2008年全国初中数学竞赛(海南赛区)
数学周报_杯_2008年全国初中数学竞赛试题及解答

购物原价超过300元;则第一次购物原价为94.5÷0.9=105(元).所以小丽应付(316+105-300)×0.8+300×0.9=362.8(元).20.(1)证明:如图,延长CB至点G,使得BG=DF,连结AG.因为ABCD是正方形,所以在Rt△ADF和Rt△ABG中,AD=AB,∠ADF=∠ABG=90°,DF=BG.∴Rt△ADF≌Rt△ABG(SAS),∴AF=AG,∠DAF=∠BAG.又∵AE是∠BAF的平分线,∴∠EAF=∠BAE,∴∠DAF+∠EAF=∠BAG+∠BAE.即∠EAD=∠GAE. ∵AD∥BC,∴∠GEA=∠EAD,∴∠GEA=∠GAE,∴AG=GE.即AG=BG+BE.∴AF=DF+BE,得证.(2)S=S△ADF+S△ABE=12DF·AD+12BE·AB.∵AD=AB=1,∴S=12(DF+BE).由(1)知,AF=DF+BE,所以S=12AF.在Rt△ADF中,AD=1,DF=x,∴AF=x2槡+1,∴S=12x2槡+1.由上式可知,当x2达到最大值时,S最大.而0≤x≤1,所以,当x=1时,S最大值为12x2槡+1=12槡2櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕毇毇毇毇.“《数学周报》杯”2008年全国初中数学竞赛试题及解答 一、选择题(共5小题,每小题6分,满分30分.以下每道小题均给出了代号为A,B,C,D的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里.不填、多填或错填都得0分)1.已知实数x,y满足4x4-2x2=3,y4+y2=3,则4x4+y4的值为( ).A.7 B.槡1+132 C.槡7+132 D.5【答】(A)解:因为x2>0,y2≥0,由已知条件得1x2=槡2+4+4×4×38=槡1+134,y2=槡-1+1+4×32=槡-1+32,所以4x4+y4=2x2+3+3-y2=2x2-y2+6=7.另解:由已知得(-2x2)2+(-2x2)-3=0,(y2)2+y2-3=0烅烄烆.显然-2x2≠y2,以-2x2,y2为根的一元二次方程为t2+t-3=0,所以(-2x2)+y2=-1,(-2x2)×y2=-3.故4x+y3=[(-2x2+y2)]2-2×(-2x2)×y2=(-1)2-2×(-3)=7.2.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m,n,则二次函数y=x2+mx+n的图象与x轴有两个不同交点的概率是( ).A.512 B.49 C.1736 D.12【答】(C)解:基本事件总数有6×6=36,即可以得到36个二次函数.由题意知Δ=m2-4n>0,即m2>4n.通过枚举知,满足条件的m,n有17对.故P=1736.3.有两个同心圆,大圆周上有4个不同的点,小圆周上有2个不同的点,则这6个点可以确定的不同直线最少有( ).A.6条 B.8条 C.10条 D.12条(第3题)【答】(B)解:如图,大圆周上有4个不同的点A,B,C,D,两两连线可以确定6条不同的直线;小圆周上的两个点E,F中,至少有一个不是四边形ABCD的对角线AC与BD34的交点,则它与A,B,C,D的连线中,至少有两条不同于A,B,C,D的两两连线.从而这6个点可以确定的直线不少于8条.当这6个点如图所示放置时,恰好可以确定8条直线.所以,满足条件的6个点可以确定的直线最少有8条.(第4题)4.已知AB是半径为1的圆O的一条弦,且AB=a<1.以AB为一边在圆O内作正△ABC,点D为圆O上不同于点A的一点,且DB=AB=a,DC的延长线交圆O于点E,则AE的长为( ).A.槡52a B.1 C.槡32 D.a【答】(B)解:如图,连接OE,OA,OB.设∠D=α,则∠ECA=120°-α=∠EAC.又因为∠ABO=12∠ABD=12(60°+180°-2α)=120°-α,所以△ACE≌△ABO,于是AE=OA=1.另解:如图,作直径EF,连结AF,以点B为圆心,AB为半径作⊙B.因为AB=BC=BD,则点A,C,D都在⊙B上,由∠F=∠EDA=12∠CBA=12×60°=30°,所以AE=EF×sin∠F=2×sin30°=1.5.将1,2,3,4,5这五个数字排成一排,最后一个数是奇数,且使得其中任意连续三个数之和都能被这三个数中的第一个数整除,那么满足要求的排法有( ).A.2种 B.3种 C.4种 D.5种【答】(D)解:设a1,a2,a3,a4,a5是1,2,3,4,5的一个满足要求的排列.首先,对于a1,a2,a3,a4,不能有连续的两个都是偶数,否则,这两个之后都是偶数,与已知条件矛盾.又如果ai(1≤i≤3)是偶数,ai+1是奇数,则ai+2是奇数,这说明一个偶数后面一定要接两个或两个以上的奇数,除非接的这个奇数是最后一个数.所以a1,a2,a3,a4,a5只能是:偶,奇,奇,偶,奇,有如下5种情形满足条件:2,1,3,4,5; 2,3,5,4,1; 2,5,1,4,3;4,3,1,2,5; 4,5,3,2,1.二、填空题(共5小题,每小题6分,满分30分)6.对于实数u,v,定义一种运算“*”为:u*v=uv+v.若关于x的方程x*(a*x)=-14有两个不同的实数根,则满足条件的实数a的取值范围是.【答】a>0,或a<-1.解:由x*(a*x)=-14,得(a+1)x2+(a+1)x+14=0.依题意有a+1≠0,Δ=(a+1)2-(a+1)>0{.解得 a>0,或a<-1.7.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是分钟.【答】4.解:设18路公交车的速度是x米/分,小王行走的速度是y米/分,同向行驶的相邻两车的间距为s米.每隔6分钟从背后开过一辆18路公交车,则6x-6y=s.①每隔3分钟从迎面驶来一辆18路公交车,则3x+3y=s.②由①,②可得s=4x,所以sx=4.即18路公交车总站发车间隔的时间是4分钟.(第8题)8.如图,在△ABC中,AB=7,AC=11,点M是BC的中点,AD是∠BAC的平分线,MF∥AD,则FC的长为.(第9题)【答】9.解:如图,设点N是AC的中点,连接MN,则MN∥AB.又MF∥AD,所以44∠FMN=∠BAD=∠DAC=∠MFN,所以FN=MN=12AB.因此FC=FN+NC=12AB+12AC=9.另解:如图,过点C作AD的平行线交BA的延长线为E,延长MF交AE于点N.则∠E=∠BAD=∠DAC=∠ACE.所以AE=AC=11.又FN∥CE,所以四边形CENF是等腰梯形,即CF=EN=12BE=12×(7+11)=9.9.△ABC中,AB=7,BC=8,CA=9,过△ABC的内切圆圆心I作DE∥BC,分别与AB,AC相交于点D,E,则DE的长为.【答】163.(第9题)解:如图,设△ABC的三边长为a,b,c,内切圆I的半径为r,BC边上的高为ha,则12aha=S△ABC=12(a+b+c)r,所以rha=aa+b+c.因为△ADE∽△ABC,所以它们对应线段成比例,因此ha-rha=DEBC,所以DE=ha-rha·a=(1-rha)a=(1-aa+b+c)a=a(b+c)a+b+c,故DE=8×(7+9)8+7+9=163.另解:∵S△ABC=rp=p(p-a)(p-b)(p-c槡)槡槡=12×4×3×5=12 5,(这里p=a+b+c2)所以r12 =槡512槡=5,ha=2S△ABCa2×12 58槡2 =槡5.由△ADE∽△ABC,得DEBC=ha-rha3 5-5槡3 =槡槡5=23,即DE=23BC=163.10.关于x,y的方程x2+y2=208(x-y)的所有正整数解为.【答】x=48,y=32{, x=160,y=32{.解:因为208是4的倍数,偶数的平方数除以4所得的余数为0,奇数的平方数除以4所得的余数为1,所以x,y都是偶数.设x=2a,y=2b,则a2+b2=104(a-b).同上可知,a,b都是偶数.设a=2c,b=2d,则c2+d2=52(c-d),所以,c,d都是偶数.设c=2s,d=2t,则s2+t2=26(s-t),于是(s-13)2+(t+13)2=2×132,其中s,t都是偶数.所以(s-13)2=2×132-(t+13)2≤2×132-152<112.