五年级分解质因数复习过程
北师大版小学数学五年级上册《分解质因数》知识点讲解突破

分解质因数知识精讲1.质因数和分解质因数每个合数都可以写成几个质数相乘的形式,这几个质数就是这个合数的质因数。
如30=2×3×5,2,3,5就是30的质因数。
把一个合数分解成若干个质数相乘的形式,这个过程就叫作分解质因数。
2.分解质因数的方法(1)分解法不断把这个合数分解成一个质数和另一个数相乘的形式,一直到最后都是质数为止,以把24分解质因数为例。
242 × 122 × 62 × 3上面第一步是把合数24分解成2×12,接着再把12分解成2×6,再把6分解成2×3,最后整理可得:24=2×2×2×3。
(2)短除法短除法是指不按一般的除法竖式格式书写,而是在被除数的左边写除数、在被除数的下面直接写出商的方法。
用短除法分解质因数时,从最小的质数除起,如果得到的商是质数,就把除数和商写成相乘的形式;如果得到的商是合数,就继续除,直到所得商是质数为止,最后把所有除数和最后的商写成连乘的形式。
如: 2 242 122 63因此,24=2×2×2×3。
易错易误点1.质因数分解不完全分解质因数时,容易出现分解的最后结果中仍有合数的情况。
如将36分解质因数的结果写成36=2×3×6。
这里,6是合数,不是质数,这是错误的,最后结果必须分解为全是质数的形式。
因此需要继续将6分解质因数,最后得到的结果应该是36=2×2×3×3。
2.用短除法分解质因数时除数不是质数如: 4 482 122 63所以48=4×2×2×3。
这里错在第一个除数4不是质数,所以这个分解质因数的结果是错误的,正确结果应该是48=2×2×2×2×3。
典型例题例1 请把56分解质因数。
解析:可以用分解法进行,即用分解的形式把56一步一步用整数乘法分解,直到全部分解为质数相乘的形式为止。
分解质因数的方法与技巧(用例子讲解分解质因数的步骤)

最近,五年级正在学习因数与倍数知识,许多同学反映分解质因 数对于他们来说有点难,能不能给他们总结归纳一些方法,让他们高 效率做出题目,今天老师就给大家总结一些方法,希望同学们能快速 掌握。 一、知识铺垫 1、因数和倍数:在整数乘法里,如果 a×b=c,那么 a 和 b 是 c 的因数, c 是 a 和 b 的倍数。 2、 为了方便,在研究因数和倍数的时候,我们所说的数指的是整数(一 般不包括 0)。但是 0 也是整数。 3、一个数的最小因数是 1,最大因数是它本身。一个数的因数的个数 是有限的。 4、一个数的最小倍数是它本身,没有最大的倍数。 一个数的倍数的 个数是无限的。 如果两个整数(a、b)都是另一个整数(c)的倍数,那么这两个整数的和 (a+b)也是另一个整数(c)的倍数。 5、 个位上是 0、2、4、6、8 的数都是 2 的倍数。 个位上是 0、5 的数都是 5 的倍数。 个位上是 0 数既是 2 的倍数,也是 5 的倍数。 一个数各个数位上的数的和是 3 的倍数,这个数就是 3 的倍数。
第十页
(1)利用乘法口诀 (2)抓住数的特点 (3)熟记质数表(见前两篇文章中——100 以内质数歌) 课后练习: 1, 把 12 分解质因数后求全部因数。 2.把 80 分解质因数后求全部 因数。 3.四个连续自然数的积是 360,求这四个自然数。 4.四个连续奇数的积 3465,求这四个数。 5,三个连续偶数的积是 960,这三的偶数的和是多少? 6,学区举行团体操表演,有 1430 名学生参加,分成人数相等的若干 队,要求每队人数在 题意,每队人数×队数=1430,每队人数在 100 至 200 之间,所以问题相当于求 1430 有多少个在 100 至 200 之间的约数。 先把 1430 分解质因数, 得 1430=2×5×11×13。 从这四个质数中选若干个,使其乘积在 100 到 200 之间,这是每队人 数,其余的质因数之积便是队数。 2×5×11=110,13; 2×5×13=130,11; 11×13=143,2×5=10。 好了,今天就分享到这里,希望孩子们能顺利掌握。
