向心力3变速圆周运动和一般曲线运动讲解

合集下载

人教版高中物理必修第二册:向心力【精品课件】

人教版高中物理必修第二册:向心力【精品课件】

F1=
4m 2n2r t2
,钢球所受合力的表达式F2=
mg r h
。下面是一次实验得到的数据,代入上式
计算结果F1= 0.101N,F2= 0.098 N,图中细线与竖直方向的夹角θ 比较小,可认为tan
θ=sin θ。(g取9.80 m/s2,π2≈9.86,计算结果保留三位小数)
m/kg
r/m
n/转
Fn=mvr 2 Fn=m ω2r Fn =m4Tπ22r
4、变速圆周运动中的合力并非向心力
在匀速圆周运动中合力充当向心力
当堂检测
1.如图所示是游乐园转盘游戏,游客坐在匀速转动的水平转盘上,与转盘相对静止,关于他 们的受力情况和运动趋势,下列说法中正确的是( C ) A.游客在匀速转动过程中处于平衡状态 B.受到重力、支持力、静摩擦力和向心力的作用 C.游客受到的静摩擦力方向沿半径方向指向圆心 D.游客相对于转盘的运动趋势与其运动方向相反
3.[多选]如图所示,一个内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,有
两个小球A和B紧贴内壁,且A球的质量为B球的2倍,分别在如图所示的水平面内做匀速
圆周运动,则( AB )
A.A球的线速度大于B球的线速度
B.A球的角速度小于B球的角速度
C.A球运动周期小于B球运动周期
D.A球对筒壁的压力小于B球对筒壁的压力
,由于mA=2mB,则知FA=2FB,根据牛顿第三定律得,小球对
筒壁的压力F′A=2F′B。
4.[多选]如图所示,在匀速转动的圆筒内壁上,有一物体随圆筒一起转动而
未滑动。当圆筒的角速度增大以后,下列说法正确的是( BC )
A.物体所受弹力增大,摩擦力增大 B.物体所受弹力增大,摩擦力不变 C.物体所受弹力和加速度都增大 D.物体所受弹力增大,摩擦力减小

向心力课件

向心力课件

用细线拴住小球 在光滑水平面内 做匀速圆周运动
线的拉力提供 向心力,F=T
示意图
物体随转盘 转盘对物体 做匀速圆周 的静摩擦力 运动,且相 提供向心 对转盘静止 力,F=f 小球在细线 重力和细线 作用下,在 的拉力的合 水平面内做 力提供向心
圆周运动 力,F=F合
特别提醒 (1)向心力不是具有特定性质的某种力,任何
ω=vr= gLLtasinnααsinα= Lcgosα,
小球运动的周期T=2ωπ=2π 答案 (1)mg/cosα
Lcosα g.
(2) gLtanαsinα
g
Lcosα
(3) Lcosα 2π
g
二、变速圆周运动和一般的曲线运动 典例2 一辆汽车在水平公路上转弯,沿曲线由M向N行 驶,速度逐渐增加,下图中分别画出了汽车转弯时所受合力F 的四种方向,下列选项中正确的是( )
(2)当B对地面恰好无压力时,则有FT′=Mg,拉力FT′
提供A做圆周运动所需的向心力
FT′=mω12R,
ω1=
FmT′R =
mMRg=20 rad/s.
即当B对地面恰好无压力时,A的角速度应为20 rad/s.
答案 (1)30 N (2)20 rad/s
性质的力都可以作为向心力,受力分析时不分析向心力.
(2)公式F=mω2r=m
v2 r
既适用于匀速圆周运动,也适用于
变速圆周运动.
(3)匀速圆周运动中,合力提供向心力;非匀速圆周运动
中,合力不一定指向圆心,合力沿半径的分力充当向心力.
二、变速圆周运动和一般的曲线运动 1.变速圆周运动:物体做圆周运动,它的线速度大小不 断改变,这种圆周运动称为变速圆周运动. 做变速圆周运动的物体所受合力并不指向圆心,这个力F 可以分解成互相垂直的两个分力,跟圆周相切的分力Ft和指向 圆心的分力Fn.