所以|s-13|可能为1,3,5,7,9,进而(t+13)2为337,329,313,289,257,故只能是(t+13)2=289,从而|s-13|=7.于是s=6,t=4{;s=20,t=4{.因此x=48,y=32{,x=160,t=32{.另解:因为(x-104)2+(y+104)2=2×1042=21632,则有(y+104)2≤21632.又y正整数,所以1≤y≤43.令a=|x-104|,b=|y+104|,则a2+b2=21632.因为任何完全平方数的个位数为:1,4,5,6,9,由a2+b2=21632知a2,b2的个位数只能是1和1或6和6.当a2,b2的个位数是1和1时,则a,b的个位数字可以为1或9.但个位数为1和9的数的平方数的十位数字为偶数,与a2+b2的十位数字为3矛盾.当a2,b2的个位数是6和6时,则a,b的个位数字可以为4或6.由105≤b≤147,取b=106,114,116,124,126,134,136,144,146代入a2+b2=21632得,只有当b=54136时,a=56,即|x-104|=56,|y+104|=136{.解得x=48,y=32{; x=160,y=32{.三、解答题(共4题,每题15分,满分60分)11.在直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与x轴,y轴的正半轴分别交于A,B两点,且使得△OAB的面积值等于|OA|+|OB|+3.(1)用b表示k;(2)求△OAB面积的最小值.解:(1)令x=0,得y=b,b>0;令y=0,得x=-bk>0,k<0.所以A,B两点的坐标分别为A(-bk,0),B(0,b),于是,△OAB的面积为S=12b·(-bk).由题意,有12b·(-bk)=-bk+b+3.解得 k=2b-b22(b+3),b>2.(2)由(1)知S=12b·(-bk)=b(b+3)b-2=(b-2)2+7(b-2)+10b-2=b-2+10b-2+7=(b槡-2-10b槡-2)2槡+7+2 10≥槡7+2 10.当且仅当b-2=10b-2时,有S槡=7+2 10,即当b槡=2+10,k=-1时,不等式中的等号成立.所以,△ABC面积的最小值为槡7+2 10.12.是否存在质数p,q,使得关于x的一元二次方程px2-qx+p=0有有理数根?解:设方程有有理数根,则判别式为平方数.令Δ=q2-4p2=n2,其中n是一个非负整数.则(q-n)(q+n)=4p2.由于1≤q-n≤q+n,且q-n与q+n同奇偶,故同为偶数.因此,有如下几种可能情形:q-n=2,q+n=2p2{, q-n=4,q+n=p2{, q-n=p,q+n=4p{.q-n=2p,q+n=2p{, q-n=p2,q+n{=4消去n,解得q=q2+1,q=2+p22,q=5p2,q=2p,q=2+p22.对于第1,3种情形,p=2,从而q=5;对于第2,5种情形,p=2,从而q=4(不合题意,舍去);对于第4种情形,q是合数(不合题意,舍去).又当p=2,q=5时,方程为2x2-5x+2=0,它的根为x1=12,x2=2它们都是有理数.综上所述,存在满足题设的质数.★12.已知a,b为正整数,关于x的方程x2-2ax+b=0的两个实数根为x1,x2,关于y的方程y2+2ay+b=0的两个实数根为y1,y2,且满足x1·y1-x2·y2=2008.求b的最小值.解:由韦达定理,得x1+x2=2a,x1·x2=b;y1+y2=-2a,y1·y2=b,即y1+y2=-2a=-(x1+x2)=(-x1)+(-x2),y1·y2=b=(-x1)·(-x2){.解得 y1=-x1,y2=-x2{; 或y1=-x2,y2=-x1{.把y1,y2的值分别代入x1·y1-x2·y2=2008得x1·(-x1)-x2·(-x2)=200.或x1·(-x2)-x2·(-x1)=2008(不成立).即x22-x21=2008,(x2+x1)(x2-x1)=2008.因为x1+x2=2a>0,x1·x2=b>0,所以x1>0,x2>0.于是有2a·4a2-4槡b=2008.即a·a2 -槡b=502=1×502=2×251.因为a,b都是正整数,所以a=1,a2-b=502{2或a=505,a2-b{=1或a=2,a2-b=251{2或a=251,a2-b=4{.分别解得:a=1,b=1-502{2或a=502,b=5022{-1或a=2,b=2-251{2或a=251,b=2512-4{.经检验只有:a=502b=5022{-1,a=251b=2512{-4符合题意.所以b的最小值为:b最小值=2512-4=62997.6413.是否存在一个三边长恰是三个连续正整数,且其中一个内角等于另一个内角2倍的△ABC?证明你的结论.解:存在满足条件的三角形.当△ABC的三边长分别为a=6,b=4,c=5时,∠A=2∠B.(第13(A)题答案)如图,当∠A=2∠B时,延长BA至点D,使AD=AC=b.连接CD,则△ACD为等腰三角形.因为∠BAC为△ACD的一个外角,所以∠BAC=2∠D.由已知,∠BAC=2∠B,所以∠B=∠D.所以△CBD为等腰三角形.又∠D为△ACD与△CBD的一个公共角,有△ACD∽△CBD,于是ADCD=CDBD, 即ba=ab+c,所以 a2=b(b+c).而62=4×(4+5),所以此三角形满足题设条件,故存在满足条件的三角形.说明:满足条件的三角形是唯一的.若∠A=2∠B,可得a2=b(b+c).有如下三种情形:(ⅰ)当a>c>b时,设a=n+1,c=n,b=n-1(n为大于1的正整数),代入a2=b(b+c),得(n+1)2=(n-1)(2n-1).解得n=5,有a=6,b=4,c=5;(ⅱ)当c>a>b时,设c=n+1,a=n,b=n-1(n为大于1的正整数),代入a2=b(b+c),得n2=(n-1)·2n.解得n=2,有a=2,b=1,c=3,此时不能构成三角形;(ⅲ)当a>b>c时,设a=n+1,b=n,c=n-1(n为大于1的正整数),代入a2=b(b+c),得(n+1)2=n(2n-1),即n2-3n-1=0,此方程无整数解.所以,三边长恰为三个连续的正整数,且其中一个内角等于另一个内角的2倍的三角形存在,而且只有三边长分别为4,5,6构成的三角形满足条件.★13.如图,△ABC的三边长BC=a,AC=b,AB=c,a,b,c都是整数,且a,b的最大公约数是2.点G和点I分别为△ABC的重心和内心,且∠GIC=90°,求△ABC的周长.解:如图,连结GA,GB.过G,I作直线交BC,AC于点E,F,作△ABC的内切圆I,切BC边于点D.记△ABC的半周长为P,内切圆半径为r,BC,AC边上的高线长为ha,hb.∵S△ABC=rp=p(p-q)(p-b)(p-c槡),∴r=(p-a)(p-b)(p-c)槡p.易知:CD=p-c,在Rt△CIE中,DE=r2p-c,即DE=(p-a)(p-b)p.∴CE=CD+DE=(p-c)+(p-a)(p-b)p=abp.又∵CI⊥EF,CI平分∠ACB,所以CE=CF.由S△ABC=S△ABG+S△BEG+S△AFG+S△FEC,S△ABC=S△ABC3+12×(a-abp)×ha3+12×(b-abp)×hb3+2×12×abp×r,即 S△ABC=S△ABC3+(12×a×ha)×p-b3p+(12×b×hb)×p-a3p+abp2×rp.整理得2p2-cp=3ab,即3ab=2p2-cp=p(2p-c)=p(a+b).设△ABC的周长为m,则m=2p=6aba+b为整数.由已知(a,b)=2,设a=2s,b=2t,且(s,t)=1,s,t都是正整数,代入上式,得m=12sts+t.∵(s,s+t)=1,(t,s+1)-1,∴s+t是12的约数,即s+t=1,2,3,4,6,12.不妨设s≥1,则(s,t)=1,得s=1,t=1,m=6烅烄烆; s=2,t=1,m=8烅烄烆; s=3,t=1,m=9烅烄烆;s=5,t=1,m=10烅烄烆; s=11,t=1,m=11烅烄烆; s=7,t=5,m=35烅烄烆.经检验,只有 s=7,t=5,m=35烅烄烆. 符合题意,所以 a=14,b=10,c=10或a=10,b=14,c=11,即所求△ABC的周长为35.7414.从1,2,…,9中任取n个数,其中一定可以找到若干个数(至少一个,也可以是全部),它们的和能被10整除,求n的最小值.解:当n=4时,数1,3,5,8中没有若干个数的和能被10整除.当n=5时,设a1,a2,…,a5是1,2,…,9中的5个不同的数.若其中任意若干个数,它们的和都不能被10整除,则a1,a2,…,a5中不可能同时出现1和9;2和8;3和7;4和6.于是a1,a2,…,a5中必定有一个数是5.若a1,a2,…,a5中含1,则不含9.于是不含4(4+1+5=10),故含6;于是不含3(3+6+1=10),故含7;于是不含2(2+1+7=10),故含8.但是5+7+8=20是10的倍数,矛盾.若a1,a2,…,a5中含9,则不含1.于是不含6(6+9+5=20),故含4;于是不含7(7+4+9=20),故含3;于是不含8(8+9+3=10),故含2.但是5+3+2=10是10的倍数,矛盾.综上所述,n的最小值为5.★★14.已知有6个互不相同的正整数a1,a2,…,a6,且a1<a2<…<a6,从这6个数中任意取出3个数,分别设为ai,aj,ak,其中i<j<k.记f(i,j,k)=1ai+2aj+3ak.证明:一定存在3个不同的数组(i,j,k),其中1≤i<j<k≤6,使得对应着的3个f(i,j,k)两两之差的绝对值都小于0.5.(征求答案獉獉獉獉)。
