第三讲 绝对值提高题
部编数学七年级上册专题绝对值压轴题(最值与化简)专项讲练重难题型技巧提升专项精练(人教版)含答案

专题03 绝对值压轴题(最值与化简)专项讲练专题1. 最值问题最值问题一直都是初中数学中的最难点,但也是高分的必须突破点,需要牢记绝对值中的最值情况规律,解题时能达到事半功倍的效果。
题型1. 两个绝对值的和的最值【解题技巧】b x a x -+-目的是在数轴上找一点x ,使x 到a 和b 的距离和的最小值:分类情况(x 的取值范围)图示b x a x -+-取值情况当a x <时无法确定当b x a ≤≤时b x a x -+-的值为定值,即为b a -当b x >无法确定结论:式子b x a x -+-在b x a ≤≤时,取得最小值为b a -。
例1.(2021·珠海市初三二模)阅读下面材料:数轴是数形结合思想的产物.有了数轴以后,可以用数轴上的点直观地表示实数,这样就建立起了“数”与“形”之间的联系.在数轴上,若点A ,B 分别表示数a ,b ,则A ,B 两点之间的距离为AB a b =-.反之,可以理解式子3x -的几何意义是数轴上表示实数x 与实数3两点之间的距离.则当25x x ++-有最小值时,x 的取值范围是()A .2x <-或5x >B .2x -≤或5x ≥C .25x -<<D .25x -≤≤【答案】D【分析】根据题意将25x x ++-可以理解为数轴上表示实数x 与实数-2的距离,实数x 与实数5的距离,两者的和,分三种情况分别化简,根据解答即可得到答案.【解析】方法一:代数法(借助零点分类讨论)当x<-2时,25x x ++-=(-2-x )+(5-x )=3-2x ;当25x -≤≤时,25x x ++-=(x+2)+(5-x )=7;当x>5时,25x x ++-=(x+2)+(x-5)=2x-3;∴25x x ++-有最小值,最小值为7,此时25x -≤≤,故选:D.方法二:几何法(根据绝对值的几何意义)25x x ++-可以理解为数轴上表示实数x 与实数-2的距离,实数x 与实数5的距离,两者的和,通过数轴分析反现当25x -≤≤时,25x x ++-有最小值,最小值为7。
(完整版)初一绝对值和数轴提高题.docx

绝对值的提高练习一. 知识点回顾1、绝对值的几何意义:在数轴上表示一个数的点离开原点的距离叫这个数的绝对值.2、绝对值运算法则:一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零.即:3、绝对值性质:任何一个实数的绝对值是非负数.二 .典型例题分析:例 1、 a , b 为实数,下列各式对吗?若不对,应附加什么条件?请写在题后的横线上。
(1) | a+b | =| a | +|b |;;(2)|ab | =| a|| b|;;(3)| a-b | =| b-a |;;(4)若| a| =b ,则 a=b ;;(5) 若| a|<| b|,则 a < b;;(6)若 a> b ,则| a|>| b|,。
例 2、设有理数 a , b, c 在数轴上的对应点如图1-1 所示,化简| b-a | +|a+c | +| c-b |.例 3 、若x y 3 与 x y 1999 互为相反数,求x 2 y的值。
x y三 .巩固练习 :( 一 ). 填空题 :1.a >0 时, |2a|=________ ;(2) 当 a>1 时, |a-1|=________ ;2.已知a 1 b 3 0,则a ____ b ______3.如果 a>0, b<0,a b ,则a,b,—a,—b这4个数从小到大的顺序是__________( 用大于号连接起来 )4.若 xy 0, z0 ,那么xyz=______0.5. 上山的速度为 a 千米 / 时,下山的速度为 b 千米 / 时,则此人上山下山的整个路程的平均速度是__________千米 / 时( 二 ). 选择题 :6.值大于 3 且小于 5 的所有整数的和是() A. 7 B.-7 C. 0 D. 57.知字母 a 、b表示有理数,如果 a +b=0,则下列说法正确的是()A . a、b中一定有一个是负数 B. a 、b都为0 C. a 与b不可能相等 D. a 与b的绝对值相等8.下列说法中不正确的是 ( )A. 0 既不是正数 , 也不是负数 B . 0 不是自然数C.0的相反数是零 D . 0 的绝对值是 09.