小学奥数教师版-5-3-4 分解质因数(一)

合集下载

分解质因数(一)(含详细解析)

分解质因数(一)(含详细解析)

1.能够利用短除法分解 2. 整数唯一分解定理:让学生自己初步领悟“任何一个数字都可以表示为...⨯⨯⨯☆☆☆△△△的结构,而且表达形式唯一”一、质因数与分解质因数 (1).质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数.(2).互质数:公约数只有1的两个自然数,叫做互质数.(3).分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数.例如:30235=⨯⨯.其中2、3、5叫做30的质因数.又如21222323=⨯⨯=⨯,2、3都叫做12的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式.分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征.(4).分解质因数的方法:短除法 例如:212263,(┖是短除法的符号) 所以12223=⨯⨯;二、唯一分解定理任何一个大于1的自然数n 都可以写成质数的连乘积,即:312123k a a a a k n p p p p =⨯⨯⨯⨯其中为质数,12k a a a <<<为自然数,并且这种表示是唯一的.该式称为n 的质因子分解式. 例如:三个连续自然数的乘积是210,求这三个数.分析:∵210=2×3×5×7,∴可知这三个数是5、6和7.三、部分特殊数的分解111337=⨯;100171113=⨯⨯;1111141271=⨯;1000173137=⨯;199535719=⨯⨯⨯;1998233337=⨯⨯⨯⨯;知识点拨教学目标5-3-4.分解质因数(一)200733223=⨯⨯;2008222251=⨯⨯⨯;10101371337=⨯⨯⨯.模块一、分解质因数 【例 1】 分解质因数20034= 。

【考点】分解质因数 【难度】1星 【题型】填空【关键词】走美杯,决赛,5年级,决赛,第2题,10分【解析】 原式323753=⨯⨯⨯【答案】323753⨯⨯⨯【例 2】 三个连续自然数的乘积是210,求这三个数是多少?【考点】分解质因数 【难度】1星 【题型】填空【解析】 210分解质因数:2102357=⨯⨯⨯,可知这三个数是5、6和7。

奥数——分解质因数

奥数——分解质因数

分解质因数★知识要点质因数:如果一个质数是某个数的约数,称这个质数为这个数的质因数。

分解质因数:把一个合数用质因数相乘的形式表示出来。

分解质因数的两种常用方法:直接分解法和短除法。

★例题精讲例1、将360分解质因数。

直接分解法:短除法:练习1、将10101分解质因数。

例2、将下列8个数平均分成两组,使这两组数的乘积相等,应怎样分?26、39、46、57、85、95、119、161练习2、将12、14、18、45、77、105、175、275这8个数平均分成两组,使这两组数的乘积相等,应怎样分?例3、要使975×935×972×()这个乘积的最后四位数字为0,在括号内最小应填什么数?练习3、1×2×3×4×……×25的乘积的末尾有几个零?例4、已知a×(b+c)=221,请将a,b,c分别换成一个质数,使等式成立。

练习4、某车间有216个零件,如果平均分成若干份,分得份数在5到20之间,那么有多少种分法?例5、下面算式中,不同的字母代表不同的数字。

求算式abc×c=1995。

练习5、有四个孩子,恰好一个比一个大1岁,他们的年龄相乘的积等于3024,问这四个孩子中年龄最大的是几岁?作业1、把77分解质因数:77=( )。

2、把143分解质因数:143=( )。

3、把1001分解质因数:1001=( )。

4、把41041分解质因数:41041=( )。

5、一个合数能分解成三个不同的质因数,这个合数最小是 ( )。

6、三个连续自然数的积是60,则这三个数分别是(),(),()。

7、33×34×35×……×50的乘积的末尾有几个零?8、1×2×3×4×5×……×99×100,积的末尾有多少个零?9、一个两位数除310余37.这个数是多少?10、要使486×135×1925×□的结果的最后五位都是零,□中最小填( )。