2008全国初中数学竞赛试题及答案

中国教育学会中学数学教学专业委员会“《数学周报》杯”2008年全国初中数学竞赛试题参考答案题 号 一 二 三 总 分1~5 6~10 11 1213 14 得 分 评卷人 复查人答题时注意:1.用圆珠笔或钢笔作答.2.解答书写时不要超过装订线. 3.草稿纸不上交.一、选择题(共5小题,每小题6分,满分30分. 以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里. 不填、多填或错填都得0分)1.已知实数x y ,满足 42424233y y x x-=+=,,则444y x +的值为( ).(A )7 (B ) 1132+ (C ) 7132+ (D )5 【答】(A )解:因为20x >,2y ≥0,由已知条件得212444311384x ++⨯⨯+==, 2114311322y -++⨯-+==, 所以444y x +=22233y x ++- 2226y x=-+=7. 另解:由已知得:2222222()()30()30x xy y ⎧-+--=⎪⎨⎪+-=⎩,显然222y x -≠,以222,y x -为根的一元二次方程为230t t +-=,所以 222222()1,()3y y x x-+=--⨯=- 故444y x +=22222222[()]2()(1)2(3)7y y x x-+-⨯-⨯=--⨯-= 2.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m ,n ,则二次函数2y x mx n =++的图象与x 轴有两个不同交点的概率是( ).(第3题)FEDCOA B(A )512 (B )49 (C )1736(D )12【答】(C )解:基本事件总数有6×6=36,即可以得到36个二次函数. 由题意知∆=24m n ->0,即2m >4n .通过枚举知,满足条件的m n ,有17对. 故1736P =. 3.有两个同心圆,大圆周上有4个不同的点,小圆周上有2个不同的点,则这6个点可以确定的不同直线最少有( ).(A )6条 (B ) 8条 (C )10条 (D )12条【答】(B )解:如图,大圆周上有4个不同的点A ,B ,C ,D ,两两连线可以确定6条不同的直线;小圆周上的两个点E ,F 中,至少有一个不是四边形ABCD 的对角线AC 与BD 的交点,则它与A ,B ,C ,D 的连线中,至少有两条不同于A ,B ,C ,D 的两两连线.从而这6个点可以确定的直线不少于8条.当这6个点如图所示放置时,恰好可以确定8条直线. 所以,满足条件的6个点可以确定的直线最少有8条.4.已知AB 是半径为1的圆O 的一条弦,且1AB a =<.以AB 为一边在圆O 内作正△ABC ,点D 为圆O 上不同于点A 的一点,且DB AB a ==,DC 的延长线交圆O 于点E ,则AE 的长为( ).(A )52a (B )1 (C )32(D )a 【答】(B )解:如图,连接OE ,OA ,OB . 设D α∠=,则 120ECA EAC α∠=︒-=∠.又因为()1160180222ABO ABD α∠=∠=︒+︒-120α=︒-,所以ACE △≌ABO △,于是1AE OA ==. 另解:如图,作直径EF ,连结AF ,以点B 为圆心,AB 为半径 作⊙B ,因为AB =BC =BD ,则点A ,C ,D 都在⊙B 上,由11603022F EDA CBA ∠=∠=∠=⨯︒=︒所以2301AE EF sim F sim =⨯∠=⨯︒=(第4题)5.将1,2,3,4,5这五个数字排成一排,最后一个数是奇数,且使得其中任意连续三个数之和都能被这三个数中的第一个数整除,那么满足要求的排法有( ).(A )2种 (B )3种 (C )4种 (D )5种 【答】(D )解:设12345a a a a a ,,,,是1,2,3,4,5的一个满足要求的排列.首先,对于1234a a a a ,,,,不能有连续的两个都是偶数,否则,这两个之后都是偶数,与已知条件矛盾.又如果i a (1≤i ≤3)是偶数,1i a +是奇数,则2i a +是奇数,这说明一个偶数后面一定要接两个或两个以上的奇数,除非接的这个奇数是最后一个数.所以12345a a a a a ,,,,只能是:偶,奇,奇,偶,奇,有如下5种情形满足条件: 2,1,3,4,5; 2,3,5,4,1; 2,5,1,4,3; 4,3,1,2,5; 4,5,3,2,1. 二、填空题(共5小题,每小题6分,满分30分)6.对于实数u ,v ,定义一种运算“*”为:u v uv v *=+.若关于x 的方程1()4x a x **=-有两个不同的实数根,则满足条件的实数a 的取值范围是 .【答】0a >,或1a <-.解:由1()4x a x **=-,得21(1)(1)04a x a x ++++=,依题意有 210(1)(1)0a a a +≠⎧⎨∆=+-+>⎩,, 解得,0a >,或1a <-.7.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是 分钟.【答】4.解:设18路公交车的速度是x 米/分,小王行走的速度是y 米/分,同向行驶的相邻两车的间距为s 米.每隔6分钟从背后开过一辆18路公交车,则 s y x =-66. ① 每隔3分钟从迎面驶来一辆18路公交车,则s y x =+33. ②(第8题)(第9题答案)NEFMD BCA 由①,②可得 x s 4=,所以4=xs. 即18路公交车总站发车间隔的时间是4分钟.8.如图,在△ABC 中,AB =7,AC =11,点M 是BC 的中点, AD 是∠BAC 的平分线,MF ∥AD ,则FC 的长为 . 【答】9.解:如图,设点N 是AC 的中点,连接MN ,则MN ∥AB . 又//MF AD ,所以 FMN BAD DAC MFN ∠=∠=∠=∠,所以 12FN MN AB ==. 因此 1122FC FN NC AB AC =+=+=9.另解:如图,过点C 作AD 的平行线交BA 的延长线为E ,延长MF 交 AE 于点N.则E BAD DAC ACE ∠=∠=∠=∠所以11AE AC ==. 又//FN CE ,所以四边形CENF 是等腰梯形, 即11(711)922CF EN BE ===⨯+=9.△ABC 中,AB =7,BC =8,CA =9,过△ABC 的内切圆圆心I 作DE ∥BC ,分别与AB ,AC 相交于点D ,E ,则DE 的长为 .【答】163. 解:如图,设△ABC 的三边长为a ,b ,c ,内切圆I 的半径为r , BC 边上的高为a h ,则11()22a ABC ah S abc r ==++△, 所以 a r a h a b c=++. 因为△ADE ∽△ABC ,所以它们对应线段成比例,因此a a h r DEh BC-=, 所以 (1)(1)a a a h r r aDE a a a h h a b c-=⋅=-=-++()a b c a b c +=++, 故 879168793DE ⨯+==++().(第8题答案)另解: ()()()ABC S rp p p a p b p c ∆==--- =12435125⨯⨯⨯=(这里2a b cp ++=) 所以125512r==, 22125358ABC a S h a ⨯===△ 由△ADE ∽△ABC ,得 3552335a a h r DE BC h --===, 即21633DE BC === 10.