下列说法中正确的是()A 、a是正数B 、— a 是负数C、 a 是负数D、 a 不是负数10.x =3, y =2,且x>y,则x+y的值为()A 、5B、 1C、 5 或 1 D 、— 5 或— 111.a<0 时,化简a)A 、 1B、— 1C、 0 D 、1等于(a12.若 ab ab,则必有() A 、 a>0,b<0 B 、a<0,b<0C、 ab>0D、ab013.已知: x =3, y =2,且x>y,则x+y的值为() A 、 5 B 、1C、 5 或 1D、— 5 或— 1(三 ).解答题 :14. a+ b< 0,化简| a+b-1|-| 3-a-b|.15.. 若x y + y 3 =0,求2x+y的值.16.当 b 为何值时, 5- 2b 1有最大值,最大值是多少?17. 已知a是最小的正整数,b、 c 是有理数,并且有|2+ b|+(3 a+2c) 2=0.求式子4ab c的值 .a2 c 2418.已知 x< -3 ,化简:| 3+ | 2- | 1+x |||.19.若| x| =3 ,| y| =2 ,且| x-y | =y-x ,求 x+y 的值.20.化简:| 3x+1 | +| 2x-1 |.21.若 a , b , c 为整数,且| a-b |19+| c-a |99=1 ,试计算| c-a | +| a-b | +| b-c |的值.22 .已知 y= |2x+6 | +| x-1| -4 | x+1 |,求 y 的最大.23. a < b < c< d,求| x-a | +| x-b |+| x-c | +| x-d |的最小.24. 若 2x+ | 4-5x |+ |1-3x | +4 的恒常数,求x 足的条件及此常数的.三、巩固1. x 是什么数,下列等式成立:(1)| (x-2)+(x-4) |=| x-2 | +| x-4 |;(2)| (7x+6)(3x-5) | =(7x+6)(3x-5) .2.化下列各式:(2) |x+5 | +| x-7 | +| x+10 |.3.已知 y= | x+3 |+ |x-2 | -| 3x-9 |,求 y 的最大.4. T= | x-p | +|x-15 | +| x-p-15 |,其中0< p < 15,于足p≤ x≤ 15 的 x 来, T 的最小是多少?5.不相等的有理数 a ,b,c 在数上的点分 A ,B,C,如果| a-b | +| b-c | =| a-c |,那么 B 点 ().(1) 在 A, C 点的右;(2) 在 A, C 点的左;(3) 在 A ,C 点之;(4) 以上三种情况都有可能.6.若| x| =3 ,| y|=2 ,且| x-y | =y-x ,求 x+y 的.7.化:| 3x+1 | +| 2x-1 |.8.若 2+ |4-5x| +| 1-3x |+4的恒常数,求x 足的条件及此常数的.9. a 1b 2 0,求 a b 2001+a b 2000+⋯a b2+ a b.10.已知 ab 2 与 b 1 互相反数,法求代数式1111的值 .ab( a 1)(b1) (a 2)(b2)(a 1999)(b1999)11. 若 a,b, c 为整数,且 a b2001c 2001a ab bc 的值.a 1,计算 c12. 若 a 19, b 97 ,且 a ba b ,那么 ab = .13. 已知 a 5 , b 3 且 abab ,求 ab 的值。
绝对值练习基础篇提高篇拓展篇

绝对值练习根底篇、提高篇,拓展篇〔一〕绝对值练习根底篇一、 ______5=-;______312=-;______31.2=-;______=+π. 二、 ______510=-+-;______36=-÷-;______5.55.6=---3、 2-的相反数是 2--的倒数是 。
4、 的绝对值的相反数是五、 若是3-=a ,那么______=-a ,______=a 。
六、 绝对值为3的数为____________ 。
7、 一个数的绝对值是,那么那个数为______。
八、 -|-6/7|=________________。
(4)--+=___________。
九、 12的相反数与-7的绝对值的和是____________________。
10、 绝对值小于π的整数有______________________。
1一、 绝对值小于的所有非负整数为 。
1二、 绝对值不大于2005的所有整数的和是 ,积是 。
13、 7=x ,那么______=x ; 7=-x ,那么______=x 。
14、 个。