【教师版】小学奥数5-3-4 分解质因数(一).专项练习及答案解析

【教师版】小学奥数5-3-4 分解质因数(一).专项练习及答案解析

1.能够利用短除法分解 2. 整数唯一分解定理:让学生自己初步领悟“任何一个数字都可以表示为...⨯⨯⨯☆☆☆△△△的结构,而且表达形式唯一”一、质因数与分解质因数 (1).质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数.(2).互质数:公约数只有1的两个自然数,叫做互质数.(3).分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数.例如:30235=⨯⨯.其中2、3、5叫做30的质因数.又如21222323=⨯⨯=⨯,2、3都叫做12的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式.分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征.(4).分解质因数的方法:短除法 例如:212263,(┖是短除法的符号) 所以12223=⨯⨯;二、唯一分解定理任何一个大于1的自然数n 都可以写成质数的连乘积,即:312123k a a a a k n p p p p =⨯⨯⨯⨯其中为质数,12k a a a <<<为自然数,并且这种表示是唯一的.该式称为n 的质因子分解式.例如:三个连续自然数的乘积是210,求这三个数.分析:∵210=2×3×5×7,∴可知这三个数是5、6和7.三、部分特殊数的分解111337=⨯;100171113=⨯⨯;1111141271=⨯;1000173137=⨯;199535719=⨯⨯⨯;1998233337=⨯⨯⨯⨯;200733223=⨯⨯;2008222251=⨯⨯⨯;10101371337=⨯⨯⨯.模块一、分解质因数 【例 1】 分解质因数20034= 。

【考点】分解质因数 【难度】1星 【题型】填空【关键词】走美杯,决赛,5年级,决赛,第2题,10分例题精讲知识点拨教学目标5-3-4.分解质因数(一)【解析】 原式323753=⨯⨯⨯【答案】323753⨯⨯⨯【例 2】 三个连续自然数的乘积是210,求这三个数是多少?【考点】分解质因数 【难度】1星 【题型】填空【解析】 210分解质因数:2102357=⨯⨯⨯,可知这三个数是5、6和7。

小学数学五年级奥数第23讲分解质因数(一)

小学数学五年级奥数第23讲分解质因数(一)

小学数学五年级奥数第23讲分解质因数(一)第23讲分解质因数(一)一、专题简析:1、一个自然数的因数中,为质数的因数叫做这个数的质因数。

把一个合数,用质因数相乘的形式表示出来,叫做分解质因数。

例如:24=2×2×2×3,75=3×5×5。

2、我们数学课本上介绍的分解质因数,是为求最大公约数和最小公倍数服务的。

其实,把一个数分解成质因数相乘的形式,能启发我们寻找解答许多难题的突破口,从而顺利解题。

二、精讲精练例题1 把18个苹果平均分成若干份,每份大于1个,小于18个。

一共有多少种不同的分法?分析先把18分解质因数:18=2×3×3,可以看出:18的约数是1、2、3、6、9、18,除去1和18,还有4个约数,所以,一共有4种不同的分法。

练习一1.有60个同学分成人数相等的小组去慰问解放军叔叔,每组不少于6人,不多于15人。

有哪几种分法?2、195个同学排成长方形队伍做早操,行数和列数都大于1,共有几种排法?例题2 有168颗糖,平均分成若干份,每份不得少于10颗,也不能多于50颗。

共有多少种分法?分析先把168分解质因数,168=2×2×2×3×7,由于每份不得少于10颗,也不能多于50颗,所以,每份有2×2×3=12颗,2×7=14颗,3×7=21颗,2×2×2×3=24颗,2×3×7=42颗,共有5种分法。

练习二把462名学生分成人数相等的若干组去参加课外活动小组,每小组人数在10至25人之间,求每组的人数及分成的组数。

例题3 将下面八个数平均分成两组,使这两组数的乘积相等。

2、5、14、24、27、55、56、99分析 14=2×7 55=5×1124=2×2×2×3 56=2×2×2×727=3×3×3 99=3×3×11可以看出,这八个数中,共含有八个2,六个3,二个5,二个7和二个11。