关于x ,y 的方程22208()x y x y +=-的所有正整数解为 .【答】481603232.x x y y ==⎧⎧⎨⎨==⎩⎩,,, 解:因为208是4的倍数,偶数的平方数除以4所得的余数为0,奇数的平方数除以4所得的余数为1,所以x ,y 都是偶数.设2,2x a y b ==,则22104()a b a b +=-,同上可知,a ,b 都是偶数.设2,2a c b d ==,则2252()c d c d +=-,所以,c ,d 都是偶数.设2,2c s d t ==,则2226()s t s t +=-,于是 22(13)(13)s t -++=2213⨯, 其中s ,t 都是偶数.所以222(13)213(13)s t -=⨯-+≤2222131511⨯-<.所以13s -可能为1,3,5,7,9,进而2(13)t +为337,329,313,289,257,故只能是2(13)t +=289,从而13s -=7.于是62044s s t t ==⎧⎧⎨⎨==⎩⎩,,;,因此 481603232.x x y y ==⎧⎧⎨⎨==⎩⎩,,,另解:因为222(104)(104)210421632x y -++=⨯= 则有2(104)21632,y +≤ 又y 正整数,所以 143y ≤≤令22|104|,|104|,21632a x b y a b =-=++= 则 因为任何完全平方数的个位数为:1,4,5,6,9由2221632a b +=知22,a b 的个位数只能是1和1或6和6; 当22,a b 的个位数是1和1时,则,a b 的个位数字可以为1或9但个位数为1和9的数的平方数的十位数字为偶数,与22a b +的十位数字为3矛盾。
全国初中数学竞赛(海南赛区)初赛试题(含答案)

11、(3x-2y)212、 13、2 14、3 15、2<x<7
16、13.5 17、1或7 18、5
答案提示:
12、
13、由 得 所以有 所以x的值为2.
因为关于x的方程x2-4x+a=0的两个实数根为x1、x2,由根与系数的关系得x1+x2=4,所以 ,解得 ,所以a=3.
全国初中数学竞赛(海南赛区)
数学试卷
(本试卷共4页,满分120分,考试时间:3月10日8:30——10:30)
题号
一
二
三
总分
(1—10)
(11—18)
19
20
得分
一、选择题(本大题满分50分,每小题5分)
在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母
代号填写在下表相应题号下的方格内
8、由矩形AOBC的面积为8,可求矩形PEOF的面积为2,
又点P在第一象限,所以K=2,故选择B.
9、如图,分别以大的正方形中间”十”字所在的直线为对称轴可画出2、3两图,分别以正方形对角线所在直线为对称轴可画出4、5两图,再加上第1幅图,总共有5个符合条件的三角形,故选择A.
10、若点M在圆上,点M与圆心A的距离等于圆的半径 ,容易判断点(2,0)是圆A与X轴正半轴的交点、点(0,-2)是圆A与y轴负半轴的交点,另外,可以通过构造直角三角形判断点(2,-2)与圆心A的距离等于 ,也可以用两点公式求出点(2,-2)与圆心A的距离等于 ,因此A、B、C三个选项中的点均在圆上,而点(1,-2)与圆心A的距离等于1,小于圆A的半径,点(1,-2)不在圆上,故选择D.
19、海南省某种植园收获香蕉20000千克,其中香牙蕉12000千克、黄帝蕉8000千克,准备运往海口与文昌销售;根据市场供需,海口需要香蕉15000千克,文昌需要香蕉5000千克,海口与文昌两地的香蕉售价如下表所示:
关于2009年全国初中数学竞赛(海南赛区)

关于2009年全国初中数学竞赛(海南赛区)
评奖结果的通报
各市、县、自治县教育(教科)局教研室,海口市教育研究培训院,洋浦经济开发区社会发展局科教办,省农垦总局教育局教研室,厅直属各中学:2009年全国初中数学竞赛(海南赛区)评奖工作已经结束,共评出学生个人奖一等奖74人,二等奖213人,三等奖330人。
“优秀辅导教师”152人。
现将获奖名单通报如下:
一、2009年全国初中数学竞赛(海南赛区)学生获奖名单
一等奖(74人):
二等奖(213人)
三等奖(330人)
二、2009年全国初中数学竞赛(海南赛区)“优秀辅导教师”名单海口市(35人):
定安县(3人):
万宁市(8人):
保亭县(3人):
东方市(4人):
海师附中(1人):
海南省中学数学教学专业委员会
二00九年五月六日。
海南省2008年初中毕业生学业考试

海南省2008年初中毕业生学业考试数学科分析报告按照国家教育部的有关规定,我省新课程的中考定位为初中毕业生学业考试。
随着课程改革的不断深入,2008年我省参加中考的人数共有人,全部是参加新课改的初中毕业生。
初中毕业数学学业考试(以下简称为数学学业考试)是义务教育阶段数学科的终结性考试,其目的是全面、准确地评估初中毕业生达到《全日制义务教育数学课程标准(实验稿)》(以下简称为《课程标准》)所规定的数学学业水平的程度。
考试的结果既是确定学生是否达到义务教育阶段数学科毕业标准的主要依据,也是高中阶段学校招生的重要依据之一。
一、命题依据数学学业考试命题的基本指导思想是:(1)数学学业考试要有利于引导和促进数学教学全面落实《课程标准》所设立的课程目标,有利于引导改善学生的数学学习方式,提高学生数学学习的效率,有利于高中阶段学校综合、有效地评价学生的数学学习状况。
(2)数学学业考试既要重视对学生学习数学知识与技能的评价,也要重视对学生在数学思考能力和解决问题能力等方面发展状况的评价。
(3)数学学业考试命题应当面向全体学生,根据学生的年龄特征、思维特点、数学背景和生活经验编制试题,使具有不同的认知特点、不同的数学发展程度的学生都能表现自己的数学学习状况,力求公正、客观、全面、准确地评价学生通过初中教育阶段的数学学习所获得的发展状况。
数学科考试命题,严格按照《课程标准》的评价理念,按照国家中考数学命题指导研制工作组颁布的《2005年初中毕业生(数学)学科学业考试命题指导》提出的四条基本的命题原则,体现基础性、公平性,符合学生实际,保证科学、有效。
在命题时,紧密结合海南省2008年初中毕业升学考试数学科《考试说明》和本届学生的实际,坚持“稳中求变,追求创新”的评价改革理念,努力为本次中考营造良好的氛围。
二、试题结构与内容分析1.基本情况今年我省数学学业考试采用闭卷、笔试的方式。
考生可以带计算器及规定的作图工具进入考场。
2008年全国初中数学竞赛(海南赛区)

2008年全国初中数学竞赛(海南赛区)初 赛 试 卷(本试卷共6页,满分120分,考试时间:3月20日8:30——10:30)一、选择题(本大题满分50分,每小题5分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母 代号填写在下表相应题号下的方格内1. 若a 为实数,则化简2a 的结果是A. -aB. aC. ±aD. |a | 2.如果1)1(2++-x m x 是完全平方式,则m 的值为A .-1B .1C .1或-1 D. 1或-33. 如图1,点A 、B 、C 顺次在直线l 上,点M 是线段AC 的中点,点N 是线段BC 的中点.若想求出MN 的长度,那么只需条件A .AB=12B .BC=4C .AM=5 D. CN=24.在平面直角坐标系y o x 内,已知A(3,-3),点P 是y 轴上一点,则使△AOP 为等腰三角形的点P 共有 A .2个 B .3个 C .4个 D. 5个5.已知关于x 的方程01)2(=-+x b a 无解,那么b a 的值是A .负数B .正数C .非负数D .非正数 6.一次函数)1(-=x k y 的图像经过点M(-1,-2),则其图像与y 轴的交点是 A .(0,-1) B .(1,0) C .(0,0) D .(0,1)7.如图2,在线段AE 同侧作两个等边三角形△ABC 和△CDE(∠ACE <120°),点P 与点M 分别是线段BE 和AD 的中点,则△CPM 是A .钝角三角形B .直角三角形C .等边三角形图1N MCB l图2 ABCDPMD .非等腰三角形8.某校初一运动队为了备战校运动会需要购置一批运动鞋.已知该队伍有20名同学,统计表如下表.由于不小心弄脏了表格,有两个数据看不到.下列说法中正确的是A .这组数据的中位数是40,众数是39B .这组数据的中位数与众数一定相等C .