小学数学解题方法解题技巧之分解质因数法

第一章小学数学解题方法解题技巧之分解质因数法通过把一个合数分解为两个或两个以上质因数,来解答应用题的解题方法叫做分解质因数法。
分解质因数的方法在求最大公约数和最小公倍数时有用,在学习有理数的运算、因式分解、解方程等方面也有广泛的应用。
分解质因数的方法还可为一些数学问题提供新颖的解法,有益于开辟解题思路,启迪创造性思维。
例1 一块正方体木块,体积是1331立方厘米。
这块正方体木块的棱长是多少厘米?(适于六年级程度)解:把1331分解质因数:1331=11×11×11答:这块正方体木块的棱长是11厘米。
例2 一个数的平方等于324,求这个数。
(适于六年级程度)解:把324分解质因数:324= 2×2×3×3×3×3=(2×3×3)×(2×3×3)=18×18答:这个数是18。
例3 相邻两个自然数的最小公倍数是462,求这两个数。
(适于六年级程度)解:把462分解质因数:462=2×3×7×11=(3×7)×(2×11)=21×22答:这两个数是21和22。
*例4 ABC×D=1673,在这个乘法算式中,A、B、C、D代表不同的数字,ABC是一个三位数。
求ABC代表什么数?(适于六年级程度)解:因为ABC×D=1673,ABC是一个三位数,所以可把1673分解质因数,然后把质因数组合成一个三位数与另一个数相乘的形式,这个三位数就是ABC所代表的数。
1673=239×7答:ABC代表239。
例5 一块正方形田地,面积是2304平方米,这块田地的周长是多少米?(适于六年级程度)解:先把2304分解质因数,并把分解后所得的质因数分成积相同的两组质因数,每组质因数的积就是正方形的边长。
五年级下册分解质因数

五年级下册分解质因数一、分解质因数的概念。
1. 定义。
- 每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的分解质因数。
例如,12 = 2×2×3,2、3都是质数,把12写成2、2、3相乘的形式就是对12分解质因数。
2. 质数与合数的回顾(为分解质因数做铺垫)- 质数是指一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数。
例如2、3、5、7、11等都是质数。
- 合数是指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。
如4、6、8、9等都是合数。
二、分解质因数的方法。
1. 短除法。
- 步骤:- 先把要分解的数写在短除号内(如_)。
- 从最小的质数开始除起,通常从2开始。
例如分解24,先用2除24,得到12;再用2除12,得到6;继续用2除6,得到3。
此时3是质数,不能再除了。
- 最后把所有的除数和最后的商写成连乘的形式,24 = 2×2×2×3。
2. 塔式分解法(逐步分解法)- 例如分解36:- 先把36写成两个因数相乘的形式,36 = 4×9。
- 4不是质数,继续分解4 = 2×2;9不是质数,继续分解9 = 3×3。
- 所以36 = 2×2×3×3。
三、分解质因数的应用。
1. 求最大公因数。
- 例如求18和24的最大公因数。
- 先分解质因数,18 = 2×3×3,24 = 2×2×2×3。
- 18和24公有的质因数是2和3,最大公因数就是2×3 = 6。
2. 求最小公倍数。
- 例如求12和18的最小公倍数。
- 分解质因数:12 = 2×2×3,18 = 2×3×3。