五年级奥数分解质因数

五年级奥数分解质因数
(请1用)上1面86的-方15法5=把3下1,面3的1是几质个数分,数用约3分1约。分得:155/186=5/6; (最2大)积2是212-×13877×=3441,=33043=42×17,用17约分得:221/187=13/11。 因此,掌握并灵活应用分解质因数的知识,能解答许多一般方法不能解答的与积有关的应用题。
375=5×5×5×3,因为5×5比5×3正好多10,所以,此长方形的长是5×5=25米,宽是5×3=15米,它们的和是40米。 我1,们2可37以除先以把一2个16两分位解数质,因所数得,的再余写数成是两6数,相请乘写的出形适式合分于析这:个2条16件=的2^所3×有3两^3位=8数×。27=9×24,显然,216分可以买8分的画片27张,也 可(以2)买292分1-的1画87片=324,张3。4=2×17,用17约分得:221/187=13/11。 【37例5=题5×2】5×长5方×形3,的因面为积5是×357比5平5×方3米正,好已多知1它0,的所宽以比,长此少长10方米形,的长长和是宽5的×和5=是25多米少,米宽?是5×3=15米,它们的和是40米。
【练习2】 因80此-,2=这78三,个剩质下数两是个2质、数37的和和41是。78,而且要使它的积最大,只能是41和37。
(【2例)题242】1-把18175=53/148,6和342=221×/11877,约用分1。7约分得:221/187=13/11。 【因例此题 ,1掌】握三并个灵质活数应的用和分是解8质0,因这数三的个知数识的,积能最解大答可许以多是一多般少方?法不能解答的与积有关的应用题。
【思路导航】 三个质数相加的和是偶数,必有一个质数
是2。80-2=78,剩下两个质数的和是78, 而且要使它的积最大,只能是41和37。因此, 这三个质数是2、37和41。 最大积是2×37×41=3034

【教师版】小学奥数5-4-3 约数与倍数(三).专项练习及答案解析

【教师版】小学奥数5-4-3 约数与倍数(三).专项练习及答案解析

1. 本讲主要对课本中的:约数、公约数、最大公约数;倍数、公倍数、最小公倍数性质的应用。

2. 本讲核心目标:让孩子对数字的本质结构有一个深入的认识,例如:(1)约数、公约数、最大公约数;倍数、公倍数、最小公倍数的内在关系;(2)整数唯一分解定理:让学生自己初步领悟“任何一个数字都可以表示为...⨯⨯⨯☆☆☆△△△的结构,而且表达形式唯一”一、 约数、公约数与最大公约数概念(1)约数:在正整数范围内约数又叫因数,整数a 能被整数b 整除,a 叫做b 的倍数,b 就叫做a 的约数;(2)公约数:如果一个整数同时是几个整数的约数,称这个整数为它们的“公约数”;(3)最大公约数:公约数中最大的一个就是最大公约数;(4)0被排除在约数与倍数之外1. 求最大公约数的方法①分解质因数法:先分解质因数,然后把相同的因数连乘起来.例如:2313711=⨯⨯,22252237=⨯⨯,所以(231,252)3721=⨯=;②短除法:先找出所有共有的约数,然后相乘.例如:2181239632,所以(12,18)236=⨯=;③辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数.用辗转相除法求两个数的最大公约数的步骤如下:先用小的一个数除大的一个数,得第一个余数;再用第一个余数除小的一个数,得第二个余数;又用第二个余数除第一个余数,得第三个余数;这样逐次用后一个余数去除前一个余数,直到余数是0为止.那么,最后一个除数就是所求的最大公约数.(如果最后的除数是1,那么原来的两个数是互质的).例如,求600和1515的最大公约数:151********÷=;6003151285÷=;315285130÷=;28530915÷=;301520÷=;所以1515和600的最大公约数是15. 2. 最大公约数的性质①几个数都除以它们的最大公约数,所得的几个商是互质数;②几个数的公约数,都是这几个数的最大公约数的约数;③几个数都乘以一个自然数n ,所得的积的最大公约数等于这几个数的最大公约数乘以n .3. 求一组分数的最大公约数先把带分数化成假分数,其他分数不变;求出各个分数的分母的最小公倍数a ;求出各知识点拨教学目标5-4-3.约数与倍数(三)个分数的分子的最大公约数b ;b a即为所求. 4. 约数、公约数最大公约数的关系(1)约数是对一个数说的;(2)公约数是最大公约数的约数,最大公约数是公约数的倍数二、倍数的概念与最小公倍数(1)倍数:一个整数能够被另一整数整除,这个整数就是另一整数的倍数(2)公倍数:在两个或两个以上的自然数中,如果它们有相同的倍数,那么这些倍数就叫做它们的公倍数(3)最小公倍数:公倍数中最小的那个称为这些正整数的最小公倍数。

奥数质数合数分解质因素讲义及答案

奥数质数合数分解质因素讲义及答案

奥数质数合数分解质因素讲义及答案数的整除(2)质数、合数、分解质因数教室姓名学号【知识要点】1、质数与合数自然数按其因数的个数可以分成三类:(1)单位1:只含有1这一个因数的自然数。