这组数据的平均数P 满足39<P <40D .以上说法都不对 9.如图3,A 、B 是函数xky =图像上两点, 点C 、D 、E 、F 分别在坐标轴上,且与点A 、B 、O 构成正方形和长方形. 若正方形OCAD 的面积为6, 则长方形OEBF 的面积是A. 3B. 6C. 9D. 1210. 某商店有5袋面粉,各袋重量在25~30公斤之间,店里有一磅秤,但只有能称50~70公斤重量的秤砣,现要确定各袋面粉的重量,至少要称A .4次B .5次C .6次 D. 7次二、填空题(本大题共7小题,每小题5分,满分35分)11.如果不等式组⎩⎨⎧<->-01a x x 无解,则a 的取值范围是 .12.已知1=-b a ,122-=-b a ,则=-20082008b a.13.如图4,在菱形ABCD 中,AE ⊥BC ,E 为垂足, 若cosB 54=,EC=2,P 是AB 边上的一个动点,则线段 PE 的长度的最小值是 .14.小丁、小明、小倩在一起做游戏时,需要确定做游戏的先后顺序.他们约定用“剪子、布、锤子”的方式确定.那么在一个回合中三个人都出“布”的概率是 .15.已知a 、b 为实数,且1=b a ,1≠a ,设11+++=b b a a M ,1111+++=b a N ,则N M -的值等于 . 16. 如图5,在△ABC 中,AB=AC=5,BC=2,以AB 为直径的⊙O 分别交AC 、BC 两边于点D 、E ,则△CDE 的面积为_________.图3图5AB CD E O · 图4ABCDE P ·图6主视图左视图17. 一个几何体,是由许多规格相同的小正方体堆积而成的,其主视图、左视图如图6所示,要摆成这样的图形,至少需用______块小正方体18. 若直线b y =(b 为实数)与函数342+-=x x y 的图象至少有三个公共点,则实数b 的取值范围是_________.三、解答题(本大题满分30分,每小题15分)19. 某大型超市元旦假期举行促销活动,规定一次购物不超过100元的不给优惠;超过100元而不超过300时,按该次购物全额9折优惠;超过300元的其中300元仍按9折优惠,超过部分按8折优惠.小美两次购物分别用了94.5元和282.8元,现小丽决定一次购买小美分两次购买的同样的物品,则小丽应该付款多少元?20. 如图7,正方形ABCD 的边长为1,点F 在线段CD 上运动,AE 平分∠BAF 交BC 边于点E. (1)求证: AF=DF+BE.(2)设DF=x (0≤x ≤1),△ADF 与△ABE 的面积和S 是否存在最大值?若存在,求出此时x 的值及S. 若不存在,请说明理由.图7ABC DE F。
2008年全国 初中数学联赛(含答案)

12008年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题(本题满分42分,每小题7分)本题共有6小题,每题均给出了代号为A ,B ,C ,D 的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内.每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分.1.设213a a +=,213b b +=,且a b ≠,则代数式2211a b+的值为 ( ) A .5 B .7 C .9 D .11.【答案】B【解析】 由题设条件可知2310a a -+=,2310b b -+=,且a b ≠,所以a ,b 是一元二次方程2310x x -+=的两根,故3a b +=,1ab =,因此222222222211()23217()1a b a b ab a b a b ab ++--⨯+====. 故选B 2.如图,设AD ,BE ,CF 为三角形ABC 的三条高,若6AB =,5BC =,3EF =,则线段BE 的长为( )EFDCBA2A .185B .4C .215D .245【答案】D【解析】 因为AD ,BE ,CF 为三角形ABC 的三条高,易知B ,C ,E ,F 四点共圆,于是AEF ABC △∽△,故35AF EF AC BC ==,即3cos 5BAC ∠=,所以4sin 5BAC ∠=. 在Rt ABE △中,424sin 655BE AB BAC =∠=⨯=.故选D3.从分别写有数字1,2,3,4,5的5张卡片中任意取出两张,把第一张卡片上的数字作为十位数字,第二张卡片上的数字作为个位数字,组成一个两位数,则所组成的数是3的倍数的概率是 ( )A .15B .310C .25D .12. 【答案】C【解析】 能够组成的两位数有12,13,14,15,21,23,24,25,31,32,34,35,41,42,43,45,51,52,53,54,共20个,其中是3的倍数的数为12,15,21,24,42,45,51,54,共8个.所以所组成的数是3的倍数的概率是82205=.故选C 4.在ABC △中,12ABC ∠=o ,132ACB ∠=o ,BM 和CN 分别是这两个角的外角平分线,且点M ,N 分别在直线AC 和直线AB 上,则 ( )3A .BM CN >B .BM CN =C .BM CN <D .BM 和CN 的大小关系不确定【答案】B【解析】 ∵12ABC ∠=o ,BM 为ABC ∠的外角平分线,∴1(18012)842MBC ∠=-=o o o.又180********BCM ACB ∠=-∠=-=o o o o ,∴180844848BMC ∠=--=o o o o ,∴BM BC =.又11(180)(180132)2422ACN ACB ∠=-∠=-=o o o o,∴18018012()BNC ABC BCN ACB ACN ∠=-∠-∠=--∠+∠o o o 168(13224)=-+o o o12ABC ==∠o ,∴CN CB =. 因此,BM BC CN ==.故选B5.现有价格相同的5种不同商品,从今天开始每天分别降价10%或20%,若干天后,这5种商品的价格互不相同,设最高价格和最低价格的比值为r ,则r 的最小值为 ( )A .398T ⎛⎫ ⎪⎝⎭.B .498⎛⎫ ⎪⎝⎭.C .598⎛⎫⎪⎝⎭. D .98.【答案】B.【解析】 容易知道,4天之后就可以出现5种商品的价格互不相同的情况.设5种商品降价前的价格为a ,过了n 天. n 天后每种商品的价格一定可以表示为4()()98110%120%1010kn kkn ka a --⎛⎫⎛⎫⋅-⋅-=⋅⋅ ⎪⎪⎝⎭⎝⎭,其中k 为自然数,且0k n ≤≤.要使r 的值最小,五种商品的价格应该分别为:981010in ia -⎛⎫⎛⎫⋅⋅ ⎪⎪⎝⎭⎝⎭,1188(1010i n i a +--⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭,22991010i n i a +--⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭,33981010i n i a +--⎛⎫⎛⎫⋅⋅ ⎪⎪⎝⎭⎝⎭,44981010i n i a +--⎛⎫⎛⎫⋅⋅ ⎪⎪⎝⎭⎝⎭,其中i 为不超过n 的自然数.所以r 的最小值为44498910108981010i n i i n ia a +---⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎛⎫⎝⎭⎝⎭= ⎪⎝⎭⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭.故选B . 6.已知实数x ,y 满足(22200820082008x x y y --=,则223233x y x y -+-2007-的值为( )A .2008-B .2008C .1-D .1.【答案】D .【解析】 ∵(22200820082008x x y y --=,∴222200820082008x x y y y y -=---222200820082008y y x x x x -=---由以上两式可得x y =.所以(2220082008x x -=,解得22008x =,所以522222323320073233200720071x y x y x x x x x -+--=-+--=-=.故选D .二、填空题(本题满分28分,每小题7分)1.设51a -,则5432322a a a a a a a +---+=- . 