1五、 假设4x -=,那么x =__________假设31x -=,那么x =__________1六、 在-(-2),-|-2|,(-2)2,-22四个数中,负数有_________个17、 有理数的绝对值必然是 ,绝对值等于它本身的数有 。
1八、 假设|x|=-x ,那么x 是_________数;1九、 a=-8 b=-6,求-│b ∣-│-a ∣的值为 。
20、 a<0,ab<0,且│a │>│b │,试在数轴上简单地表示出a ,b ,-a 与-b 的位置,并用“<〞号32将它们连接起来为 。
〔二〕绝对值练习提高篇A 绝对值的非负性,平方根的非负性一、 假设|a+2|+|b -1|=0,那么a= b= ;二、 假设023=-++b a ,那么b a 的值为 。
绝对值培优类型题

绝对值培优类型题一、绝对值的代数意义绝对值表示一个数在数轴上所对应点到原点的距离。
用“|a|”来表示,读作“绝对值”。
二、绝对值的几何意义一个数的绝对值就是表示该数的点离开原点的距离。
三、绝对值的基本性质1. 当a为非负数时,|a|=a;当a为负数时,|a|=-a;当a=0时,|a|=0。
2. 绝对值总是非负的,即|a|≥0。
3. 若|a|=|b|,则a=b或a=-b。
4. 若几个非负数的和为0,则每个非负数都等于0。
四、绝对值的运算性质1. |a|=-|a|当且仅当a=0;|a|=|b|当且仅当a=b或a=-b。
2. 两个负数,绝对值大的反而小。
3. 正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
4. |ab|=|a||b||ab|=|a||b|。
5. 互为相反数的两个数的绝对值相等。
6. 符号法则:正数的绝对值是其本身,负数的绝对值是其相反数,0的绝对值是0。
五、绝对值的取值范围一个数的绝对值越小,则该数越接近于0;反之,一个数的绝对值越大,则该数越远离于0。
六、绝对值在函数中的应用1. 一次函数:y=kx+b,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。
其中b是y轴上的截距,可以表示该函数在y轴上的取值范围。
函数的图象是一条直线。
当直线在x轴上方时,y为正值;在x轴下方时,y为负值。
因此,一次函数的绝对值表示该函数在x轴上方的部分所对应的面积。
2. 二次函数:y=ax²+bx+c,函数的图象是一条抛物线。
当抛物线开口向上时,最低点为该函数的极小值点;当抛物线开口向下时,最高点为该函数的极大值点。
抛物线与x轴的交点表示该函数在x轴上的取值情况。
因此,二次函数的绝对值表示该函数在x轴上方的部分所对应的面积。
3. 分式函数:y=f(x)=x/m(x≠±√m),函数的图象是一条折线段。
由于分母不为零,因此该函数在x轴上方的部分所对应的面积即为该函数的正值范围。
七年级数学绝对值(提高版)答案与试题解析

数学绝对值(提高版)试题1.设实数a、b、c满足a<b<c(ac<0),且|c|<|b|<|a|,则|x﹣a|+|x﹣b|+|x+c|的最小值是()A.B.|b|C.c﹣a D.﹣c﹣a2.|a﹣b|=|a|+|b|成立的条件是()A.ab>0B.ab>1C.ab≤0D.ab≤13.满足|x﹣2|+|x+1|=3的x的个数为()A.0B.2C.3D.多于3个4.若方程||x﹣2|﹣1|=a有三个整数解,则a的取值为()A.a>1B.a=1C.a=0D.0<a<15.已知(|1+x|+|2﹣x|)(|y+2|+|y﹣1|)=9,则x﹣2y的最小值为.6.已知实数x满足|x+1|+|x﹣4|=7.则x的值是.7.已知|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|=4,则实数x的取值范围是.8.已知方程|x﹣1|+|x﹣2|+|x﹣10|+|x﹣11|=m无解,则实数m的取值范围是.9.设a,b是方程||2x﹣1|﹣x|=2的两个不相等的根,则的值为.10.解方程:(1)|3x﹣5|+4=8;(2)|4x﹣3|﹣2=3x+4;(3)|x﹣|2x+1||=3;(4)|2x﹣1|+|x﹣2|=|x+1|.11.解下列方程:(1)|x+3|﹣|x﹣1|=x+1 (2)|x﹣1|+|x﹣5|=4.12.解方程:|2x+3|﹣|x﹣1|=4x﹣3.13.当a满足什么条件时,关于x的方程|x﹣2|﹣|x﹣5|=a有一解?有无数多个解?无解?14.