(完整版)正态分布习题与详解(非常有用-必考点)

合集下载

正态分布高中练习题及讲解

正态分布高中练习题及讲解

正态分布高中练习题及讲解1. 题目一:某工厂生产的零件长度服从正态分布N(50, 16),求长度在48到52之间的零件所占的比例。

2. 题目二:假设某大学新生的数学成绩服从正态分布N(70, 25),求数学成绩超过80分的学生所占的比例。

3. 题目三:某市居民的身高数据服从正态分布N(170, 10),如果随机选择一名居民,求其身高超过180cm的概率。

4. 题目四:某公司员工的工作时间服从正态分布N(8, 2),计算工作时间超过9小时的员工所占的比例。

5. 题目五:某品牌手机的电池寿命服从正态分布N(300, 50),求电池寿命超过350小时的概率。

讲解:正态分布是统计学中最常见的分布之一,其图形呈钟形,对称于均值。

正态分布的数学表达式为N(μ, σ²),其中μ是均值,σ²是方差。

正态分布的特点是:- 均值μ决定了分布的中心位置。

- 方差σ²决定了分布的宽度,方差越大,分布越宽,反之亦然。

- 68%的数据位于距均值一个标准差(σ)的范围内。

- 95%的数据位于距均值两个标准差的范围内。

- 99.7%的数据位于距均值三个标准差的范围内。

要解决上述题目,我们可以使用正态分布的性质和Z分数来计算概率。

解题步骤:1. 将数据转换为Z分数,Z = (X - μ) / σ。

2. 查找Z分数对应的概率,通常可以使用标准正态分布表或计算器。

例如,对于题目一,我们首先计算48和52对应的Z分数:- Z1 = (48 - 50) / 4 = -0.5- Z2 = (52 - 50) / 4 = 0.5然后,查找Z分数表或使用计算器得到Z1和Z2对应的概率,最后计算两者之差。

对于题目二至题目五,解题步骤类似,只需将题目中的数据代入相应的公式中计算即可。

通过这些练习,学生可以更好地理解正态分布的概念,掌握如何使用Z 分数来解决实际问题。

同时,这些练习也有助于提高学生的计算能力和逻辑思维能力。

正态分布练习题(含部分答案)

正态分布练习题(含部分答案)

正态分布练习题1正态分布1.1正态函数及曲线特点1.(对称性):已知随机变量ξN (2,32)。

若P (ξ>C +1)=P (ξ<C −1),则C =3.2.(单峰与最值)若正态分布曲线是偶函数,且最大值为14√2π,则总体的均值和方差分别为0和16。

1.2三个重要区间的概率应用(特殊区间段的计算公式)P 1=P (µ−σ<X ≤µ+σ)=0.6826;P 2=P (µ−2σ<X ≤µ+2σ)=0.9544;P 3=P (µ−3σ<X ≤µ+3σ)=0.9974.类型1:(µ,µ+nσ]型,(n =1,2,3):P (µ<X ≤µ+nσ)=12P n ,(n =1,2,3);如:P (µ<X ≤µ+2σ)=12P 2=12×0.9544=0.4772.类似也可求解(µ−nσ,µ]型,(n =1,2,3).类型2:(µ±nσ,+∞)型,(n =0,1,2,3):P (µ±nσ<X <+∞)=12×[1∓P n ],(n =0,1,2,3);如:P (µ−2σ<X <+∞)=12×[1+P 2]=12×[1+0.9544]=0.9772.类似也可求解(−∞,µ±nσ)型,(n =0,1,2,3).类型3:(µ+kσ,µ+tσ)型,−3≤k <t ≤3:case 1:kt ≤0时P (µ+kσ<X ≤µ+tσ)=12×[P t +P |k |]case 2:kt ≥0时P (µ+kσ<X ≤µ+tσ)=12×[P M +P m ],M =max {|k |,|t |},m =min {|k |,|t |}.总结,以上各类型需要与正态曲线的图形有机结合在一起,把概率问题转化为对应区间上图形的面积问题.1练习:1.若X N(µ,1),求P(µ−3<X≤µ−2)=0.0215.2.若X N(5,1),求P(6<X≤7)=0.1359.3.若X N(1,1),求P(3<X≤4)=0.0215.4.若X N(0,1),求P(−3<X<−∞)=0.9987.1.3应用问题1.某糖厂用自动打包机打包,包质量(单位:kg)目标以正态分布X N(100,1.22).(1)求质量在(98.8,101.2]内的糖包后的概率;(2)若一公司从该糖厂进货1500包,试估计在(98.8,101.2]内的糖包的数量。

正态分布与经典习题集和答案解析汇总

正态分布与经典习题集和答案解析汇总

4321-1-4-22421专题:正态分布例:(1)已知随机变量X 服从二项分布,且E (X )=2.4,V (X )=1.44,则二项分布的参数n ,p 的值为A .n=4,p=0.6B .n=6,p=0.4C .n=8,p=0.3D .n=24,p=0.1 答案:B 。

解析:()4.2==np XE ,()44.1)1(=-=p np X V 。

(2)正态曲线下、横轴上,从均数到∞+的面积为( )。

A .95%B .50%C .97.5%D .不能确定(与标准差的大小有关) 答案:B 。

解析:由正态曲线的特点知。

(3)某班有48名同学,一次考试后的数学成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数是 ( )A 32B 16C 8D 20答案:B 。

解析:数学成绩是X —N(80,102), 80809080(8090)(01)0.3413,480.3413161010P X P Z P Z --⎛⎫≤≤=≤≤=≤≤≈⨯≈ ⎪⎝⎭。