- 最小公倍数为2×2×3×3 = 36(把公有的质因数和各自独有的质因数相乘)。
五年级思维拓展- 分解质因数

分解质因数知识要点分解质因数是日常生活、生产实践、数学竞赛中应用最广泛的一类数学问题,并且这类知识与生活有着紧密的联系。
它是研究整数的一个重要方法,且这类题的灵活性大,趣味性强,如何掌握此类问题的特征,并能熟练、灵活地加以运用,是研究此类问题所要思考的。
1、分解质因数的概念在了解分解质因数的概念之前,必须要先清楚什么是质因数。
如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数,如:2是质数,且是10的约数,那么2就是10的质因数。
那么什么是分解质因数呢?把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
2、分解质因数的方法怎样把一个合数分解成质因数呢?通常采用短除法。
例如,420分解质因数可以采用下面的分式也可采用直接分解法420=2×210=2×3×70=2×3×2×35=2×2×3×5×7注:分解质因数是将一个合数写成质因数的连乘积,因此乘积中不能出现合数。
☜精选例题【例1】:将924分解质因数。
☝思路点拨:要将924分解质因数,可以用短除法分解。
2 9242 4623 2317 7711☝标准答案:924=2×2×3×7×11。
✌活学巧用1、将2009分解质因数。
2、将1591分解质因数。
3、将37037分解质因数。
【例2】:有四个小朋友,它们的年龄恰好是一个比一个大一岁,他们年龄数相乘的积是360,其中年龄最大的一个是多少岁。
☝思路点拨:四个小朋友的年龄的乘积是360,把360分解质因数,360=23×32×5,对质因数重新组合后发现360=3×4×5×6。
☝标准答案:四个小朋友中,年龄最大的一个是6岁✌活学巧用1、将一筐苹果分给三个人,他们所得的苹果数一个比一个多3个,且三个人所得的苹果数的乘积为3952,三个人各得多少个苹果?2、四个连续奇数的乘积是945,求这四个自然数。
五年级奥数举一反三专题 第23讲 分解质因数(一)

第23讲分解质因数(一)一、专题简析:1、一个自然数的因数中,为质数的因数叫做这个数的质因数。
把一个合数,用质因数相乘的形式表示出来,叫做分解质因数。
例如:24=2×2×2×3,75=3×5×5。
2、我们数学课本上介绍的分解质因数,是为求最大公约数和最小公倍数服务的。
其实,把一个数分解成质因数相乘的形式,能启发我们寻找解答许多难题的突破口,从而顺利解题。
二、精讲精练例题1 把18个苹果平均分成若干份,每份大于1个,小于18个。
一共有多少种不同的分法?练习一1、有60个同学分成人数相等的小组去慰问解放军叔叔,每组不少于6人,不多于15人。
有哪几种分法?2、195个同学排成长方形队伍做早操,行数和列数都大于1,共有几种排法?例题2 有168颗糖,平均分成若干份,每份不得少于10颗,也不能多于50颗。
共有多少种分法?练习二把462名学生分成人数相等的若干组去参加课外活动小组,每小组人数在10至25人之间,求每组的人数及分成的组数。
例题3 将下面八个数平均分成两组,使这两组数的乘积相等。
2、5、14、24、27、55、56、991、下面四张小纸片各盖住一个数字,如果这四个数字是连续的偶数,请写出这个完整的算式。
□□×□□=12882、有三个自然数a、b、c,已知a×b=30,b×c=35,c×a=42,求a×b×c的积是多少?例题4 王老师带领一班同学去植树,学生恰好分成4组。
如果王老师和学生每人植树一样多,那么他们一共植了539棵。
这个班有多少个学生?每人植树多少棵?1、3月12日是植树节,李老师带领同学们排成两路人数相等的纵队去植树。