讨论方程||x+3|﹣2|=k的解的情况.15.求关于x的方程||x﹣2|﹣1|﹣a=0(0<a<1)的所有解的和.数学绝对值(提高版)试题答案与试题解析1.设实数a、b、c满足a<b<c(ac<0),且|c|<|b|<|a|,则|x﹣a|+|x﹣b|+|x+c|的最小值是()A.B.|b|C.c﹣a D.﹣c﹣a解:∵ac<0∴a,c异号∴a<0,c>0又∵a<b<c,以及|c|<|b|<|a|∴a<b<﹣c<0<c|x﹣a|+|x﹣b|+|x+c|表示到a,b,﹣c三点的距离的和.当x在表示b点的数的位置时距离最小,即|x﹣a|+|x﹣b|+|x+c|最小,最小值是a与﹣c之间的距离,即﹣c﹣a.故选:D.2.|a﹣b|=|a|+|b|成立的条件是()A.ab>0B.ab>1C.ab≤0 D.ab≤1解:当a、b异号或a、b中有一个为0时,|a﹣b|=|a|+|b|成立,∴ab≤0,故选:C.3.满足|x﹣2|+|x+1|=3的x的个数为()A.0B.2C.3D.多于3个解:当x<﹣1时,方程化简为2﹣x﹣x﹣1=3,解得x=﹣1(不符合题意的解要舍去),当﹣1≤x<2时,2﹣x+x+1=3,x有无数个;当x≥2时,方程化简为x﹣2+x+1=3,解得x=2,综上所述:x有无数个,故选:D.4.若方程||x﹣2|﹣1|=a有三个整数解,则a的取值为()A.a>1B.a=1C.a=0D.0<a<1解:选:B.5.已知(|1+x|+|2﹣x|)(|y+2|+|y﹣1|)=9,则x﹣2y的最小值为﹣3.解:∵(|1+x|+|2﹣x|)(|y+2|+|y﹣1|)=9=3×3,∴﹣1≤x≤2,﹣2≤y≤1,∴x﹣2y的最小值为﹣1﹣2×1=﹣1﹣2=﹣3.故答案为:﹣3.6.已知实数x满足|x+1|+|x﹣4|=7.则x的值是﹣2或5.解:答案为:﹣2或5.7.已知|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|=4,则实数x的取值范围是2≤x≤3.x的取值范围是2≤x≤3.8.已知方程|x﹣1|+|x﹣2|+|x﹣10|+|x﹣11|=m无解,则实数m的取值范围是m<18.实数m的取值范围是m<18.9.设a,b是方程||2x﹣1|﹣x|=2的两个不相等的根,则的值为.解:∵||2x﹣1|﹣x|=2,∴|2x﹣1|﹣x=2或﹣2,∴|2x﹣1|=x+2或|2x﹣1|=x ﹣2,当2x﹣1≥0时,2x﹣1=x+2,解得x=3;当2x﹣1<0时,2x﹣1=﹣x﹣2,解得x=﹣;或当2x﹣1≥0时,2x﹣1=x﹣2,解得x=﹣1(舍去);当2x﹣1<0时,2x﹣1=﹣x+2,解得x=1(舍去);∴a=3,b=﹣,∴===×=.故答案为.10.解下列方程:(1)|3x﹣5|+4=8;(2)|4x﹣3|﹣2=3x+4;(3)|x﹣|2x+1||=3;(4)|2x﹣1|+|x﹣2|=|x+1|.解:(1)|3x﹣5|+4=8,∴|3x﹣5|=4,∴3x﹣5=4或3x﹣5=﹣4,移项化系数为1得:x=3或x=;(2)|4x﹣3|﹣2=3x+4,∴|4x﹣3|=3x+6,∴3x+6≥0即x≥﹣2,∴4x﹣3=3x+6或4x﹣3=﹣(3x+6),移项化系数为1解得:x=9或x=﹣;(3)|x﹣|2x+1||=3,∴x﹣|2x+1|=3或x﹣|2x+1|=﹣3,由x﹣|2x+1|=3知x>3,解得:x=﹣4(舍去);由x﹣|2x+1|=﹣3,移项得:|2x+1|=x+3≥0,∴x≥﹣3,2x+1=x+3或﹣(2x+1)=x+3,解得:x=2或x=;(4)当x<﹣1时,原方程可化为:1﹣2x﹣x+2=﹣x﹣1,x=2不符合题意;当﹣1≤x<时,原方程可化为:﹣2x+1﹣x+2=x+1,x=不符合题意;当≤x≤2时,原方程可化为:2x﹣1﹣x+2=x+1恒成立,说明凡是满足≤x≤2的x值都是方程的解;当x>2时,原方程可化为:2x﹣1+x﹣2=x+1,x=2不符合题意.故原方程的解为:≤x≤2.11.解下列方程:(1)|x+3|﹣|x﹣1|=x+1(2)|x﹣1|+|x﹣5|=4.解:(1)①当x≥1时,原方程可化为:x+3﹣(x﹣1)=x+1,解得:x=3;②当x<﹣3时,原方程可化为:﹣x﹣3﹣(1﹣x)=x+1,解得:x=﹣5;③当﹣3≤x<1时,原方程可化为:x+3+x﹣1=x+1,解得:x=﹣1.综上可得:方程的解为:x=3或x=﹣5或x=﹣1;(2)方程可理解为一个点到1和5两点的距离和,由此可得方程的解为:1≤x ≤5.12.