(4)从1,2,3,4,5这五个数中任取两个数,这两个数之积的数学期望为___________ 。

答案:8.5。

解析:设两数之积为X ,X 2 3 4 5 6 8 10 12 15 20 P0.10.10.10.10.10.10.10.10.10.1∴E(X)=8.5.(5)如图,两个正态分布曲线图:1为)(1,1x σμϕ,2为)(22x σμϕ,则1μ 2μ,1σ 2σ(填大于,小于)答案:<,>。

解析:由正态密度曲线图象的特征知。

【课内练习】1.标准正态分布的均数与标准差分别为( )。

A .0与1 B .1与0 C .0与0 D .1与1 答案:A 。

解析:由标准正态分布的定义知。

2.正态分布有两个参数μ与σ,( )相应的正态曲线的形状越扁平。

A .μ越大 B .μ越小 C .σ越大 D .σ越小答案: C 。

解析:由正态密度曲线图象的特征知。

正态分布的例题讲解

正态分布的例题讲解

正态分布的例题讲解假设我们有一个数据集,包含了一组学生的数学考试成绩。

我们想要分析这些成绩的分布情况,以了解大多数学生的表现。

正态分布是一种常见的概率分布,也被称为高斯分布。

在正态分布中,大部分数据集中在平均值附近,呈现钟形曲线状。

现在,让我们来看看如何使用正态分布来分析这些数学考试成绩。

首先,我们可以计算出这些成绩的平均值和标准差。

平均值代表了整个数据集的中心位置,而标准差则衡量了数据的离散程度。

假设我们的数据集如下(仅列出部分数据):85, 90, 92, 78, 80, 88, 91, 89, 87, 75, 82, 84, 86, 78, 91, 92通过计算,我们可以得到平均值μ≈85.9和标准差σ≈5.2。

这意味着大部分成绩集中在85.9附近,并且成绩的变化相对较小。

接下来,我们可以绘制正态分布曲线图,以更直观地了解成绩的分布情况。

对于这个例子,我们绘制的正态分布曲线如下图所示:(图中是一个钟形曲线,中间为最高点,左右两边逐渐下降,呈对称形状)该曲线呈现出钟形曲线状,中间最高点对应着成绩最多的学生群体。

左右两端的较低部分则表示了相对较少的学生获得极高或极低的成绩。

我们还可以使用正态分布的性质来进行一些预测。

例如,根据正态分布的规律,大约68%的学生的成绩将在μ±1σ(即80.7到91.1之间)区间内。

通过正态分布的分析,我们能够更加全面地了解学生的成绩分布情况,并且可以进行一些有关预测或决策的操作。

总结起来,正态分布是一种常见的概率分布,可以用于解释大多数现实世界中的分布情况。

通过计算平均值和标准差,我们可以了解数据集的中心位置和离散程度。

绘制正态分布曲线图可以更直观地呈现数据的分布情况。

利用正态分布的性质,我们可以进行一些预测和决策。

正态分布习题与详解(非常有用,必考点)

正态分布习题与详解(非常有用,必考点)