已知李老师和同学们每人植树的棵数相等,一共植了111棵树,求有多少个学生。
2、小青去看电影,他买的票的排数与座位号数的积是391,而且排数比座位号数大6。
小青买的电影票是几排几座?例题5 下面的算式里,□里数字各不相同,求这四个数字的和。
五年级数学教案:分解质因数

五年级数学教案:分解质因数五年级数学教案:分解质因数1教学目标(一)知识与能力:理解质因数、分解质因数的意义。
会把一个合数分解质因数,掌握用短除式分解质因数。
(二)过程与方法:通过引导学生把(1)、(2)中所给的合数写成比每个数本身小的两个数相乘的形式,进而引出质因数和分解质因数的概念。
(三)情感与态度:培养学生的分析、概括能力。
教学重点和难点(一)质因数与分解质因数的意义。
(二)用短除式分解质因数。
教学用具投影片。
教学过程设计(一)复习准备1.请说出1~12这些数中的质数和合数。
(投影片)学生口答后,投影出示答案:①2,3,5,7,11是质数;②4,6,8,9,10,12是合数。
2.说一说质数与合数的区别?3.请想一想,第1题答案中的两组数,哪一组数能分成比它本身小的两个数相乘的形式?哪一组不能?为什么?学生口答后,老师指出:像这样的数,即合数,因为它们除了1和本身外,还有别的约数,所以都可以用几个比本身小的数相乘的形式表示出来。
这节课就来研究要求连乘式子里的因数都是质数的情况。
(二)学习新课1.质因数的意义,分别质因数的意义和方法。
(1)板书例36,28和60可以写成哪几个质数相乘的形式?教师板书出6,学生口答后,老师再用塔式分解式写出2,3,圈上。
教师:用算式如何表示,学生口答后老师板书;6=2×3。
教师板书出28,学生口答后,老师按塔式分解式写出:4,7,7是质数,圈上。
问:4老师为什么没圈?(4不是质数,继续分解。
)板书;2,2,圈上。
请用算式表示。
板书;28=2×2×7。
教师:请用上面的方法把60分成几个质数相乘的形式。
老师巡视中请一位同学板书出塔式分解式和算式。
(如下)(2)教师:请观察,(指塔式分解式和算式)每个合数都写成什么形式?(每个合数都写成了几个质数相乘的形式。
) 教师:这些质数,在式子里与原来的合数是什么关系?(这些质数都是原来合数的因数。
分解质因数的方法

分解质因数的方法分解质因数是数学中常见的一个概念,它是指将一个数分解成若干个质数的乘积的过程。
分解质因数在数学运算中有着重要的作用,它不仅可以帮助我们简化计算,还可以帮助我们更好地理解数的性质。
接下来,我们将介绍分解质因数的方法,希望能够对大家有所帮助。
首先,我们来看一下如何分解一个合数的质因数。
合数是指除了1和它本身以外还有其他因数的数,而质数是指只有1和它本身两个因数的数。
分解质因数的方法可以通过不断地进行试除来实现。
具体步骤如下:1. 首先,我们找出这个数的最小质因数,然后用这个质因数去除这个数,得到的商再进行同样的操作,直到商为1为止。
2. 将每一步得到的质因数按照从小到大的顺序写出来,这样就得到了这个数的质因数分解式。
举个例子来说明一下,比如我们要分解质因数的数是60,那么我们可以按照上述的步骤来进行操作。
首先,60可以被2整除,得到30;30又可以被2整除,得到15;15可以被3整除,得到5;最后,5是一个质数,所以分解质因数的结果就是2235。
除了上述的方法外,我们还可以利用因数分解树来进行分解质因数。
因数分解树是一种图形化的表示方法,可以帮助我们更清晰地了解一个数的质因数分解式。
具体步骤如下:1. 首先,我们将要分解的数写在树的顶端。
2. 然后,我们找出这个数的一个质因数,并将它写在树的下方。
3. 接着,我们用这个质因数去除原数,得到的商写在质因数的下方。
4. 重复以上的步骤,直到无法再分解为止。