解方程:|2x+3|﹣|x﹣1|=4x﹣3.解:(1)当x≤﹣时,原方程可化为:﹣3﹣2x+x﹣1=4x﹣3∴5x=﹣1,解得:x=﹣,与x≤﹣不符;(2)当x≥1时,原方程可化为:2x+3﹣x+1=4x﹣3∴3x=7.∴x=;(3)当﹣<x<1时,原方程可化为:2x+3﹣1+x=4x﹣3∴x=5与﹣<x <1不相符;综上所述,方程的解为:x=.13.当a满足什么条件时,关于x的方程|x﹣2|﹣|x﹣5|=a有一解?有无数多个解?无解?解:①x≥5时,x﹣2﹣(x﹣5)=x﹣2﹣x+5=3,当a=3时,有无数多解;当a≠3时,无论a取何值均无解;②x≤2时,2﹣x﹣(5﹣x)=2﹣x﹣5+x=﹣3,当a=﹣3时,有无数解;当a≠﹣3时,无解;③2<x<5时,x﹣2﹣(5﹣x)=x﹣2﹣5+x=2x﹣7,∴4<2x<10,∴4﹣7<2x﹣7<10﹣7即:﹣3<2x﹣7<3.所以当﹣3<a<3时,有一解;当a>3或a<﹣3时,无解.综上所述,当a=±3时,方程有无数个解,当a >3或a<﹣3时,无解;当﹣3<a<3时,有一解.14.讨论方程||x+3|﹣2|=k的解的情况.解:当k<0,原方程无解;当k=0时,原方程可化为:|x+3|﹣2=0,解得x=﹣1或x=﹣5;当0<k<2,此时原方程可化为:|x+3|=2±k,此时原方程有四解:x=﹣3±(2±k),即:x=k﹣1或x=﹣k﹣5或x=﹣k﹣1或x=k﹣5;当k=2时,原方程可化为:|x+3|=2±2,此时原方程有三解:x=1或x=﹣7或x =﹣3;当k>2时,原方程有两解:x+3=±(2±k),即:x=k﹣1或x=﹣k﹣5.故x=k﹣1或x=﹣k﹣1或x=﹣k﹣5或x=﹣5+k.15.求关于x的方程||x﹣2|﹣1|﹣a=0(0<a<1)的所有解的和.解:由原方程得||x﹣2|﹣1|=a,∴|x﹣2|﹣1=±a,∵0<a<1,∴|x﹣2|=1±a,即x﹣2=±(1±a),∴x=2±(1±a),从而x1=3+a,x2=3﹣a,x3=1+a,x4=1﹣a,∴x1+x2+x3+x4=8,即原方程所有解的和为8.。
百度尖子生第三讲 绝对值有关的问题含答案

第三讲 绝对值有关的问题考点1、掌握绝对值的几何意义,绝对值得非负性,及它的几何性质。
2、绝对值的化简。
3、绝对值是我们初中代数中的一个基本概念,是学习相反数、有理数运算及后续二次根式的基础.绝对值又是初中代数中的一个重要概念,在解代数式化简求值、解方程(组)、解不等(组)、函数中距离等问题有着广泛的应用,全面理解、掌握绝对值这一概念,应从以下方面人手:l .绝对值的性质:⎪⎩⎪⎨⎧<=>=)0_____()0_____()0_____(a a a a 2.绝对值的几何意义从数轴上看,a 表示_____________________的距离(长度,非负) ;b a -表示 .3.绝对值基本性质非负性:0≥a ;基础夯实1.、.一个正数的绝对值是.........______......;.______......数的绝对值是它的相反数;............____....的绝对值是零;绝对值最小的数..............是.______........2.、.绝对值小于.....13....5.的所有整数的和为........______........3.、.若|..a .|+..a .=.0.,则..a .是.(. )...(A)...正数.. (B)...负数.. (C)...正数或...0. (D)...负数或...0.4.、.三个数-....15..,-..5.,+..10..的和,比它们绝对值的和小............______........5.、.式子|...2.x .-.1.|+..2.取最小值时,......x .等于..______........6.、.若.3150x y z +++++=,则..x y z --= 。
.7、若|x |=|y |,则x ,y 的关系是 .8.、.(.绝对值中的整体思想.........).|.x .-.2.|=..1.,则..x .=._____.......9、(绝对值中的整体思想)已知4,5==b a ,且a b b a -=-,那么b a += .10、利用数轴分析23x x -++,可以看出,这个式子表示的是x 到2的距离与x 到3-的距离之和,它表示两条线段相加:⑴当x > 时,发现,这两条线段的和随x 的增大而越来越大;⑵当x < 时,发现,这两条线段的和随x 的减小而越来越大;⑶当 x ≤≤ 时,发现,无论x 在这个范围取何值,这两条线段的和是一个定值 ,且比⑴、⑵情况下的值都小。