(2)质数(也称为素数):只含有1与它本身这两个因数的自然数。

(质数有无穷多个,不存在最大的质数,但有最小的质数2,而且2是质数中唯一的偶数。

)(3)合数:含有三个或三个以上因数的自然数。

(4)分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

(5)因数个数定理:例如:1980=22×32×5×11所以:(T表示因数个数)T(1980)=(1+2)×(1+2)×(1+1)×(1+1)=36 (6)因数和的定理:例如:1980=22×32×5×11所以:S(1980)=(02+12+22)×(03+13+23)×(05+15)×(011+111)=7×13×6×12=6552【典型例题】例1、两个质数的和是49,这两个质数的积是多少?解:因为两个质数的和49是奇数,所以必有一个质数是偶数,另一个质数是奇数,而偶数中只有2是质数,于是另一个质数是49-2=47,从而得到它们的积是2×47=94。

例2、有三张卡片,上面分别写着2、3、4三个数字,从中任意抽出一张、两张、三张,按任意顺序排列起来,可以得到不同的一位数、两位数、三位数,写出其中的质数。

解:由于2+3+4=9是3的倍数,所以任意排出的三位数都不是质数。

任意取两张卡片排出的两位数,末尾数字不能是2和4,只能排3.所以用2、3、4三个数字排出两位质数有23和43.取一张卡片排出的质数有2和3.所以最后排出的质数有2、3、23、43这四个。

例3、360这个数的因数有多少个?这些因数的和是多少?解:360=2×2×2×3×3×5=23×32×5,所以360有(3+1)×(2+1)×(1+1)=24个因数。

小学奥数教师版-5-4-4 完全平方数及应用(一)

小学奥数教师版-5-4-4 完全平方数及应用(一)

5-4-4.完全平方数及应用(一)教学目标1.学习完全平方数的性质;2.整理完全平方数的一些推论及推论过程3.掌握完全平方数的综合运用。

知识点拨一、完全平方数常用性质1.主要性质1.完全平方数的尾数只能是0,1,4,5,6,9。

不可能是2,3,7,8。

2.在两个连续正整数的平方数之间不存在完全平方数。

3.完全平方数的约数个数是奇数,约数的个数为奇数的自然数是完全平方数。

4.若质数p 整除完全平方数2a ,则p 能被a 整除。

2.性质性质1:完全平方数的末位数字只可能是0,1,4,5,6,9.性质2:完全平方数被3,4,5,8,16除的余数一定是完全平方数.性质3:自然数N 为完全平方数⇔自然数N 约数的个数为奇数.因为完全平方数的质因数分解中每个质因数出现的次数都是偶数次,所以,如果p 是质数,n 是自然数,N 是完全平方数,且21|n p N -,则2|n p N .性质4:完全平方数的个位是6⇔它的十位是奇数.性质5:如果一个完全平方数的个位是0,则它后面连续的0的个数一定是偶数.如果一个完全平方数的个位是5,则其十位一定是2,且其百位一定是0,2,6中的一个.性质6:如果一个自然数介于两个连续的完全平方数之间,则它不是完全平方数.3.一些重要的推论1.任何偶数的平方一定能被4整除;任何奇数的平方被4(或8)除余1.即被4除余2或3的数一定不是完全平方数。

2.一个完全平方数被3除的余数是0或1.即被3除余2的数一定不是完全平方数。

3.自然数的平方末两位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49,69,89,16,36,56,76,96。

4.完全平方数个位数字是奇数(1,5,9)时,其十位上的数字必为偶数。

5.完全平方数个位数字是偶数(0,4)时,其十位上的数字必为偶数。

6.完全平方数的个位数字为6时,其十位数字必为奇数。

7.凡个位数字是5但末两位数字不是25的自然数不是完全平方数;末尾只有奇数个“0”的自然数不是完全平方数;个位数字为1,4,9而十位数字为奇数的自然数不是完全平方数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【例 13】四个连续自然数的乘积是 3024,这四个自然数中最大的一个是多少? 【考点】分解质因数 【难度】2 星 【题型】填空
5-3-4.分解质因数(一).题库
教师版
page 3 of 7
请;
【解析】分解质因数 3024 24 33 7 ,考虑其中最大的质因数 7,说明这四个自然数中必定有一个是 7 的倍
D. 10
【关键词】迎春杯,中年级,复试,2 题
【解析】D,解:设 a b c d e 。由 ab 3, ac 6 推知 c 2b ;由 ce 120, de 300 推知 d 5 c 5b 。 2
bc b 2b 2b2 , bd b 5b 5b2 , cd 2b 5b 10b2 。在 15,18, 20,50, 60,100 中,满足 2 : 5 :10 的
例题精讲
模块一、分解质因数
【例 1】 分解质因数 20034=