1. 若x ~N (0,1),求(l)P (-2.32<x <1.2);(2)P (x >2). 解:(1)P (-2.32<x <1.2)=Φ(1.2)-Φ(-2.32)=Φ(1.2)-[1-Φ(2.32)]=0.8849-(1-0.9898)=0.8747.(2)P (x >2)=1-P (x <2)=1-Φ(2)=l-0.9772=0.0228. 2利用标准正态分布表,求标准正态总体(1)在N(1,4)下,求)3(F (2)在N (μ,σ2)下,求F(μ-σ,μ+σ); 解:(1))3(F =)213(-Φ=Φ(1)=0.8413 (2)F(μ+σ)=)(σμσμ-+Φ=Φ(1)=0.8413F(μ-σ)=)(σμσμ--Φ=Φ(-1)=1-Φ(1)=1-0.8413=0.1587 F(μ-σ,μ+σ)=F(μ+σ)-F(μ-σ)=0.8413-0.1587=0.6826 3某正态总体函数的概率密度函数是偶函数,而且该函数的最大值为π21,求总体落入区间(-1.2,0.2)之间的概率 Φ(0.2)=0.5793, Φ(1.2)=0.8848]解:正态分布的概率密度函数是),(,21)(222)(+∞-∞∈=--x ex f x σμσπ,它是偶函数,说明μ=0,)(x f 的最大值为)(μf =σπ21,所以σ=1,这个正态分布就是标准正态分布 ( 1.20.2)(0.2)( 1.2)(0.2)[1(1.2)](0.2)(1.2)1P x -<<=Φ-Φ-=Φ--Φ=Φ+Φ-0.57930.884810.4642=+-=4.某县农民年平均收入服从μ=500元,σ=200元的正态分布 1)求此县农民年平均收入在500520元间人数的百分比;(2)如果要使此县农民年平均收入在(a a +-μμ,)内的概率不少于0.95,则a 至少有多大?[Φ(0.1)=0.5398, Φ(1.96)=0.975] 解:设ξ表示此县农民年平均收入,则)200,500(~2N ξ 520500500500(500520)()()(0.1)(0)0.53980.50.0398200200P ξ--<<=Φ-Φ=Φ-Φ=-=(2)∵()()()2()10.95200200200a a aP a a μξμ-<<+=Φ-Φ-=Φ-≥,()0.975200a ∴Φ≥ 查表知: 1.96392200aa ≥⇒≥1设随机变量(3,1),若,,则P(2<X<4)= ( A)( B)l —pC .l-2pD .【答案】 C 因为,所以P(2<X<4)=,选 C .2.(2010·新课标全国理)某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .400[答案] B[解析] 记“不发芽的种子数为ξ”,则ξ~B (1 000,0.1),所以E (ξ)=1 000×0.1=100,而X =2ξ,故E (X )=E (2ξ)=2E (ξ)=200,故选B.3.设随机变量ξ的分布列如下:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=( )A.49 B .-19 C.23 D.59 [答案] D[解析] 由条件a ,b ,c 成等差数列知,2b =a +c ,由分布列的性质知a +b +c =1,又E (ξ)=-a +c =13,解得a =16,b =13,c =12,∴D (ξ)=16×⎝⎛⎭⎫-1-132+13⎝⎛⎭⎫0-132+12⎝⎛⎭⎫1-132=59. 4.(2010·上海松江区模考)设口袋中有黑球、白球共7个,从中任取2个球,已知取到白球个数的数学期望值为67,则口袋中白球的个数为( )A .3 B .4 C .5 D .2[答案] A[解析] 设白球x 个,则黑球7-x 个,取出的2个球中所含白球个数为ξ,则ξ取值0,1,2, P (ξ=0)=C 7-x 2C 72=(7-x )(6-x )42,P (ξ=1)=x ·(7-x )C 72=x (7-x )21,P (ξ=2)=C x 2C 72=x (x -1)42,∴0×(7-x )(6-x )42+1×x (7-x )21+2×x (x -1)42=67,∴x =3.5.小明每次射击的命中率都为p ,他连续射击n 次,各次是否命中相互独立,已知命中次数ξ的期望值为4,方差为2,则p (ξ>1)=( )A.255256B.9256C.247256D.764 [答案] C[解析] 由条件知ξ~B (n ,P ),∵⎩⎪⎨⎪⎧ E (ξ)=4,D (ξ)=2,∴⎩⎪⎨⎪⎧np =4np (1-p )=2, 解之得,p =12,n =8,∴P (ξ=0)=C 80×⎝⎛⎭⎫120×⎝⎛⎭⎫128=⎝⎛⎭⎫128, P (ξ=1)=C 81×⎝⎛⎭⎫121×⎝⎛⎭⎫127=⎝⎛⎭⎫125, ∴P (ξ>1)=1-P (ξ=0)-P (ξ=1) =1-⎝⎛⎭⎫128-⎝⎛⎭⎫125=247256.5已知三个正态分布密度函数φi (x )=12πσie -(x -μi )22σi 2(x ∈R ,i =1,2,3)的图象如图所示,则( )A .μ1<μ2=μ3,σ1=σ2>σ3B .μ1>μ2=μ3,σ1=σ2<σ3C .μ1=μ2<μ3,σ1<σ2=σ3D .μ1<μ2=μ3,σ1=σ2<σ3 [答案] D[解析] 正态分布密度函数φ2(x )和φ3(x )的图象都是关于同一条直线对称,所以其平均数相同,故μ2=μ3,又φ2(x )的对称轴的横坐标值比φ1(x )的对称轴的横坐标值大,故有μ1<μ2=μ3.又σ越大,曲线越“矮胖”,σ越小,曲线越“瘦高”,由图象可知,正态分布密度函数φ1(x )和φ2(x )的图象一样“瘦高”,φ3(x )明显“矮胖”,从而可知σ1=σ2<σ3.6①命题“”的否定是:“”;②若,则的最大值为4;③定义在R 上的奇函数满足,则的值为0;④已知随机变量服从正态分布,则;其中真命题的序号是________(请把所有真命题的序号都填上).【答案】①③④ ①命题“”的否定是:“”;所以①正确.②若,则,即.所以,即,解得,则的最小值为4;所以②错误.③定义在R上的奇函数满足,则,且,即函数的周期是4.所以;所以③正确.④已知随机变量服从正态分布,则,所以;所以④正确,所以真命题的序号是①③④.7、在区间上任取两数m和n,则关于x的方程有两不相等实根的概率为___________.【答案】由题意知要使方程有两不相等实根,则,即.作出对应的可行域,如图直线,,当时,,所以,所以方程有两不相等实根的概率为.8、下列命题:` (1);(2)不等式恒成立,则;(3)随机变量X服从正态分布N(1,2),则(4)已知则.其中正确命题的序号为____________.【答案】(2)(3) (1),所以(1)错误.(2)不等式的最小值为4,所以要使不等式成立,则,所以(2)正确.(3)正确.(4),所以(4)错误,所以正确的为(2)(3).2已知某篮球运动员2012年度参加了40场比赛,现从中抽取5场,用茎叶图统计该运动员5场中的得分如图所示,则该样本的方差为()A.26 B.25 C.23 D.18【答案】D样本的平均数为23,所以样本方差为,选D.3有一个容量为的样本,其频率分布直方图如图所示,据图估计,样本数据在内的频数为( )A .B .C .D .【答案】C 样本数据在之外的频率为,所以样本数据在内的频率为,所以样本数据在的频数为,选 C .4.(2013年临沂市高三教学质量检测考试理科数学)如图所示,在边长为l 的正方形OABC 中任取一点P,则点P 恰好取自阴影部分的概率为 ( )A .B .C .D .【答案】 【答案】B 根据积分的应用可知所求阴影部分的面积为,所以由几何概型公式可得点P 恰好取自阴影部分的概率为,选B .5从集合{}1,2,3,4,5中随机选取3个不同的数,这个数可以构成等差数列的概率为______.【答案】25从集合{}1,2,3,4,5中随机选取3个不同的数有3510C =种.则3个数能构成等差数列的有,1,2,3;2,3,4;3,4,5;1,3,5;有4种,所以这个数可以构成等差数列的概率为42105=.。