【答案】 2-【解析】 ∵2251351a a --==-⎝⎭,∴21a a +=, ∴()()32325432322222a a a a a a a a a a a a a a a a+--+++---+=-⋅- ()()333322212111(11)211a a a a a a a a a a a--+--===-=-++=-+=-⋅----. 2.如图,正方形ABCD 的边长为1,M ,N 为BD 所在直线上的两点,且5AM 135MAN ∠=o ,则四边形AMCN 的面积为 .【答案】 52【解析】 设正方形ABCD 的中心为O ,连AO ,则AO BD ⊥,2AO OB = ()222223252MO AM AO ⎛⎫-- ⎪ ⎪⎝⎭O MND CBA6∴2MB MO OB =-又135ABM NDA ∠=∠=o ,13590NAD MAN DAB MAB MAB ∠=∠-∠-∠=--∠o o 45MAB AMB =-∠=∠o ,所以ADN MBA △∽△,故AD DN MB BA =,从而212AD DN BA MB =⋅=. 根据对称性可知,四边形AMCN 的面积1122522222222MAN S S MN AO ==⨯⨯⨯=⨯⨯+=⎝△. 3.已知二次函数2y x ax b =++的图象与x 轴的两个交点的横坐标分别为m ,n ,且1m n +≤.设满足上述要求的b 的最大值和最小值分别为p ,q ,则p q += .【答案】 12【解析】 根据题意,m ,n 是一元二次方程20x ax b ++=的两根,所以m n a +=-,mn b =.∵1m n +≤,∴1m n m n ++≤≤,1m n m n -+≤≤.∵方程20x ax b ++=的判别式240a b ∆=-≥,∴22()1444a m nb +=≤≤. 22244()()()11b mn m n m n m n ==+--+--≥≥,故14b -≥,等号当且仅当12m n =-=时取得;22244()()1()1b mn m n m n m n ==+----≤≤,故14b ≤,等号当且仅当12m n ==时取得.7所以14p =,14q =-,于是12p q +=.4.依次将正整数1,2,3,…的平方数排成一串:149162536496481100121144…,排在第1个位置的数字是1,排在第5个位置的数字是6,排在第10个位置的数字是4,排在第2008个位置的数字是 .【答案】 1【解析】 21到23,结果都只各占1个数位,共占133⨯=个数位;24到29,结果都只各占2个数位,共占2612⨯=个数位;210到231,结果都只各占3个数位,共占32266⨯=个数位;232到299,结果都只各占4个数位,共占468272⨯=个数位;2100到2316,结果都只各占5个数位,共占52171085⨯=个数位;此时还差2008(312662721085)570-++++=个数位.2317到2411,结果都只各占6个数位,共占695570⨯=个数位.所以,排在第2008个位置的数字恰好应该是2411的个位数字,即为1.第二试 (A )一.(本题满分20分)8已知221a b +=,对于满足条件01x ≤≤的一切实数x ,不等式(1)(1)()0a x x ax bx b x bx ------≥ ①恒成立.当乘积ab 取最小值时,求a ,b 的值.【解析】 整理不等式①并将221a b +=代入,得2(1)(21)0a b x a x a ++-++≥ ②在不等式②中,令0x =,得0a ≥;令1x =,得0b ≥.易知10a b ++>,21012(1)a ab +<<++,故二次函数2(1)(21)y a b x a x a =++-++的图象(抛物线)的开口向上,且顶点的横坐标在0和1之间.由题设知,不等式②对于满足条件01x ≤≤的一切实数x 恒成立,所以它的判别式2(21)4(1)0a a b a ∆=+-++⋅≤,即14ab ≥.由方程组221,14a b ab ⎧+=⎪⎨=⎪⎩ ③ 消去b ,得42161610a a -+=,所以223a -或223a +=. 又因为0a ≥,所以62a -或62a +,9于是方程组③的解为6262a b ⎧-=⎪⎪⎨+⎪=⎪⎩或6262a b ⎧+⎪⎪⎨-⎪=⎪⎩所以ab 的最小值为14,此时,a b 的值有两组,分别为 62a -,62b +和62a +=,62b -=.二.(本题满分25分)如图,圆O 与圆D 相交于,A B 两点,BC 为圆D 的切线,点C 在圆O 上,且AB BC =.⑴ 证明:点O 在圆D 的圆周上.⑵ 设△ABC 的面积为S ,求圆D 的的半径r 的最小值.【解析】 ⑴ 连OA ,OB ,OC ,AC ,因为O 为圆心,AB BC =,所以△OBA ∽△OBC ,从而OBA OBC ∠=∠.因为OD AB ⊥,DB BC ⊥,所以9090DOB OBA OBC DBO ∠=-∠=-∠=∠o o ,所以DB DO =,因此点O 在圆D 的圆周上.⑵ 设圆O 的半径为a ,BO 的延长线交AC 于点E ,易知CE OABD10BE AC ⊥.设2AC y =(0)y a <≤,OE x =,AB l =,则222a x y =+,()S y a x =+,22222222()2222()aSl y a x y a ax x a ax a a x y=++=+++=+=+=. 因为22ABC OBA OAB BDO ∠=∠=∠=∠,AB BC =,DB DO =,所以BDO ABC △∽△,所以BD BOAB AC=,即2r a l y =,故2al r y =.所以322222224422a l a aS S a S r y y y y ⎛⎫==⋅=⋅ ⎪⎝⎭≥,即2S r 其中等号当a y =时成立,这时AC是圆O 的直径.所以圆D 的的半径r 2S三.(本题满分25分)设a 为质数,b 为正整数,且()()2925094511a b a b +=+①求a ,b 的值.【解析】 ①式即2634511509509a b a b++⎛⎫= ⎪⎝⎭,设63509a b m +=,4511509a b n +=,则 509650943511m a n ab --== ②故351160n m a -+=,又2n m =,所以2351160m m a -+=③由①式可知,2(2)a b +能被509整除,而509是质数,于是2a b +能被509整除,故m 为整数,即关于m 的一元二次方程③有整数根,所以它的判别式251172a ∆=-为完全平方数.11不妨设2251172a t ∆=-=(t 为自然数),则2272511(511)(511)a t t t =-=+-.由于511t +和511t -的奇偶性相同,且511511t +≥,所以只可能有以下几种情况:①51136,5112,t a t +=⎧⎨-=⎩两式相加,得3621022a +=,没有整数解.②51118,5114,t a t +=⎧⎨-=⎩两式相加,得1841022a +=,没有整数解. ③51112,5116,t a t +=⎧⎨-=⎩两式相加,得1261022a +=,没有整数解. ④5116,51112,t a t +=⎧⎨-=⎩两式相加,得6121022a +=,没有整数解.⑤5114,51118,t a t +=⎧⎨-=⎩两式相加,得4181022a +=,解得251a =. ⑥5112,51136,t a t +=⎧⎨-=⎩两式相加,得2361022a +=,解得493a =,而4931729=⨯不是质数,故舍去.综合可知251a =.此时方程③的解为3m =或5023m =(舍去). 把251a =,3m =代入②式,得5093625173b ⨯-⨯==.第二试 (B )12一.(本题满分20分)已知221a b +=,对于满足条件1x y +=,0xy ≥的一切实数对()x y ,,不等式220ay xy bx -+≥ ①恒成立.当乘积ab 取最小值时,求a ,b 的值.【解析】 由1x y +=,0xy ≥可知01x ≤≤,01y ≤≤.在①式中,令0x =,1y =,得0a ≥;令1x =,0y =,得0b ≥.将1y x =-代入①式,得22(1)(1)0a x x x bx ---+≥,即()()21210a b x a x a ++-++≥ ②易知10a b ++>,21012(1)a ab +<<++,故二次函数2(1)(21)y a b x a x a =++-++的图象(抛物线)的开口向上,且顶点的横坐标在0和1之间.