高中物理(新人教版)必修第二册:向心力【精品课件】

高中物理(新人教版)必修第二册:向心力【精品课件】

2.向心力的特点 (1)向心力方向时刻发生变化(始终指向圆心且与
v
速度方向垂直)。
F OF
F v
(2)向心力的作用:只改变线速度的方向不改变速
度大小。 (3)力是矢量,向心力的方向时刻发生改变,所以
v
向心力是变力。
一、向心力 2.向心力的特点
那么向心力是怎样产生的他是物体受到的吗?
rO ω
(4)向心力并不是像重力、弹力、摩擦力那样作为具有某种性质的力来命名的。 (5)向心力是根据力的作用效果来命名的,它可以是某一个力,或者是几个力 的合力来提供。
2.如图所示,在匀速转动的圆筒内壁上紧靠着一个物体,
物体随圆筒一起转动,物体所需的向心力由下面哪个力
来提供( B )
A.重力
B.弹力
C.静摩擦力
D.滑动摩擦力
3.如图,半径为r的圆筒绕竖直中心轴转动,小橡皮块紧帖在圆筒内壁上,它 与圆筒的摩擦因数为μ,现要使小橡皮不落下,则圆筒的角速度至少多大?
三、变速圆周运动和一般曲线运动的受力特点 1.变速圆周运动的受力特点
F Fn
同时具有向心加速度和切向加速度的 圆周运动就是变速圆周运动 ,匀速 圆周运动切向加速度为零。
当物体做圆周运动的线速度逐渐减小 时,物体所受合力的方向与速度方向 的夹角是大于 90°还是小于 90°呢?
三、变速圆周运动和一般曲线运动的受力特点 2.一般曲线运动的受力特点
向心力
学习目标
1.知道向心力,通过实例认识向心力的作用及向心力的来源 。 2.通过实验,理解向心力的大小与哪些因素有关,能运用向 心力公式进行计算。 3.知道向心加速度及其公式,能用牛顿第二定律分析匀速圆 周运动的向心力和向心加速度。
新课导入

2022年人教版高中物理必修二第六章圆周运动第2节向心力第1课时 向心力

2022年人教版高中物理必修二第六章圆周运动第2节向心力第1课时 向心力

第六章 圆周运动2.向心力 第1课时 向心力【课标定向】1.通过实验,探究并了解匀速圆周运动向心力大小与半径、角速度、质量的关系。

2.能用牛顿第二定律分析匀速圆周运动的向心力。

【素养导引】1.理解向心力的概念及其特点、表达式。

(物理观念)2.通过比较,知道变速圆周运动的合力与向心力的大小与方向。

(科学思维) 3.利用向心力演示器探究向心力大小的表达式。

(科学探究)一、向心力定义 做匀速圆周运动的物体受到总指向圆心的合力方向 始终沿着半径指向圆心 特点 只改变速度的方向 效果力 根据力的作用效果命名表达式F n =m v 2r=m ω2r二、变速圆周运动和一般曲线运动 1.变速圆周运动合力的作用效果: 变速圆周运动的合力产生两个方向的效果:(1)跟圆周相切的分力F t :与物体运动的方向平行,改变线速度的大小。

(2)指向圆心的分力F n :与物体运动的方向垂直,改变线速度的方向。

2.一般曲线运动:(1)曲线运动:运动轨迹既不是直线也不是圆周的曲线运动,称为一般的曲线运动,如图所示。

(2)处理方法:将曲线分割成为许多很短的小段,这样,质点在每一小段的运动都可以看作圆周运动的一部分。

[思考] 如图为公路自行车比赛中运动员正在水平路面上做匀速圆周运动。

若将运动员与自行车看成整体,则运动员转弯时所需向心力的来源如何?所受的合力方向及作用效果是什么?提示:运动员转弯时所需向心力由重力、支持力和地面对车轮的摩擦力的合力提供。

