觉检查、钢板表面的自动探伤、大型工件平行度和垂直度测量、容器容积或杂质检测、机械零件的自动识别分类和几何尺寸测量等。

此外,在许多其它方法难以检测的场合,利用机器视觉系统可以有效地实现。

机器视觉的应用正越来越多地代替人去完成许多工作,这无疑在很大程度上提高了生产自动化水平和检测系统的智能水平
机器视觉系统的优点有:1.非接触测量,对于被检测对象不会产生任何损伤,而且提高了系统能够的可靠性;2.较宽的光谱响应范围,例如使用人眼看不见的红外测量,扩展人眼的视觉范围;3.长时间稳定工作,人类难以长时间对同一对象进行观察,而机器视觉系统则可以长时间地作测量、分析和识别任务。

机器视觉系统的应用领域越来越广泛。

在工业、农业、国防、交通、医疗、金融甚至体育、娱乐等等行业都获得了广泛的应用,可以说已经深入到我们的生活、生产和
工作的方方面面。

2.1.2机器视觉系统的构成和工作过程
一个完整的机器视觉系统包括:照明光源、光学镜头、CCD 摄相机、图像采集卡、图像检测软件、监视器、通讯单元等,如图2-1所示。

图2-1典型的机器视觉系统
Fig.2-1 A typical machine vision system
工业机器视觉系统的工作过程主要如下,如图2-2所示:
1、当传感器探测到被捡测物体接近运动至摄像机的拍摄中心,将触发脉冲发送给图像采集卡;
2、图像采集卡根据已设定的程序和延时,将启动脉冲分别发送给照明系统和摄像机;
3、一个启动脉冲送给摄像机,摄像机结束当前的拍照,重新开始一副新的拍照,或者在启动脉冲到来前摄像机处于等待状态,检测到启动脉冲后启动,在开始新的一副拍照前摄像机打开曝光构件(曝光时间事先设定好);另一个启动脉冲送给光源,光源的打开时间需要与摄像机的曝光时间匹配;摄像机扫描和输出一副图像;
4、图像采集卡接收信号并通过A/D转换将模拟信号数字化,或者是直接接收摄像机数字化后的数字视频数据;
5、图像采集卡将数字图像存储在计算机的内存中;
6、计算机对图像进行处理、分析和识别,获得检测结果;
7、处理结果控制流水线的动作、进行定位、纠正运动的误差等。

图2-2机器视觉系统的工作过程
Fig.2-2 The working principle of Machine vision system
2.2数字图像处理
2.2.1数字图像处理简介
数字图像处理(Digital Image Processing)即计算机图像处理,指将图像由模拟信号转化为数字信号,并利用计算机对图像进行去噪、增强、复原、分割、提取特征等处理的过程。

图像经过处理后,输出的质量得到很大程度的增强,即改善了其视觉效果,又便于计算机完成后续的分析、处理等。

图像是人类获取信息和交换信息的主要来源之一,图像处理已经在人类生活和工作的许多方面得到了广泛的应用并取得令人瞩目的成就,例如航空航天技术、通信工程、生物医学工程、工业检测、文化艺术、军事安全、电子商务、视频和多媒体系统等领域,图像处理已经成为一门前景远大的新型学科。

数字图像处理技术虽然已经取得了很多重要的研究成就,但是仍然存在一些困难:(1)信息处理量大。

数字图像处理的信息基本上都是以二维形式存在,处理信息量较大,对计算机的速度、存储量等有比较高的要求。

(2)频带占用宽。

在图像成像、传输、显示等环节的实现上,成本高,技术实现难度大,这就要求更高的频带压缩技术。

(3)像素相关性较大。

数字图像中每个像素并不是独立的,很多像素有着相同或者接近的灰度,相关性较大,因此信息压缩有很大地提升空间。

(4)不能复现有关三维景物的所有几何信息。

图像是三维景物的二维投影,所以必须附加新的测量或者合适的假定才能理解和分析三维景物。

(5)人为因素的影响大。

经过数字图像处理的图像一般是被人观察和分析的,人的视觉系统很复杂,机器视觉系统同样是模仿人的视觉,人的感知机理制约着机器视觉系统的研究。

在工业生产自动化过程中,数字图像处理技术是实现产品实时监控和故障诊断分析最有效的方法之一,随着计算机软硬件、思维科学研究、模式识别以及机器视觉系统等相关技术和理论的进一步发展,将促进这一方法向更高、更深层次发展。

2.2.2 数字图像处理的工具
数字图像处理的应用工具有很多,总体可以分为三类:
第一类工具的共同点是先把图像变换到其他域中进行处理,再变换到原域中进行下一步处理,例如有关图像滤波和正交变换等方法。

第二类工具是直接在空间域中进行图像处理,例如微分方程方法、统计方法等数学方法。

第三类工具和通常在空间域和频域使用的方法不同,是建立在随机集合和积分几何论基础上的运算,例如数学形态运算方法。

2.2.3数字图像处理的研究内容
数字图像处理的研究内容主要有以下几个方面:
1.图像变换。

为了得到更加简单和方便处理的图像函数,一般要对图像进行图像变换,图像变换的形式主要有光学和数字两种,分别对应连续函数和二维离散运算。

常用的方法有傅立叶变换、沃尔什-哈达玛变换、离散卡夫纳-勒维变换等间接处理技术。

2.图像增强和复原。

其目的都是改善图像的质量,提高图像的清晰度。

图像增强可以突出预处理图像中所感兴趣信息,常用方法有灰度变换、直方图处理、锐化滤波等。

图像复原可以复原被退化的图像,常采用滤波复原的方法。

3.图像压缩。

这种技术可以除去冗余数据,减少描述图像所需的数据量,实现快速传输和存储图像数据。

图像压缩分为有损压缩和无损压缩两种,无损压缩主要用在编档保存等要求图像质量的方面,有损压缩相比前者可以实现更高的压缩程度,但是生成的图像不如原图。

4.图像分割。

图像分割是把图像内各像素进行分类,将图像细分成若干有意义的子区域,如图像中的区域、边缘等。

经过几十年的研究,在借助各种理论的基础上,图像分割的算法现在已经有上千种,但由于这些算法都是针对具体问题提出的,因此尚无通用分割算法。

随着各种新技术和新理论的结合,图像分割算法将取得更大地突破和进展。

5.图像描述。

对被分割出来的区域进行描述,是图像自动化处理的前期步骤,表示区域关系到两个基本选择:用外部特征表示区域和用内部特征表示区域,不管选择何种表示方案都是为了数据便于计算机处理。

图像描述的方法有曲线拟合、基于弧长极半径的傅里叶描述子、矩描述、链码。

6.图像分类识别。

图像识别是按照某些特征对研究对象进行识别,属于模式识别的范畴,其主要内容对预处理后的图像,进行图像分割和特征提取,进而进行识别分类。

图像识别一般采用统计识别法、模糊识别法和人工神经网分类方法。

2.3本章小结
本章阐述了机器视觉的理论,分析了其系统特点、构成、工作过程以及应用;阐述了数字图像处理理论,分析了其应用工具、研究内容以及应用。

为下一步构建检测系统提供理论依据。

(加些内容)。

相关文档
最新文档