高二数学正态分布试题答案及解析

高二数学正态分布试题答案及解析

高二数学正态分布试题答案及解析1.随机变量服从正态分布,已知,则=()A.0.1B.0.2C.0.4D.0.6【答案】D【解析】随机变量服从正态分布,图象关于对称,,所以.【考点】正态分布的应用.2.如果随机变量,且,则=.【答案】0.1【解析】所以,那么,故应填0.1.【考点】正态分布.3.设X~N(0,1).①P(-ε<X<0)=P(0<X<ε);②P(X<0)=0.5;③已知P(-1<X<1)=0.6826,则P(X<-1)=0.1587;④已知P(-2<X<2)=0.9544,则P(X<2)=0.9772;⑤已知P(-3<X<3)=0.9974,则P(X<3)=0.9987.其中正确的有________(只填序号).【答案】①②③④⑤【解析】正态曲线关于y轴对称,故①②正确.对于③,P(X<-1)=(1-P(|X|<1)),=(1-0.6826)=0.1587,故③正确;对于④,P(X<2)=(1-P(|X|<2))+P(|X|<2)=(1-0.9544)+0.9544=0.9772;故④正确,同理⑤正确.4.若一批白炽灯共有10000只,其光通量X服从正态分布,其正态分布密度函数是f(x)=,x∈(-∞,+∞),试求光通量在下列范围内的灯泡的个数.(1)(203,215);(2)(191,227).【答案】(1) 6826 (2) 9974【解析】解:由于X的正态分布密度函数为f(x)=,x∈(-∞,+∞),∴μ=209,σ=6.∴μ-σ=209-6=203,μ+σ=209+6=215.μ-3σ=209-6×3=209-18=191,μ+3σ=209+6×3=209+18=227.因此光通量X的取值在区间(203,215),(191,227)内的概率应分别是0.6826和0.9974.(1)于是光通量X在(203,215)范围内的灯泡个数大约是10000×0.6826=6826.(2)光通量在(191,227)范围内的灯泡个数大约是10000×0.9974=9974.5.已知随机变量服从正态分布,且,则= .【答案】0.3【解析】随机变量ξ服从正态分布,∴曲线关于x=2对称,∴P(ξ<0)=P(ξ>4)=1-0.8=0.2,∴=0.5-0.2=0.3,故答案为0.3.【考点】正态分布点评:简单题,随机变量ξ服从正态分布,得到曲线关于x=2对称,根据曲线的对称性得到小于0的和大于4的概率是相等的,从而做出大于2的数据的概率,根据概率的性质得到结果.6.设随机变量服从正态分布,,则【答案】【解析】.7.设随机变量服从二项分布,且;【答案】3.2【解析】解:因为随机变量服从二项分布,则8.在某项测量中,测量结果服从正态分布,若在内取值的概率为0.4,则在内取值的概率为;【答案】0.8【解析】由题意知在内取值的概率为0.4,则在内取值的概率也为0.4,所以在内取值的概率为0.8.9.设随机变量服从正态分布,则。