合力指向圆心,充当向心力,改变速度的方向。

如图,一辆汽车正匀速通过一段弯道公路。

判断以下问题:1.汽车受到的合力为零。

( ×)2.汽车做圆周运动的向心力由汽车的牵引力提供。

( ×)3.汽车做圆周运动的向心力既可以改变汽车速度大小,也可以改变汽车速度方向。

( ×)一、向心力的理解及来源分析如图所示,飞机在空中水平面内做匀速圆周运动;滑冰运动员在水平面内做匀速圆周运动。

向心力-精品教案

向心力-精品教案

向心力去的现象。

师:刚才同学们说得很好,圆周运动是变速运动,有加速度,故做圆周运动的物体一定受到力的作用。

而我们知道做匀速圆周运动的物体具有向心加速度,根据牛顿第二定律,这个加速度一定是由于它受到了指向圆心的合力的作用。

这个合力叫做向心力。

下面请同学们把刚才由牛顿第二定律推出的向心力的表达式展示出来。

投影学生推出的向心力表达式:FN=mv2/r , FN=mrω2点评:学生的思维在于老师的激发,学习的积极性在于老师的调动。

通过让学生发表见解,提出疑问,培养学生的语言表达能力和分析问题的能力。

二、实验:用圆锥摆粗略验证向心力的表达式[实验与探究]师:请同学们阅读教材,思考下面的问题:1.实验器材有哪些?2.简述实验原理(怎样达到验证的目的)。

3.实验过程中要注意什么?如何保证小球在水平面内做稳定的圆周运动,测量哪些物理量(记录哪些数据)?4.实验过程中产生误差的原因主要有哪些?学生认真阅读教材,思考问题,找学生代表发言。

教师听取学生的见解,点评、总结。

教师巡视并指导学生完成实验,及时发现并记录学生实验过程中存在的问题。

点评:让学生亲历实验验证的过程。

体验成功的乐趣。

培养动手能力和团结协作的团队精神。

教师听取学生汇报验证的结果,引导学生对实验的可靠性作出评估。

[交流与讨论]生:实验的过程中,多项测量都是粗略的,存在较大的误差,用两个方法得到的力并不严格相等。

生:通过实验我们还体会到。

向心力并不是像重力、弹力、摩擦力那样具有某种性质的力来命名的。

它是效果力,是按力的效果命名的。

在圆锥摆实验中,向心力是小球重力和细线拉力的合力,还可以理解为是细线拉力在水平面内的一个分力。

生:数圈数测时间时,要从零开始数起。

生:我有一个改进的实验,不知是否可行,其装置如图6.7—1所示,让小球在刚好要离开锥面的情况下做匀速圆周运动,我认为利用该装置可以使测量值减少误差。

师:同学们能积极思维,勇于发表自己的见解,这很好。

至于该方案效果如何,老师没有做过,这里也不敢妄下结论,还请同学们课后进一步进行比较性的研究,老师期待着你们的实验结论。

第五章 6.向心力

第五章 6.向心力

又因为 ω=2���π��� ,所以 TA>TB,D 项正确。
答案:D
探究一
探究二
探究三
随堂检测
变速圆周运动和一般的曲线运动 情景导引
荡秋千是小朋友很喜欢的游戏,当秋千由上向下荡时, (1)此时小朋友做的是匀速圆周运动还是变速圆周运动? (2)绳子拉力与重力的合力指向悬挂点吗?运动过程中,公式 Fn=m������������2=mω2r 还适用吗?
课堂篇探究学习
探究一
探究二
探究三
随堂检测
典例剖析 例1 如图所示,一圆盘可绕过圆盘的中心O且垂直于盘面的竖直轴转 动,在圆盘上放一小木块A,它随圆盘一起运动——做匀速圆周运动, 则关于木块A的受力,下列说法正确的是( ) A.木块A受重力、支持力和向心力 B.木块A受重力、支持力和静摩擦力,摩擦力的方向与 木块运动方向相反 C.木块A受重力、支持力和静摩擦力,摩擦力的方向指向圆心 D.木块A受重力、支持力和静摩擦力,摩擦力的方向与木块运动 方向相同
探究一
探究二
探究三
随堂检测
课堂篇探究学习
解析:由于圆盘上的木块A在竖直方向上没有加速度,所以,它在竖 直方向上受重力和支持力的作用而平衡。而木块在水平面内做匀 速圆周运动,其所需向心力由静摩擦力提供,且静摩擦力的方向指 向圆心O。
答案:C
课堂篇探究学习
探究一
探究二
探究三
随堂检测
规律方法 分析向心力来源的几种典型实例
B.做匀速圆周运动的物体,除了受到别的物体对它的作用力外,还
一定受到一个向心力的作用
C.向心力可以是重力、弹力、摩擦力中的某个力,也可以是这些
力中某几个力的合力,或者是某一个力的分力
D.向心力只改变物体速度的方向,不改变物体速度的大小 解析:向心力是根据力的作用效果来命名的,它可以是物体受力 的合力,也可以是某一个力的分力,因此,在进行受力分析时,不能再 分析向心力。向心力时刻指向圆心,与速度垂直,所以向心力只改 变速度方向,不改变速度大小。A、C、D正确,B错误,故选B。 答案:B