Q3-第3讲--绝对值拓展(答案卷).docx

第二章有理数及其运算第三讲绝对值的拓展绝对值,不仅仅是有理数中的一个重要概念,也是初中数学中一个异常活跃且举足轻重的元素,它不但描述了有理数与数轴的密切联系,而且是有理数运算的基本工具,可以说深刻理解了绝对值概念,是学好初中数学的第一个关键。
★=绝对值知识拓展=★1、定义:一个数a的绝对值就是数轴上表示数d的点与原点的距离。
记作:|a|。
a (a > 0) a («>0)2、代数意义:|。
|彳0 (a = 0) => |Q L-a (a < 0) -a (a < 0)几何意义:从数轴上看,|a|表示数。
的点与原点的距离(即长度,非负)。
|d_4、基本性质:非负性:20(1)| db |=| a | • | 纠(3 ) \a^=\a2 \=a2(5) \a+b\<^a\-^-\b\5、数学方法:(1)数形结合思想(2)分类讨论思想(3)特殊值法1、去掉绝对值的符号:注意讨论绝对值内部整体正、0、负,尤其是绝对值内部为负时,去掉绝对值后前面要填上负号。
2、绝对值非负性的运用3、正数-负数二正数;负数-正数二负数★=考点例题指导=★总>|考点一|:绝对值的意义【例1] (1)已知\a\= 1,|Z?|=2,则a — b的值为_____________________________________________________________________ ;(2) G是任意有理数,则\-a\-a的值等于;(3) 已知\a\=2」纠=4,且|a +纠=)a| + |b|,则匕2 =a-b(4) 已知兀vyvO,设M=|x|,N=|y|,P = 士』,则M,N,P的大小关系是___________________________ O【例2】若|a|=5」创=3, ^\a-b\=b-a t求\a + h\的值。
© 变式训练(一)★=易错点归纳=★Q、数b的两点间的距离。
七年级数学上--绝对值练习及提高习题

七年级数学上 --有理数--绝对值练习一一、填空题:1、│32│=,│-32│= 。
2、+│+5│= ,+│-5│=,-│+5│=,-│-5│=。
3、│0│= ,+│-0│= ,-│0│= 。
4、绝对值是621,符号是“-”的数是 ,符号是“+”的数是 。
5、-0.02的绝对值的相反数是 ,相反数的绝对值是 。
6、绝对值小于3.1的所有非负整数为。
7、绝对值大于23小于83的整数为。
8、计算2005(2004|20052004|)-+-的结果是。
9、当x=时,式子||52x -的值为零。
10、若a ,b 互为相反数,m 的绝对值为2,则a ba b m+++=。
11、已知||||2x y +=,且,x y 为整数,则||x y +的值为。
12、若|8||5|0a b -+-=,则a b -的值是。
13、若|3|a -与|26|b -互为相反数,则2a b +的值是。
14、若||3x =,||2y =,且x y >,求x y +的值是。
15、如图,化简:2|2||2|a b +-+-=。
16、已知|(2)||3|||0x y z +-+++=,则x y z ++=。
17、如图, 则||||||||a b a b b a --++-=。
18、已知||a b a b -=-,且||2009a =,||2010b =,则a b -的值为。
19、若||5a =,2b =-,且0ab >,则a b +=。
20、若0ab <,求||||||a b ab a b ab ++的值为。
21、绝对值不大于2005的所有整数的和是,积是。
22、若2|3|(2)0m n -++=,则2m n +的值为。
23、如果0m >,0n <,||m n <,那么m ,n ,-m ,-n 的大小关系是。