第10课时正态分布习题和答案详解

第10课时正态分布习题和答案详解

1.下列函数是正态密度函数的是(μ、σ(σ>0)都是实数)( ) A .f(x)=12πσe(x -μ)22σ2B .f(x)=2π2πe -x 22C .f(x)=12 2πe -x -σ4D .f(x)=-12πe x22答案 B解析 A 中的函数值不是随着|x|的增大而无限接近于零.而C 中的函数无对称轴,D 中的函数图像在x 轴下方,所以选B.2.(2019·甘肃河西五市联考)设随机变量ξ服从正态分布N(0,1),若P(ξ>2)=p ,即P(-2<ξ<0)=( ) A.12+p B .1-p C.12-p D .1-2p答案 C解析 由对称性知P(ξ≤-2)=p ,所以P(-2<ξ<0)=1-2p 2=12-p.3.(2019·海南海口期末)已知随机变量X 服从正态分布N(a ,4),且P(X>1)=0.5,P(X>2)=0.3,则P(X<0)=( ) A .0.2 B .0.3 C .0.7 D .0.8 答案 B解析 随机变量X 服从正态分布N(a ,4),所以曲线关于x =a 对称,且P(X>a)=0.5.由P(X>1)=0.5,可知a =1,所以P(X<0)=P(X>2)=0.3,故选B.4.(2019·山东济南期末)在某项测量中,测量结果ξ服从正态分布N(0,σ2),若ξ在(-∞,-1)内取值的概率为0.1,则在(0,1)内取值的概率为( ) A .0.8 B .0.4 C .0.2 D .0.1 答案 B解析 ∵ξ服从正态分布N(0,σ2),∴曲线的对称轴是直线x =0.∵P(ξ<-1)=0.1,∴P (ξ>1)=0.1,∴ξ在(0,1)内取值的概率为0.5-0.1=0.4,故选B.5.(2019·福建永春一中、培元中学、季延中学、石光中学第一次联考)某校在高三第一次模拟考试中约有1 000人参加考试,其数学考试成绩X 近似服从正态分布N(100,a 2)(a>0),试卷满分150分,统计结果显示数学考试成绩不及格(低于90分)的人数占总人数的110,则此次数学考试成绩在100分到110分之间的人数约为( )A .400B .500C .600D .800答案 A解析 由题意得,P(X ≤90)=P(X ≥110)=110,所以P(90≤X ≤110)=1-2×110=45,所以P(100≤X ≤110)=25,所以此次数学考试成绩在100分到110分之间的人数约为1 000×25=400.6.(2019·南昌调研)某单位1 000名青年职员的体重x(单位:kg)服从正态分布N(μ,22),且正态分布的密度曲线如图所示,若体重在58.5~62.5 kg 属于正常,则这1 000名青年职员中体重属于正常的人数约是( )A .683B .841C .341D .667答案 A解析 ∵P(58.5<X<62.5)=P(μ-σ<X<μ+σ)≈0.683,∴体重正常的人数约为1 000×0.683=683人.7.(2019·河南安阳专项训练)已知某次数学考试的成绩服从正态分布N(116,64),则成绩在140分以上的考生所占的百分比为( ) A .0.3% B .0.23% C .1.5% D .0.15% 答案 D解析 依题意,得μ=116,σ=8,所以μ-3σ=92,μ+3σ=140.而服从正态分布的随机变量在(μ-3σ,μ+3σ)内取值的概率约为0.997,所以成绩在区间(92,140)内的考生所占的百分比约为99.7%.从而成绩在140分以上的考生所占的百分比为1-99.7%2=0.15%.故选D.8.如果随机变量X ~N(μ,σ2),且E(X)=3,D(X)=1,则P(0<X<1)等于( ) A .0.210 B .0.003 C .0.681 D .0.021 5 答案 D解析 X ~N(3,12),因为0<X<1,所以P(0<X<1)=0.997 4-0.954 42=0.021 5.9.(2019·皖南十校联考)在某市2017年1月份的高三质量检测考试中,理科学生的数学成绩服从正态分布N(98,100).已知参加本次考试的全市理科学生约9 450人.某学生在这次考试中的数学成绩是108分,那么他的数学成绩大约排在全市第多少名?( ) A .1 500 B .1 700 C .4 500 D .8 000答案 A解析 因为学生的数学成绩X ~N(98,100),所以P(X ≥108)=12[1-P(88<X<108)]=12[1-P(μ-σ<X<μ+σ)]=12(1-0.682 6)=0.158 7,故该学生的数学成绩大约排在全市第0.158 7×9450≈1 500名,故选A.10.吉林大学的某系的大一(2)班共有55人,其中男生22人,女生33人,现用分层抽样的方法抽取一个容量为5的样本,女生抽取a 人.若随机变量ξ服从正态分布N(a ,σ2),且P(ξ<2)=0.3,则P(3<ξ<4)的值为( ) A .0.2 B .0.3 C .0.4 D .0.6 答案 A解析 用分层抽样,女生应抽取人数为33×555=3,所以a =3.所以ξ服从正态分布N(3,σ2),该正态曲线关于直线x =3对称. 即P(ξ<2)=0.3,所以P(ξ>4)=0.3.方法一:所以P(3<ξ<4)=12P (2<ξ<4)=12(1-2×0.3)=0.2.故选A.方法二:所以P(3<ξ<4)=P(ξ>3)-P(ξ>4)=0.5-0.3=0.2.故选A.11.(2018·吉林一中)若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=0.682 7,P (μ-2σ<ξ<μ+2σ)=0.954 5.