【考点】分解质因数 【难度】1 星 【题型】填空
【关键词】走美杯,决赛,5 年级,决赛,第 2 题,10 分
5-3-4.分解质因数(一).题库
教师版
page 1 of 7
请;
【解析】原式 2 33 7 53 【答案】 2 33 7 53
675 或 2011,又 2007=1×3×3×223=1×1×9×223=1×1×3×669=1×1×1×2007,所以 B 的可能值是 230 或
234 或 674 或 2010,A、B 两数之差的最大值为 2011-230=1781。
【答案】 1781
【例 11】 (老师可以先引入:小明一家四兄弟,大哥叫大毛,二哥叫二毛,三哥叫三毛,那老四叫什么?) 大毛、二毛、三毛、小明四个人,他们的年龄一个比一个大 2 岁,他们四个人年龄的乘积是 48384 。 问他们四个人的年龄各是几岁?
【例 12】甲数比乙数大 5 ,乙数比丙数大 5 ,三个数的乘积是 6384 ,求这三个数? 【考点】分解质因数 【难度】2 星 【题型】解答 【解析】将 6384 分解质因数, 6384 2 2 2 2 3 7 19 ,则其中必有一个数是19 或19 的倍数;经试算,
19 5 14 2 7 ,19 5 24 2 2 2 3 ,恰好14 19 24 6384 ,所以这三个数即为14 ,19 ,24 . 一般象这种类型的题,都是从最大的那个质因数去分析.如果这道题里19 不符合要求,下一个该考虑 38 ,再下一个该考虑 57 ,依此类推. 【答案】14 ,19 , 24
【例 4】 今年是 2010 年,从今年起年份数正好为三个连续正整数乘积的第一个年份是

【考点】分解质因数 【难度】3 星 【题型】填空
【关键词】而思杯,6 年级,1 试,第 3 题
【解析】 1112 13 1716 ,12 13 14 2184 ,所以是 2184
【答案】 2184
【例 5】 如果两个合数互质,它们的最小公倍数是 126,那么,它们的和是
三个数是 20,50,100, 所以 b2 100 10 10 。
【答案】 D
【例 16】a、b、c、d、e 这五个数各不相同,他们两两相乘后的积从小到大排列依次为:0.3、0.6、1.5、1.8、 2、5、6、10、12、30。将这五个数从小到大排成一行,那么,左起第 2 个数是_________。 (A)0.3 (B)0.5 (C)1 (D)1.5
【例 10】A 是乘积为 2007 的 5 个自然数之和,B 是乘积为 2007 的 4 个自然数之和。那么 A、B 两数之差的
最大值是