曲线运动知识点总结

曲线运动知识点总结

曲线运动一、曲线运动1、所有物体的运动从轨迹的不同可以分为两大类:直线运动和曲线运动。

2、曲线运动的产生条件:合外力方向与速度方向不共线(≠0°,≠180°)性质:变速运动3、曲线运动的速度方向:某点的瞬时速度方向就是轨迹上该点的切线方向。

4、曲线运动一定收到合外力,“拐弯必受力,”合外力方向:指向轨迹的凹侧。

若合外力方向与速度方向夹角为θ,特点:当0°<θ<90°,速度增大; 当0°<θ<180°,速度增大; 当θ=90°,速度大小不变。

5、曲线运动加速度:与合外力同向,切向加速度改变速度大小;径向加速度改变速度方向。

6、关于运动的合成与分解 (1)合运动与分运动定义:如果物体同时参与了几个运动,那么物体实际发生的运动就叫做那几个运动的合运动。

那几个运动叫做这个实际运动的分运动.特征:① 等时性;② 独立性;③ 等效性;④ 同一性。

(2)运动的合成与分解的几种情况:①两个任意角度的匀速直线运动的合运动为匀速直线运动。

②一个匀速直线运动和一个匀变速直线运动的合运动为匀变速运动,当二者共线时轨迹为直线,不共线时轨迹为曲线。

③两个匀变速直线运动合成时,当合速度与合加速度共线时,合运动为匀变速直线运动;当合速度与合加速度不共线时,合运动为曲线运动。

二、小船过河问题1、渡河时间最少:无论船速与水速谁大谁小,均是船头与河岸垂直,渡河时间min dt v =船,合速度方向沿v 合的方向。

2、位移最小:①若v v >船水,船头偏向上游,使得合速度垂直于河岸,船头偏上上游的角度为cos v v θ=水船,最小位移为min l d=。

②若v v <船水,则无论船的航向如何,总是被水冲向下游,则当船速与合速度垂直时渡河位移最小,船头偏向上游的角度为cos v v θ=船水,过河最小位移为min cos v dl d v θ==水船。