设ξ~N(1,σ2),且P(ξ≥3)=0.158 7,则σ=________. 答案 2解析 ∵P(μ-σ<ξ<μ+σ)=0.682 7,∴P (ξ≥μ+σ)=12×(1-0.682 7)=0.158 7,∵ξ~N(1,σ2),P (ξ≥1+σ)=0.158 7=P(ξ≥3),∴1+σ=3,即σ=2.12.如图所示,随机变量ξ服从正态分布N(1,σ2),已知P(ξ<0)=0.3,则P(ξ<2)=________. 答案 0.7解析 由题意可知,正态分布的图像关于直线x =1对称,所以P(ξ<2)=P(ξ<0)+P(0<ξ<1)+P(1<ξ<2),又P (0<ξ<1)=P(1<ξ<2)=0.2,所以P (ξ<2)=0.7.13.(2019·广东江门模拟)已知随机变量ξ~N(1,4),且P(ξ<3)=0.84,则P(-1<ξ<1)=________. 答案 0.34解析 P(-1<ξ<1)=P(1<ξ<3)=P(ξ<3)-12=0.84-0.5=0.34.14.(2019·云南高三统考)某校1 000名高三学生参加了一次数学考试,这次考试考生的分数服从正态分布N(90,σ2).若分数在(70,110]内的概率为0.7,估计这次考试分数不超过70的人数为________. 答案 150解析 记考试成绩为ξ,则考试成绩的正态曲线关于直线ξ=90对称.因为P(70<ξ≤110)=0.7,所以P(ξ≤70)=P(ξ>110)=12×(1-0.7)=0.15,所以这次考试分数不超过70的人数为1 000×0.15=150.15.(2019·武汉四月调研)某市高中某学科竞赛中,某区4 000名考生的竞赛成绩的频率分布直方图如图所示.(1)求这4 000名考生的平均成绩x -(同一组中数据用该组区间中点值作代表);(2)认为考生竞赛成绩z 服从正态分布N(μ,σ2),其中μ,σ2分别取考生的平均成绩x -和考生成绩的方差s 2,那么该区4 000名考生成绩超过84.81分(含84.81分)的人数大约为多少? (3)如果用该区参赛考生成绩的情况来估计全市参赛考生成绩的情况,现从全市参赛考生中随机抽取4名考生,记成绩不超过84.81分的考生人数为ξ,求P(ξ≤3).(精确到0.001) 附:①s 2=204.75,204.75=14.31;②若z ~N(μ,σ2),则P(μ-σ<z<μ+σ)=0.682 6,P (μ-2σ<z<μ+2σ)=0.954 4; ③0.841 34≈0.501.答案 (1)70.5 (2)634 (3)0.499 解析 (1)由题意知:中间值 45 55 65 75 85 95 概率0.10.150.20.30.150.1∴x -=45×0.1+55×0.15+65×0.2+75×0.3+85×0.15+95×0.1=70.5(分), ∴这4 000名考生的平均成绩x -为70.5分.(2)由题知z 服从正态分布N(μ,σ2),其中μ=x -=70.5,σ2=204.75,σ=14.31, ∴z 服从正态分布N(μ,σ2),即N(70.5,14.312). 而P(μ-σ<x<μ+σ)=P(56.19<z<84.81)=0.682 6,∴P(z ≥84.81)=1-0.682 62=0.158 7.∴竞赛成绩超过84.81分的人数大约为0.158 7×4 000=634.8≈634. (3)全市参赛考生成绩不超过84.81分的概率为1-0.158 7=0.841 3. 而ξ~B(4,0.841 3),∴P (ξ≤3)=1-P(ξ=4)=1-C 44×0.841 34≈1-0.501=0.499.16.(2019·广东汕头期末)为评估设备M 生产某种零件的性能,从设备M 生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为X ,并根据以下不等式进行评判(P 表示相应事件的概率): ①P (μ-σ<X ≤μ+σ)≥0.682 6; ②P (μ-2σ<X ≤μ+2σ)≥0.954 4; ③P (μ-3σ<X ≤μ+3σ)≥0.997 4.评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁,试判断设备M 的性能等级. (2)将直径小于等于μ-2σ或直径大于μ+2σ的零件认为是次品.①从设备M 的生产流水线上随意抽取2件零件,计算其中次品个数Y 的数学期望E(Y); ②从样本中随意抽取2件零件,计算其中次品个数Z 的数学期望E(Z). 答案 (1)丙级 (2)①325 ②325解析 (1)依题意,μ-σ=62.8,μ+σ=67.2,μ-2σ=60.6,μ+2σ=69.4,μ-3σ=58.4,μ+3σ=71.6,∴由题表可知P(μ-σ<X ≤μ+σ)=80100=0.80>0.682 6,P (μ-2σ<X ≤μ+2σ)=94100=0.94<0.954 4,P (μ-3σ<X ≤μ+3σ)=98100=0.98<0.997 4,∴该设备M 的性能等级为丙.(2)由题表知直径小于或等于μ-2σ的零件有2件,大于μ+2σ的零件有4件,共计6件. ①从设备M 的生产流水线上任取一件,取到次品的频率为6100=350,依题意Y ~B(2,350),故E(Y)=2×350=325.②从100件样品中任意抽取2件,次品数Z 的所有可能取值为0,1,2.P(Z =0)=C 60C 942C 1002=1 4571 650,P(Z =1)=C 61C 941C 1002=1881 650,P(Z =2)=C 62C 940C 1002=51 650,∴E(Z)=0×1 4571 650+1×1881 650+2×51 650=1981 650=325.。