24、已知1=a ,2=b ,3=c ,且c b a >>,那么c b a -+=. 25、已知5=x ,1=y ,那么=+--y x y x _________.26、非零整数m 、n 满足05=-+n m ,所有这样的整数组),(n m 共有______组. 二、选择题27.a 表示一个有理数,那么.( )A.∣a ∣是正数B.-a 是负数C.-∣a ∣是负数D.∣a ∣不是负数 28.绝对值等于它的相反数的数一定是( )A.正数B. 负C.非正数D. 非负数 29.一个数的绝对值是最小的正整数,那么这个数是( )A.-1B.1C.0D.+1或-1 30. 设m,n 是有理数,要使∣m ∣+∣n ∣=0,则m,n 的关系应该是( )A. 互为相反数B. 相等C. 符号相反D. 都为零 31、设a 为有理数,则2005||a -的值是( ) A. 正数 B. 负数 C. 非正数 D. 非负数 32、若一个数的绝对值是正数,则这个数是( )A. 不等于0的有理数B. 正数C. 任何有理数D. 非负数 33、若||5x =,||3y =,则x y +等于( )A. 8B. 8±C. 8和2D. 8±和2± 34、如果0a >,且||||a b >,那么a b -的值是( )A. 正数B. 负数C. 正数或负数D. 0 35、已知0m >,0n <,则m 与n 的差是( )A. ||||m n -B. (||||)m n --C. ||||m n +D. (||||)m n -+36、下列等式成立的是( )A .||||0a a +-= B. 0a a --= C. ||||0a a --= D. ||0a a --= 37、如果||0m n -=,则m ,n 的关系( )A. 互为相反数B. ||m n =±且0n ≥C. 相等且都不小于0D. m 是n 的绝对值 38、已知||3x =,||2y =,且0x y ⋅<,则x y +的值等于( )A. 5或-5B. 1或-1C. 5或-1D. -5或- 39、使||10a a+=成立的条件是( ) A. 0a > B. 0a < C. 1a = D. 1a =± 40、c b a 、、是非零有理数,且0=++c b a ,那么abcabc c c b b a a +++的所有可能值为( ) A .0 B . 1或1- C .2或2- D .0或2- 三、解答题:41.化简:(1)1+∣-31∣= (2)∣-3.2∣-∣+2.3∣=(3)-(-│-252│)= (4)-│-(+3.3│)=(5)-│+(-6)│ = (6)-(-|-2|)=(7)|43211-|= (8)||56||65-÷ =(9)-(|-4.2|×|+|75)= (10)|-2|-|+1|+|0|=42.(1)若|a+2|+|b-1|=0,则a= b=;(2)若|a|=3,|b|=2,且a+b<0,则a-b=______________.七年级数学上 --有理数--绝对值练习一一、选择题1、 如果m>0, n<0, m<|n|,那么m ,n ,-m , -n 的大小关系( )A.-n>m>-m>nB.m>n>-m>-nC.-n>m>n>-mD.n>m>-n>-m 2、绝对值等于其相反数的数一定是( ) A .负数 B .正数 C .负数或零 D .正数或零3、下列说法中正确的是( ) A .一定是负数B .只有两个数相等时它们的绝对值才相等C .若则与互为相反数 D .若一个数小于它的绝对值,则这个数是负数4、给出下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.其中正确的有〖 〗A .0个B .1个C .2个D .3个5、如果,则的取值范围是〖 〗 A .>O B .≥O C .≤O D .<O6、绝对值不大于11.1的整数有〖 〗 A .11个 B .12个C .22个D .23个7、绝对值最小的有理数的倒数是( )A 、1 B 、-1 C 、0 D 、不存在 8、在有理数中,绝对值等于它本身的数有( )A 、1个B 、2个C 、3个D 、无数多个 9、下列数中,互为相反数的是( ) A 、│-32│和-32 B 、│-23│和-32 C 、│-32│和23 D 、│-32│和32 10、下列说法错误的是( )A 、一个正数的绝对值一定是正数B 、一个负数的绝对值一定是正数C 、任何数的绝对值都不是负数D 、任何数的绝对值 一定是正数11、│a │= -a,a 一定是( )A 、正数 B 、负数 C 、非正数 D 、非负数12、下列说法正确的是( )A 、两个有理数不相等,那么这两个数的绝对值也一定不相等B 、任何一个数的相反数与这个数一定不相等C 、两个有理数的绝对值相等,那么这两个有理数不相等D、两个数的绝对值相等,且符号相反,那么这两个数是互为相反数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三讲绝对值
1、绝对值的几何意义:在数轴上表示一个数的点离开原点的距离叫这个数的绝对值.