向心力—-高中物理必修第二册

向心力—-高中物理必修第二册
)
答案:√
(3)向心力只改变速度的方向,不改变速度的大小。(
)
解析:向心力时刻指向圆心,与速度方向始终垂直,故只改变速度方
向,不改变速度大小。
答案:√
必备知识
自我检测
(3)若要讨论向心力与角速度的关系,应控制质量、半径不变。
(2)物体做匀速圆周运动的条件:合外力大小不变,方向始终与线速度方向垂直且指向圆心。
小球所受的向心力突然变大
(1)做匀速圆周运动的物体所受的向心力是恒力。
荡秋千是小朋友很喜欢的游戏,当秋千由上向下荡时:
游客在匀速转动过程中处于平衡状态
根据牛顿第二定律有FT-mg=
【实验器材】 向心力演示器、天平、质量不等的若干小球等。
来源:向心力是根据力的作用效果来命名的,它是由某个力或者几个力的合力提供的。
周运动
圆桶侧壁对木块的弹力提
供向心力,F 向=FN
示意图
探究一
探究二
探究三
探究四
随堂检测
变式训练1(2020浙江温州十五校联合体高一
上学期期末)如图所示是游乐园转盘游戏,游
客坐在匀速转动的水平转盘上,与转盘相对静
止,关于他们的受力情况和运动趋势,下列说
法中正确的是(
)
A.游客在匀速转动过程中处于平衡状态
割成许多很短的小段,每一小段可看作一小段
圆弧,研究质点在这一小段的运动时,可以采用
圆周运动的分析方法进行处理,如图所示。
必备知识
自我检测
1.正误辨析
(1)做匀速圆周运动的物体所受的向心力是恒力。(
)
解析:向心力的方向在任何时刻都指向圆心,故方向不断变化,所以
向心力一定是变力。
答案:×
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目标再现
教学目标
1、会复述变速圆周运动和一般曲线运动的定义 2、 能利用力的分解分析变速圆周运动的受力 3、能应用微元法分析一般曲线运动
通过对学习目标的回顾这节课你学到了什么?
当?堂清学 变速圆周运动中的向心力
? 【例3】 如图5—6—8所示,质量为m的物 体,沿半径为r的圆轨道自A点滑下,A与圆 心O等高,滑至B点(B点在O点正下方)时的 速度为v,已知物体与轨道间的动摩擦因数 为μ,求物体在B点所受的摩擦力.
木块开始打滑,下列描述中正确的是 ( )CD
A.A最先打滑, C最后打滑
B .C最先打滑, A最后打滑
C.A和D一起打滑
D.B和C一起打滑
? 应用3—1 如图5—6—10所示,行车的钢丝长
L=3 m,下面吊着质量m=2.8×103 kg的货 物,以速度v=2 m/s行驶.行车突然刹车时, 钢丝绳受到的拉力是多少?(g取10 m/s2)
引导探究一:做变速圆周运动的物体所受的合力是 否指向圆心?这个力有哪两个效果?我们可以用哪 两个力替代物体所受的合力?
Ft
F
Fn
Ft 切向分力,它产生切向加速度,改变速度的大小 . Fn 向心分力,它产生向心加速度,改变速度的方向 .
探究二:一般曲线运动更复杂,我们如何分析此类运 动呢?谈谈你的想法?
P处的曲率半径是 ———————
?= v02 cos2 ?
g
例题探究
? 1、质量为m的小球,用长为 l 的线悬挂在O 点,在O点正下方处有一光滑的钉子O′,把 小球拉到右侧某一位置释放,当小球第一 次通过最低点P时( BC) D
? A、小球速率突然减小 ? B、小球角速度突然增大 ? C、小球向心加速度突然增大 ? D、摆线上的张力突然增大
? 8.一般的曲线运动可以分成很多小段,每小段都
可以看成圆周运动的一部分,即把整条曲线用一系
列不同半径的小圆弧来代替.如图甲所示,曲线上
的A点的曲率圆定义为:通过 A点和曲线上紧邻 A
点两侧的两点作一圆,在极限情况下,这个圆就叫
做A点的曲率圆,其半径 ρ叫做A点的曲率半径.现
将一物体沿与水平面成 α角的方向以速度 v0抛出, 如图乙所示,重力加速度为 g,则在其轨迹最高点
解析:行车刹车瞬间,物体受重力和钢丝绳拉力作 用,二力的合力提供向心力
v2 T-mg=m L 故 T=mg+mvL2=3.17×104 N
答案:3.17×104N
课后作业
全品测评卷
阅读课本 P24思考回答以下问题: 1、什么叫变速圆周运动?
做变速圆周运动的物体所受的合外力也指向圆心吗? 这个合外力有哪两个效果?
我们可以用哪两个力等效替代变速圆周运动的物体所 受的合外力,这两个力分别产生什么效果?
2、什么叫一般的曲线运动?利用微元法,我们可以 把曲线分割成许多很短的小段,每一小段都可以看成 什么运动?
r2 r1
提示:一般曲线运动和变速圆周运动有什么相同点? 有什么区别?能否将一般曲线运动转化成变速运动? 对于一般的曲线运动,可以把这条曲线分割为许多小的圆 弧,质点在每小段的运动都可以看成圆周运动的一部 分.这样,在分析质点经过曲线上某位置的运动时,就可 以采用圆周运动的分析方法来处理了.
高考真题
导入
平抛___>匀速圆周运动___>
变速圆周运动___> 一般曲线运动
生活中最多的运动情况就是一 般曲线运动
第六节 向心力
(第三课时) 变速圆周运动和一般曲线运动
教学目标
1、会复述变速圆周运动和一般曲线运动的定义 2、 能利用力的分解分析变速圆周运动的受力 3、能应用微元法分析一般曲线运动
自主学习
? 规律总结:对于变速圆周运动,向心力F的 大小不恒定,应用公式F= 计算向心 力F的大小时,v必须用对应位置的瞬时速 度值,本题中物体所受三力的合力方向斜 向左上方,这说明物体做变速圆周运动时 向心力不等于物体所受外力的合力.
在水平放置的圆盘上有 A、B、C、D四个木块, m A= 4m ,m B=m D=2m ,m C=m ,木块与圆盘 间动摩擦因数相同,设最大静摩擦力等于滑动摩 擦力,木块在转盘上的位置如图所示,使圆盘转 动起来并缓慢加快转速,当转速达到一定程度时,
【解析】 物体由 A 滑到 B 的过程中,
受到重力、轨道弹力及摩擦力的作用,做
圆周运动,在 B 点物体的受力情况如图
5—6—9 所示,其中轨道弹力 FN 与重力 G
=mg 的合力提供物体做圆周运动的向心
力,由牛顿第二定律有
F
N-mg
=mrv
2
,可
求得
F
N=
mg
+mrv
2
,则滑动摩擦力为
Байду номын сангаасFf
=μF N=μm (g+vr2).
相关文档
最新文档