由题设知,不等式②对于满足条件01x ≤≤的一切实数x 恒成立,所以它的判别式2(21)4(1)0a a b a ∆=+-++⋅≤,即14ab ≥由方程组221,14a b ab ⎧+=⎪⎨=⎪⎩ ③ 消去b ,得42161610a a -+=,所以223a -或223a +=,13又因为0a ≥,所以62a -或62a +. 于是方程组③的解为6262ab ⎧-=⎪⎪⎨+⎪=⎪⎩或6262a b ⎧+⎪⎪⎨-⎪=⎪⎩所以满足条件的a ,b 的值有两组,分别为62a -=,62b +和62a +,62b -= 二.(本题满分25分)题目和解答与(A )卷第二题相同.三.(本题满分25分)题目和解答与(A )卷第三题相同.第二试 (C )一.(本题满分20分)题目和解答与(B )卷第一题相同.二.(本题满分25分)题目和解答与(A )卷第二题相同.三.(本题满分25分)设a 为质数,b ,c 为正整数,且满足29(22)509(41022511)2a b c a b c b c ⎧+-=+-⎨-=⎩①②14求()a b c +的值.【解析】 ①式即266341022511509509a b c a b c+-+-⎛⎫=⎪⎝⎭, 设663509a b c m +-=,41022511509a b cn +-=,则5096509423511m a n ab c ---== ③ 故351160n m a -+=,又2n m =,所以2351160m m a -+= ④由①式可知,2(22)a b c +-能被509整除,而509是质数,于是22a b c +-能被509整除,故m 为整数,即关于m 的一元二次方程④有整数根,所以它的判别式251172a ∆=-为完全平方数.不妨设2251172a t ∆=-=(t 为自然数),则2272511(511)(511)a t t t =-=+-.由于511t +和511t -的奇偶性相同,且511511t +≥,所以只可能有以下几种情况:①51136,5112,t a t +=⎧⎨-=⎩两式相加,得3621022a +=,没有整数解. ②51118,5114,t a t +=⎧⎨-=⎩两式相加,得1841022a +=,没有整数解.③51112,5116,t a t +=⎧⎨-=⎩两式相加,得1261022a +=,没有整数解. ④5116,51112,t a t +=⎧⎨-=⎩两式相加,得6121022a +=,没有整数解.15⑤5114,51118,t a t +=⎧⎨-=⎩两式相加,得4181022a +=,解得251a =. ⑥5112,51136,t a t +=⎧⎨-=⎩两式相加,得2361022a +=,解得493a =,而4931729=⨯不是质数,故舍去.综合可知251a =,此时方程④的解为3m =或5023m =(舍去). 把251a =,3m =代入③式,得50936251273b c ⨯-⨯-==,即27c b =-.代入②式得(27)2b b --=,所以5b =,3c =,因此()251(53)2008a b c +=⨯+=.。
海南省2008年初中毕业生学业考试数学试卷

海南省2008年初中毕业生学业考试数 学(考试时间100分钟,满分110分)一、选择题(本大题满分20分,每小题2分,在下列各题的四个备选答案中,只有一个是正确的)1. 在0,-2,1,12这四个数中,最小的数是( )A. 0B. -2C. 1D.122. 数据26000用科学记数法表示为2.6×10n,则n 的值是( )A. 2B. 3C. 4D. 53. 下列运算,正确的是( )A.22a a a =⋅B. 2a a a =+C. 236a a a =÷D. 623)(a a =4. 观察下列几何体,主视图、左视图和俯视图都是..矩形的是( )5. 如图,AB 、CD 相交于点O ,∠1=80°,如果DE ∥AB ,那么∠D 的度数为( ) A. 80° B. 90° C. 100° D. 110°6. 如图2所示,Rt △ABC ∽Rt △DEF ,则cosE 的值等于( )A.127. 不等式组11x x ≤⎧⎨>-⎩的解集是( )A. x >-1B. x ≤1C. x <-1D. -1<x ≤18. 如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,连接BC ,若∠ABC=45°,则下列结论正确的是( )A. AC >ABB. AC=ABC. AC <ABD. 12AC BC =9. 如图,直线1l 和2l 的交点坐标为( )A.(4,-2)B. (2,-4)C. (-4,2)D. (3,-1)10.如图是小敏同学6次数学测验的成绩统计表,则该同学6次成绩的中位数是( )A. 60分B. 70分C.75分D. 80分二、填空题(本大题满分24分,每小题3分) 11.计算:a a =(+1)(-1) .12.方程20x x -=的解是 .13.反比例函数ky x=的图象经过点(-2,1),则k 的值为 .14.随机掷一枚质地均匀的普通硬币两次,出现两次正面都朝上的概率是 .15.用同样大小的黑色棋子按图6所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚(用含n 的代数式表示).16. 已知在△ABC 和111A B C ∆中,11AB A B =,1A A ∠=∠,要使△ABC ≌111A B C ∆,还需添加一个..条件,这个条件可以是 .17.如图,在等腰梯形ABCD 中,AD ∥BC ,AE ∥DC ,AB=6cm ,则AE= cm.18. 如图, AB 是⊙O 的直径,点C 在⊙O 上,∠BAC=30°,点P 在线段OB 上运动.设∠ACP=x ,则x 的取值范围是.三、解答题(本大题满分66分) 19. (本题满分10分,每小题5分)(121(12)(1)2-⨯--; (2)化简:222x y xy x y x y+---.20. (本题满分10分)根据北京奥运票务网站公布的女子双人3米跳板跳水决赛的门票价格(如表1),小明预定了B 等级、C 等级门票共7张,他发现这7张门票的费用恰好可以预订3张A 等级门票.问小明预定了B 等级、C 等级门票各多少张?21. (本题满分10分)根据图1、图2和表2所提供的信息,解答下列问题:表1:(1)2007年海南省生产总值是2003年的 倍(精确到0.1);(2)2007年海南省第一产业的产值占当年全省生产总值的百分比为 %, 第一产业的产值为 亿元(精确到1亿);(3)2007年海南省人均生产总值为 元(精确到1元),比上一年增长 %(精确到0.1%).(注:生产总值=第一产业的产值+第二产业的产值+第三产业的产值)22. (本题满分10分)如图,在平面直角坐标系中,△ABC 和△A 1B 1C 1关于点E 成中心对称.(1)画出对称中心E ,并写出点E 、A 、C 的坐标;(2)P(a,b)是△ABC 的边AC 上一点,△ABC 经平移后点P 的对应点为2(6,2)P a b ++,请画出上述平移后的222A B C ∆,并写出点2A 、2C 的坐标;(3)判断222A B C ∆和111A B C ∆的位置关系(直接写出结果).23.(本题满分12分)如图,P 是边长为1的正方形ABCD 对角线AC 上一动点(P 与A 、C 不重合),点E 在射线BC 上,且PE=PB.(1)求证:① PE=PD ; ② PE ⊥PD ;表2:2005-2007年海南省常住人口统计表(2)设AP=x, △PBE 的面积为y.① 求出y 关于x 的函数关系式,并写出x 的取值范围; ② 当x 取何值时,y 取得最大值,并求出这个最大值.24. (本题满分14分)如图,已知抛物线经过原点O 和x 轴上另一点A,它的对称轴x=2 与x 轴交于点C ,直线y=-2x-1经过抛物线上一点B(-2,m),且与y 轴、直线x=2分别交于点D 、E.(1)求m 的值及该抛物线对应的函数关系式; (2)求证:① CB=CE ;② D 是BE 的中点;(3)若P(x ,y)是该抛物线上的一个动点,是否存在这样的点P,使得PB=PE,若存在,试求出所有符合条件的点P 的坐标;若不存在,请说明理由.参考答案一、选择题(本题满分20分,每小题2分)1. B 2.C 3.D 4.B 5.C 6.A 7.D 8.B 9.A 10. C 二、填空题(本题满分24分,每小题3分)11. 12-a 12. 01=x , 12=x 13. -2 14. 