通过因数分解树,我们可以清晰地看到一个数的质因数分解式,而且可以避免遗漏或重复因数的情况。
在实际应用中,分解质因数的方法可以帮助我们解决一些数学问题,比如求最大公约数、最小公倍数等。
而且,分解质因数还可以帮助我们简化分数、化简根式等。
因此,掌握好分解质因数的方法对于我们的数学学习和实际应用都是非常重要的。
总的来说,分解质因数是数学中的一个重要概念,它可以帮助我们更好地理解数的性质,简化计算,解决一些数学问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
质因数分解
100以内的质数
一个自然数的因数中,为质数的因数叫做这个数的质因数。
把一个合数,用质因数相乘的形式表示出来,叫做分解质因数。
例如:24=2×2×2×3
75=3×5×5
数学课本上介绍的分解质因数,是为求最大公约数、最小公倍数服务的。
用分解质因数的方法解决有关数学问题应用广泛,且趣味性强。
在解决有关整除问题时,一般先把数分解成质因数的连乘积,然后根据需要把某些质因数组合得到所需的因数,在组合时千万不要漏掉满足要求的解。
其实,把一个数分解成质因数相乘的形式,能启发我们寻找解答许多难题的突破口,从而顺利结解题。
1、分解质因数的方法;
2、因数和质因数的区别;
3、质因数与分解质因数的联系与区别;
4、用短除法分解质因数。
例1:有三个学生,他们的年龄恰好一个比另一个大2岁,而他们的年龄的乘积为2688.那么他们的年龄各是多少?
例2:王老师带领同学们去种树,学生的人数恰好等分成四组。
已知老师和学生共种树539课,老师与学生每人中的树一样多,并且不少于10棵。
每人种了几棵树?
例3:马鹏和李虎计算甲、乙两个大于1的自然数的乘积,马鹏把甲数的个位数字看错了,得乘积473;李虎把甲数的十位数字看错了,得乘积407.那么,甲、乙两数的乘积应是多少?
例4:育才小学师生为贫困地区捐款1995元,这所学校共有35名教师,14个教学班,各班的学生人数相同,且多于30人,不超过45人。
如果每人平均捐款的钱数都是整元数,那么该校有学生多少人?平均每人捐款多少元?
例5、三个质因数的和是80,这三个数的积最大可以是多少?
1、把一篮苹果分给4人,使四人的苹果数一个比一个多2,且他们的苹果个数之积是1920,这篮苹果共有几个?
2、植树节那天,学校要求两位老师组织五年级的同学将893棵植栽完。
要求全部同学平均分成5组,老师和同学所种植的数量相同。
如果你是校长你会怎样安排植树。
你知道一共去植树的同学有多少位吗?
3、甲、乙两个人计算自然数A和B的乘积,甲把B的个位数字看错了,得到的积是522;乙把B的十位数字看错了,得到的积是667.那么A,B两数的乘积是多少?
4、有3250个橘子,平均分给一个幼儿园的小朋友,剩下10个。
已知每个小朋友分得的橘子数接近40个。
求这个幼儿园有多少名小朋友?
1.四年级某学生参加数学竞赛,他获得的名次、他的年龄、他得的分数的乘积是2910,这个学生得第几名,成绩是多少分?
2.李老师带领同学去种树,学生恰好平均分成三组。
如果老师比每个学生多种5棵,则师生共种树511棵。
问共有多少学生参加种树?
3.如果两数的和是64,两数的积可以整除4875,那么这两个数的差等于多少?
4.商店进一批练习本,共700本。
按每本0.5元卖出一部分后,剩下的降价出售,剩下的共卖得1
5.37元。
问这批练习本共卖了多少元?
5.在射箭运动中,每射一箭得到的环数或者是“0”(脱靶),或者是不超过10的自然数。
甲、乙两名运动员各射了5箭,每人5箭射得到的环数的积都是1764,但是甲的总环数比乙少4环。
甲、乙的总环数各是多少?
6.甲、乙、丙各有一些钱,甲比乙多3元,乙比丙多三元,已知三人的钱数的积是1620。
问甲、乙、丙各有多少元?。