高二数学正态分布试题答案及解析

高二数学正态分布试题答案及解析

高二数学正态分布试题答案及解析1.设随机变量X服从正态分布N(3,4),若P(X<2a+3)=P(X>a﹣2),则a的值为().A.B.3C.5D.【答案】A.【解析】因为随机变量X服从正态分布N(3,4),且P(X<2a+3)=P(X>a﹣2),所以与关于对称,即,所以,即.【考点】正态分布.2.设随机变量X服从正态分布N(0,1),P(X>1)=p,则P(-1<X<0)等于A.p B.1-p C.1-2p D.-p【答案】D【解析】由于随机变量X服从正态分布N(0,1),图象关于对称,,因此.【考点】正态分布的应用.3.设随机变量服从正态分布,若,则( ).A.3B.C.5D.【答案】D【解析】由题意,得与关于对称,则,所以.【考点】正态分布的对称性.4.已知随机变量X服从正态分布N(3.1),且=0.6826,则p(X>4)=()A.0.1588B.0.1587C.0.1586D.0.1585【答案】B【解析】正态分布曲线关于对称,因为,故选B.【考点】正态分布5.均值为2,方差为2π的正态分布的概率密度函数为________.【答案】f(x)=【解析】在密度函数f(x)=中,μ=2,σ=,故f(x)=.6.已知X~N(0,1),则P(-1<X<2)=________.【答案】0.818 5【解析】∵P(-1<X<1)=0.682 6,P(-2<X<2)=0.954 4,∴P(1<X<2)= (0.954 4-0.682 6)=0.135 9.∴P(-1<X<2)=0.682 6+0.135 9=0.818 5.7.设随机变量X服从正态分布N(2,9)若P(X>c+1)=P(X<c-1),则c等于________.【答案】2【解析】∵μ=2,由正态分布的定义知其图象关于直线x=2对称,于是=2,∴c=2.8.已知X~N(0,σ2)且P(-2≤X≤0)=0.4,则P(X>2)=________.【答案】0.1【解析】∵P(0≤X≤2)=P(-2≤X≤0)=0.4,∴P(X>2)=(1-2×0.4)=0.1.9.已知正态总体落在区间(0.2,+∞)内的概率是0.5,那么相应的正态曲线f(x)在x=________时达到最高点.【答案】0.2【解析】由正态曲线的性质知:μ=0.2,故x=0.2时,正态曲线f(x)达到最高点.10.如图是当σ取三个不同值σ1、σ2、σ3时的三种正态曲线N(0,σ2)的图象,那么σ1、σ2、σ3的大小关系是________.【答案】0<σ1<σ2=1<σ3【解析】由已知得=,∴σ2=1.由正态曲线的性质知,当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,所以0<σ1<σ2=1<σ3.11.已知随机变量服从正态分布,且,则= .【答案】0.3【解析】随机变量ξ服从正态分布,∴曲线关于x=2对称,∴P(ξ<0)=P(ξ>4)=1-0.8=0.2,∴=0.5-0.2=0.3,故答案为0.3.【考点】正态分布点评:简单题,随机变量ξ服从正态分布,得到曲线关于x=2对称,根据曲线的对称性得到小于0的和大于4的概率是相等的,从而做出大于2的数据的概率,根据概率的性质得到结果.12.已知随机变量X服从正态分布,且=0.6826,则=()A.0.1588B.0.1587C.0.1586D.0.1585【答案】B【解析】因为随机变量X服从正态分布,所以正态曲线关于对称,又因为=0.6826,所以【考点】本小题主要考查正态分布的概率求解.点评:求解正态分布的概率问题,关键是利用正态曲线的图象.13.某市对10000名中学生的数学成绩(满分100分)进行抽样统计,发现他们近似服从正态分布N~(70,102),若90分以上者有230人,则这10000名学生中分数在50分到90分之间的人数约有()A.7140人B.230人C.9540人D.4770人【答案】C【解析】解:因为利用正态分布的对称性可知,某市对10000名中学生的数学成绩(满分100分)进行抽样统计,发现他们近似服从正态分布N~(70,102),因为90分以上者有230人,则这10000名学生中分数在50分到90分之间的人数约有10000-460=9540人,选C14.设随机变量服从正态分布N(0,1),若P(>1)= ,则P(-1<<0)=()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 若x ~N (0,1),求(l)P (-
2.32<x <1.2);(2)P (x >2). 解:(1)P (-2.32<x <1.2)=Φ(1.2)-Φ(-2.32)
=Φ(1.2)-[1-Φ(2.32)]=0.8849-(1-0.9898)=0.8747.
(2)P (x >2)=1-P (x <2)=1-Φ(2)=l-0.9772=0.0228. 2利用标准正态分布表,求标准正态总体
(1)在N(1,4)下,求)3(F (2)在N (μ,σ2
)下,求F(μ-σ,μ+σ); 解:(1))3(F =)2
1
3(
-Φ=Φ(1)=0.8413 (2)F(μ+σ)=)(σ
μ
σμ-+Φ=Φ(1)=0.8413
F(μ-σ)=)(
σ
μ
σμ--Φ=Φ(-1)=1-Φ(1)=1-0.8413=0.1587 F(μ-σ,μ+σ)=F(μ+σ)-F(μ-σ)=0.8413-0.1587=0.6826 3某正态总体函数的概率密度函数是偶函数,而且该函数的最大值为
π
21,求总体落入区
间(-1.2,0.2)之间的概率 Φ(0.2)=0.5793, Φ(1.2)=0.8848]
解:正态分布的概率密度函数是),(,21)(2
22)(+∞-∞∈=
--
x e
x f x σμσ
π,它是偶函数,
说明μ=0,)(x f 的最大值为)(μf =σ
π21,所以σ=1,这个正态分布就是标准正态分
布 ( 1.20.2)(0.2)( 1.2)(0.2)[1(1.2)](0.2)(1.2)1
P x -<<=Φ-Φ-=Φ--Φ=Φ+Φ-
0.57930.884810.4642=+-=
4.某县农民年平均收入服从μ=500元,σ=200元的正态分布 1)求此县农民年平均收入在500520元间人数的百分比;(2)如果要使此县农民年平均收入在(a a +-μμ,)
内的概率不少于0.95,则a 至少有多大?[Φ(0.1)=0.5398, Φ(1.96)=0.975] 解:设ξ表示此县农民年平均收入,则)200,500(~2
N ξ 520500500500
(500520)(
)()(0.1)(0)0.53980.50.0398200200
P ξ--<<=Φ-Φ=Φ-Φ=-=(2)∵()()()2()10.95200200200
a a a
P a a μξμ-<<+=Φ-Φ-=Φ-≥,
()0.975200
a ∴Φ≥ 查表知: 1.96392200a
a ≥⇒≥
1设随机变量
(3,1),若,,则P(2<X<4)= ( A)
( B)l —p
C .l-2p
D .
【答案】 C 因为,所以
P(2<X<4)=
,选 C .
2.(2010·新课标全国理)某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )
A .100
B .200
C .300
D .400[答案] B
[解析] 记“不发芽的种子数为ξ”,则ξ~B (1 000,0.1),所以E (ξ)=1 000×0.1=100,而X =2ξ,故E (X )=E (2ξ)=2E (ξ)=200,故选B.
3.设随机变量ξ的分布列如下:
其中a ,b ,c 成等差数列,若E (ξ)=1
3,则D (ξ)=( )
A.49 B .-19 C.23 D.59 [答案] D
[解析] 由条件a ,b ,c 成等差数列知,2b =a +c ,由分布列的性质知a +b +c =1,又E (ξ)=-a +c =13,解得a =16,b =13,c =12,∴D (ξ)=16×⎝
⎛⎭⎫-1-132+13⎝⎛⎭⎫0-132+12⎝⎛⎭⎫1-132=5
9. 4.(2010·上海松江区模考)设口袋中有黑球、白球共7个,从中任取2个球,已知取到白球个数的数学期望值为6
7
,则口袋中白球的个数为( )A .3 B .4 C .5 D .2
[答案] A
[解析] 设白球x 个,则黑球7-x 个,取出的2个球中所含白球个数为ξ,则ξ取值0,1,2, P (ξ=0)=C 7-x 2C 72=(7-x )(6-x )42,
P (ξ=1)=x ·(7-x )C 72=x (7-x )
21,
P (ξ=2)=C x 2C 72=x (x -1)
42