2、绝对值运算法则:一个正实数的绝对值是它本身;一个负实数的
绝对值是它的相反数;零的绝对值是零.即:
3、绝对值性质:任何一个实数的绝对值是非负数.
二典型例题分析:
例1、a,b为实数,下列各式对吗?若不对,应附加什么条件?请写在题后的横线上。
(1)|a+b|=|a|+|b|;;
(2)|ab|=|a||b|;;
(3)|a-b|=|b-a|;;
(4)若|a|=b,则a=b;;
(5)若|a|<|b|,则a<b;;
(6)若a>b,则|a|>|b|,。
例2、设有理数a,b,c在数轴上的对应点如图1-1所示,化简|b-a|+|a+c|+|c-b|.
例3、a+b<0,化简|a+b-1|-|3-a-b|
例4、若|x|=3,|y|=2,且|x-y|=y-x,求x+y的值.
一).填空题:
1.a >0时,|2a|=________;(2)当a >1时,|a-1|=________;
2. 已知130a b ++-=,则__________a b
3. 如果a>0,b<0,b a <,则a ,b ,—a ,—b 这4个数从小到大的顺序是__________(用大于号连接起来)
4. 若00xy z ><,,那么xyz =______0.
5.上山的速度为a 千米/时,下山的速度为b 千米/时,则此人上山下山的整个路程的平均速度是__________千米/时
(二).选择题:
6.值大于3且小于5的所有整数的和是( )A. 7 B. -7 C. 0 D. 5
7.知字母a 、b 表示有理数,如果a +b =0,则下列说法正确的是( )
A . a 、b 中一定有一个是负数 B. a 、b 都为0
C. a 与b 不可能相等
D. a 与b 的绝对值相等
8.下列说法中不正确的是( )
A.0既不是正数,也不是负数 B .0不是自然数 C .0的相反数是零 D .0的绝对值是0
9.列说法中正确的是( )
A 、a -是正数
B 、—a 是负数
C 、a -是负数
D 、a -不是负数 10.x =3,y =2,且x>y ,则x+y 的值为( )
A 、5
B 、1
C 、5或1
D 、—5或—1
11.a<0时,化简a a
等于( )A 、1 B 、—1 C 、0 D 、1±
12.若ab ab =,则必有( )A 、a>0,b<0 B 、a<0,b<0 C 、ab>0 D 、0≥ab
13.已知:x =3,y =2,且x>y ,则x+y 的值为( )
A 、5
B 、1
C 、5或1
D 、—5或—1
(三).解答题:
14.a +b <0,化简|a+b-1|-|3-a-b |. 15..若y x -+3-y =0 ,求2x+y 的值.
16. 当b 为何值时,5-12-b 有最大值,最大值是多少?
17.已知a 是最小的正整数,b 、c 是有理数,并且有|2+b |+(3a +2c )2=0. 求式子4
422++-+c a c ab 的值.
18. 若a ,b ,c 为整数,且|a-b |19+|c-a |99=1,试计算|c-a |+|a-b |+|b-c |的值.
提高练习题
例1 已知x <-3,化简:|3+|2-|1+x |||.
例2 若|x |=3,|y |=2,且|x-y |=y-x ,求x+y 的值.
例3 化简:|3x+1|+|2x-1|.
练习1.已知y=|2x+6|+|x-1|-4|x+1|,求y的最大值.
练习2.设a<b<c<d,求|x-a|+|x-b|+|x-c|+|x-d|的最小值.
练习3.若2x+|4-5x|+|1-3x|+4的值恒为常数,求x该满足的条件及此常数的值.三、巩固练习
1.x是什么实数时,下列等式成立:
(1)|(x-2)+(x-4)|=|x-2|+|x-4|;
(2)|(7x+6)(3x-5)|=(7x+6)(3x-5).
2.化简下列各式:(2)|x+5|+|x-7|+|x+10|.
3.已知y=|x+3|+|x-2|,求y的最大值.。