【考点】分解质因数 【难度】3 星 【题型】填空
【关键词】华杯赛,五年级,决赛,第 8 题,10 分
【解析】2007=1×1×3×3×223=1×1×1×9×223=1×1×1×3×669=1×1×1×1×2007,所以 A 的可能值是 231 或 235 或
不仅要求学生熟练掌握分解质因数,而且要注意一些技巧,例如本题中的111 3 37 。
【答案】 668
【巩固】已知两个自然数的积是 35,差是 2,则这两个自然数的和是_______. 【考点】分解质因数 【难度】2 星 【题型】填空 【关键词】希望杯,四年级,二试,第 8 题 【解析】35=1×35=5×7,5、7 差 2,两个自然数的和是 5+7=12 【答案】12 元
教师版
page 2 of 7
请;
【解析】根据题意列式子如下: a ba b 23 ,因为 23 分解质因数是1与 23 ,所以 a b 23, a b 1,
根据和差关系算出 a 12 , b 11 ,所以这两个自然数的和除以这两个自然数的差的商为 23, 【答案】 23
【例 9】 2004 7 20 的计算结果能够整除三个连续自然数的乘积,这三个连续自然数之和最小是多少? 【考点】分解质因数 【难度】2 星 【题型】解答 【解析】首先分解质因数, 2004 7 20 2 2 2 2 3 5 7 167 ,其中最大的质因数是 167,所以所要求
【例 8】 如 果 两 个 自 然 数 的 和 与 差 的 积 是 23 , 那 么 这 两 个 自 然 数 的 和 除 以 这 两 个 数 的 差 的 商 是 ___________。
【考点】分解质因数 【难度】2 星 【题型】填空 【关键词】希望杯,4 年级,初赛,4 题
5-3-4.分解质因数(一).题库
例如: 30 2 3 5 .其中 2、3、5 叫做 30 的质因数.又如12 2 2 3 22 3 ,2、3 都叫做 12 的质因数, 其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式.分 解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征. (4).分解质因数的方法:短除法
【考点】分解质因数 【难度】2 星 【题型】解答 【解析】将 360 分解质因数得 360 2 2 2 3 3 5 ,它是 6 个质因数的乘积.因为题述的四个数中只有一个
是合数,所有该合数必至少为 6 3 3 个质因数的积,又只有 3 个 2 相乘才能是一位数,所以这 4 个乘数分别为 3,3,5,8,所组成的最大四位数是 8533. 【答案】8533
ቤተ መጻሕፍቲ ባይዱ
分析:∵210=2×3×5×7,∴可知这三个数是 5、6 和 7.
三、部分特殊数的分解
111 3 37 ;1001 7 1113 ;11111 41 271 ;10001 73 137 ;1995 3 5 7 19 ;1998 2 3 3 3 37 ; 2007 3 3 223 ; 2008 2 2 2 251 ;10101 3 7 13 37 .
2 12 例如: 2 6 ,(┖是短除法的符号) 所以12 2 2 3 ;
3
二、唯一分解定理
a1
a2
任 何一个a大k 为于自1然的数自,然并数且n这都种可表以示写是成唯质一数的的.该连式乘称积为,n即的:质n因子p1a分1 解p2式a2 .
p3a3
p
ak k
其中为质数,
例如:三个连续自然数的乘积是 210,求这三个数.
数.若为 7,因 3024 不含有质因数 5,那么这四个自然数可能是 6、7、8、9 或 7、8、9、10(10 仍含 有 5,不行),经检验 6、7、8、9 恰符合. 【答案】9
【例 14】植树节到了,某市举行大型植树活动,共有 1430 人参加植树,要把人数分成相等的若干队,且每
队人数在 100 至 200 之间,则有分法(

【考点】分解质因数 【难度】2 星 【题型】填空
【关键词】迎春杯,五年级,初赛,第 3 题
【解析】 126 2 32 7 ,因为两个数互质且都是合数,所以这两个数只能为 9 和14 ,它们的和为 23 .
【答案】 23
【例 6】 4 个一位数的乘积是 360,并且其中只有一个是合数,那么在这 4 个数字所组成的四位数中,最大 的一个是多少?
的三个连续自然数中必定有 167 本身或者其倍数. 165 3 5 1 ,166 2 83 ,168 2 2 2 3 7 , 169 13 13 ,所以165 166 167 ,166 167 168 ,167 168 169 都没有 4 个 2,不满足题意.说明 167 不 可 行 . 尝 试 334 167 2 , 335 5 67 , 336 2 2 2 2 3 7 , 334 335 336 2 2 2 2 2 3 5 7 67 167 ,包括了 2004 7 20 中的所有质因数,所以这组 符合题意,以此三数之和最小为 1005. 【答案】1005
)。
A、3 种
B、7 种
C、11 种
D、13 种
【考点】分解质因数 【难度】3 星 【题型】选择
【关键词】华杯赛,五年级,初赛,第 4 题
【解析】只要找到 100 到 200 之间可以整除 1430 的数即可。1430 可分解成 2,5,11,13 的乘积,所以可以
按每组 110 人,130 人,143 人分组,共有 3 个方案。所以答案为 A
【例 2】 三个连续自然数的乘积是 210 ,求这三个数是多少? 【考点】分解质因数 【难度】1 星 【题型】填空 【解析】 210 分解质因数: 210 2 3 5 7 ,可知这三个数是 5 、 6 和 7 。 【答案】 5 、 6 和 7
【例 3】 两个连续奇数的乘积是111555 ,这两个奇数之和是多少? 【考点】分解质因数 【难度】2 星 【题型】填空 【解析】 111555 分解质因数:111555 3 3 5 37 67 ( 3 3 37 ) ( 5 67 ) 333 335 ,所以和为 668 .本讲
【答案】 A
【例 15】a、b、c、d、e 这五个无数各不相同,它们两两相乘后的积从小到大排列依次为:3,6,15,18,
相关文档
最新文档