∴0×(7-x )(6-x )42+1×x (7-x )21+2×x (x -1)42=6
7,
∴x =3.
5.小明每次射击的命中率都为p ,他连续射击n 次,各次是否命中相互独立,已知命中次数ξ的期望值为4,方差为2,则p (ξ>1)=( )
A.255256
B.9256
C.247256
D.764 [答案] C
[解析] 由条件知ξ~B (n ,P ),
∵⎩⎪⎨⎪⎧ E (ξ)=4,D (ξ)=2,∴⎩⎪⎨⎪⎧
np =4np (1-p )=2
, 解之得,p =1
2
,n =8,
∴P (ξ=0)=C 80×⎝⎛⎭⎫120×⎝⎛⎭⎫128=⎝⎛⎭⎫128
, P (ξ=1)=C 81×⎝⎛⎭⎫121×⎝⎛⎭⎫127=⎝⎛⎭⎫125, ∴P (ξ>1)=1-P (ξ=0)-P (ξ=1) =1-⎝⎛⎭⎫128-⎝⎛⎭⎫125=247256.
5已知三个正态分布密度函数φi (x )=12πσi
e -(x -μi )22σi 2(x ∈R ,i =1,2,3)的图象如图所示,
则( )
A .μ1<μ2=μ3,σ1=σ2>σ3
B .μ1>μ2=μ3,σ1=σ2<σ3
C .μ1=μ2<μ3,σ1<σ2=σ3
D .μ1<μ2=μ3,σ1=σ2<σ3 [答案] D
[解析] 正态分布密度函数φ2(x )和φ3(x )的图象都是关于同一条直线对称,所以其平均数相同,故μ2=μ3,又φ2(x )的对称轴的横坐标值比φ1(x )的对称轴的横坐标值大,故有μ1<μ2=μ3.又σ越大,曲线越“矮胖”,σ越小,曲线越“瘦高”,由图象可知,正态分布密度函数φ1(x )和φ2(x )的图象一样“瘦高”,φ3(x )明显“矮胖”,从而可知σ1=σ2<σ3.
6①命题“”的否定是:“”;
②若
,则的最大值为4;
③定义在R 上的奇函数
满足
,则
的值为0;
④已知随机变量服从正态分布,则;
其中真命题的序号是________(请把所有真命题的序号都填上).
【答案】①③④ ①命题“”的否定是:“”;所以
①正确.
②若,则,即.所以
,即,解得,则的最小值为4;
所以②错误.③定义在R上的奇函数满足,则,且,即函数的周期是4.所以;所以③正确.
④已知随机变量服从正态分布,则
,所以;所以
④正确,所以真命题的序号是①③④.
7、在区间上任取两数m和n,则关于x的方程有两不相等实根的概
率为___________.
【答案】由题意知要使方程有两不相等实根,则,即.作出对应的可行域,如图直线,,当时,,所以
,所以方程有两不相等实根的概率为
.
8、下列命题:
` (1);
(2)不等式恒成立,则;
(3)随机变量X服从正态分布N(1,2),则
(4)已知则.其中正确命题的序号为____________.
【答案】(2)(3) (1),所以(1)错误.(2)不等式
的最小值为4,所以要使不等式成立,则,所以(2)正确.(3)正确.(4)
,所以(4)错误,所以正确的为(2)(3).
2已知某篮球运动员2012年度参加了40场比赛,现从中抽取5场,用茎叶图统计该运动员5场中的得分如图所示,则该样本的方差为
()A.26 B.25 C.23 D.18
【答案】D样本的平均数为23,所以样本方差为
,选D.
3有一个容量为的样本,其频率分布直方图如图所示,据图估计,样本数据在内的频数为
( )
A .
B .
C .
D .
【答案】C 样本数据在
之外的频率为
,
所以样本数据在内的频率为
,所以样本数据在的频数为
,选 C .
4.(2013年临沂市高三教学质量检测考试理科数学)如图所示,在边长为l 的正方形OABC 中
任取一点P,则点P 恰好取自阴影部分的概率为 ( )
A .
B .
C .
D .
【答案】 【答案】B 根据积分的应用可知所求阴影部分的面积为
,所以由几何概型公式可得点P 恰好取自阴影部分
的概率为
,选
B .
5从集合{}1,2,3,4,5中随机选取3个不同的数,这个数可以构成等差数列的概率为______.
【答案】
2
5
从集合{}1,2,3,4,5中随机选取3个不同的数有3
510C =种.则3个数能构成等差数列的
有,1,2,3;2,3,4;3,4,5;1,3,5;有4种,所以这个数可以构成等差数列的概率为
42
105
=.。

相关文档
最新文档