4115. 3n+116. 答案不唯一(如:∠B=∠B 1,∠C=∠C 1,AC=A 1C 1) 17. 6 18. 30°≤x ≤90° 三、解答题(本题满分66分) 19.(1)原式= 4-6-1=-3(2)原式y x y x y x --+=222yx y x --=2)(.x y =- 20. 设小明预订了B 等级,C 等级门票分别为x 张和y 张. 依题意,得7,300150500 3.x y x y +=⎧⎨+=⨯⎩解这个方程组得3,4.x y =⎧⎨=⎩答:小明预订了B 等级门票3张,C 等级门票4张. 21.(1)1.8;(2)31,381;(3)14625,15.6 22.(1)如图,E(-3,-1),A(-3,2),C(-2,0);(2)如图,A 2(3,4),C 2(4,2);(3)222A B C ∆与111A B C ∆关于原点O 成中心对称.23. (1)证法一:① ∵ 四边形ABCD 是正方形,AC 为对角线, ∴ BC=DC, ∠BCP=∠DCP=45°. ∵ PC=PC ,∴ △PBC ≌△PDC (SAS ).∴ PB= PD , ∠PBC=∠PDC. 又∵ PB= PE ,∴ PE=PD.② (i )当点E 在线段BC 上(E 与B 、C 不重合)时,∵ PB=PE ,∴ ∠PBE=∠PEB , ∴ ∠PEB=∠PDC ,∴ ∠PEB+∠PEC=∠PDC+∠PEC=180°,∴ ∠DPE=360°-(∠BCD+∠PDC+∠PEC)=90°, ∴ PE ⊥PD.(ii )当点E 与点C 重合时,点P 恰好在AC 中点处,此时,PE ⊥PD.(iii )当点E 在BC 的延长线上时,如图. ∵ ∠PEC=∠PDC ,∠1=∠2, ∴ ∠DPE=∠DCE=90°, ∴ PE ⊥PD. 综合(i )(ii )(iii ), PE ⊥PD.(2)① 过点P 作PF ⊥BC ,垂足为F ,则BF=FE.∵ AP=x ,AC=2,∴ PC=2- x ,PF=FC=x x 221)2(22-=-. BF=FE=1-FC=1-(x 221-)=x 22. ∴ S △PBE =BF ·PF=x 22(x 221-)x x 22212+-=. 即 x x y 22212+-= (0<x <2).② 4122(21222122+--=+-=x x x y .∵ 21-=a <0,∴ 当22=x 时,y最大值41=. (1)证法二:① 过点P 作GF ∥AB ,分别交AD 、BC 于G 、F. 如图所示.∵ 四边形ABCD 是正方形,∴ 四边形ABFG 和四边形GFCD 都是矩形, △AGP 和△PFC 都是等腰直角三角形.∴ GD=FC=FP ,GP=AG=BF ,∠PGD=∠PFE=90°. 又∵ PB=PE , ∴ BF=FE , ∴ GP=FE ,∴ △EFP ≌△PGD (SAS ). ∴ PE=PD. ② ∴ ∠1=∠2.∴ ∠1+∠3=∠2+∠3=90°. ∴ ∠DPE=90°.∴ PE ⊥PD.(2)①∵ AP=x ,∴ BF=PG=x 22,PF=1-x 22.∴ S △PBE =BF ·PF=x 22(x 221-)x x 22212+-=. 即 x x y 22212+-= (0<x <2).② 4122(21222122+--=+-=x x x y .∵ 21-=a <0,∴ 当22=x 时,1.4y =最大值24.(1)∵ 点B(-2,m)在直线y=-2x-1上,∴ m=-2×(-2)-1=3. ∴ B(-2,3)∵ 抛物线经过原点O 和点A ,对称轴为x=2, ∴ 点A 的坐标为(4,0) .设所求的抛物线对应函数关系式为y=a(x-0)(x-4). 将点B(-2,3)代入上式,得3=a(-2-0)(-2-4),∴ 41=a . ∴ 所求的抛物线对应的函数关系式为)4(41-=x x y ,即x x y -=241. (6分) (2)①直线y=-2x-1与y 轴、直线x=2的交点坐标分别为D(0,-1) E(2,-5). 过点B 作BG ∥x 轴,与y 轴交于F 、直线x=2交于G , 则BG ⊥直线x=2,BG=4.在Rt △BGC 中,BC=522=+BG CG .∵ CE=5, ∴ CB=CE=5.②过点E 作EH ∥x 轴,交y 轴于H , 则点H 的坐标为H(0,-5).又点F 、D 的坐标为F(0,3)、D(0,-1), ∴ FD=DH=4,BF=EH=2,∠BFD=∠EHD=90°.∴ △DFB ≌△DHE (SAS ),∴ BD=DE.即D 是BE 的中点.(3) 存在. 由于PB=PE ,∴ 点P 在直线CD 上,∴ 符合条件的点P 是直线CD 与该抛物线的交点.设直线CD 对应的函数关系式为y=kx+b.将D(0,-1) C(2,0)代入,得⎩⎨⎧=+-=021b k b . 解得 1,21-==b k .∴ 直线CD 对应的函数关系式为y=21x-1. ∵ 动点P 的坐标为(x ,x x -241),∴21x-1=x x -241. 解得 531+=x ,532-=x . ∴ 2511+=y ,2511-=y . ∴ 符合条件的点P 的坐标为(53+,251+)或(53-,251-). (注:用其它方法求解参照以上标准给分.)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年全国初中数学竞赛(海南赛区)初 赛 试 卷(本试卷共6页,满分120分,考试时间:3月20日8:30——10:30)一、选择题(本大题满分50分,每小题5分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母 代号填写在下表相应题号下的方格内1. 若a 为实数,则化简2a 的结果是A . -aB . aC . ±aD . |a | 2.如果1)1(2++-x m x 是完全平方式,则m 的值为A .-1B .1C .1或-1D . 1或-33. 如图1,点A 、B 、C 顺次在直线l 上,点M 是线段AC 的中点,点N 是线段BC 的中点.若想求出MN 的长度,那么只需条件A .AB =12 B .BC =4 C .AM =5D . CN =24.在平面直角坐标系y o x 内,已知A (3,-3),点P 是y 轴上一点,则使△AOP 为等腰三角形的点P 共有 A .2个 B .3个 C .4个 D . 5个5.已知关于x 的方程01)2(=-+x b a 无解,那么b a 的值是A .负数B .正数C .非负数D .非正数 6.一次函数)1(-=x k y 的图像经过点M (-1,-2),则其图像与y 轴的交点是 A .(0,-1) B .(1,0) C .(0,0) D .(0,1)7.如图2,在线段AE 同侧作两个等边三角形△ABC 和△CDE (∠ACE <120°),点P 与点M 分别是线段BE 和AD 的中点,则△CPM 是A .钝角三角形B .直角三角形C .等边三角形D .非等腰三角形8.某校初一运动队为了备战校运动会需要购置一批运动鞋.已知该队伍有20名同学,统计表如下表.由于不小心图1N MCB l图2 ABCDPM弄脏了表格,有两个数据看不到.下列说法中正确的是A .这组数据的中位数是40,众数是39B .这组数据的中位数与众数一定相等C .这组数据的平均数P 满足39<P <40D .以上说法都不对 9.如图3,A 、B 是函数xky =图像上两点, 点C 、D 、E 、F 分别在坐标轴上,且与点A 、B 、O 构成正方形和长方形. 若正方形OCAD 的面积为6, 则长方形OEBF 的面积是A . 3B . 6C . 9D . 1210. 某商店有5袋面粉,各袋重量在25~30公斤之间,店里有一磅秤,但只有能称50~70公斤重量的秤砣,现要确定各袋面粉的重量,至少要称A .4次B .5次C .6次D . 7次二、填空题(本大题共7小题,每小题5分,满分35分)11.如果不等式组⎩⎨⎧<->-001a x x 无解,则a 的取值范围是____________.12.已知1=-b a ,122-=-b a ,则=-20082008b a_________.13.如图4,在菱形ABCD 中,AE ⊥BC ,E 为垂足, 若cosB 54=,EC=2,P 是AB 边上的一个动点,则线段PE 的长度的最小值是__________.14.小丁、小明、小倩在一起做游戏时,需要确定做游戏的先后顺序.他们约定用“剪子、布、锤子”的方式确定.那么在一个回合中三个人都出“布”的概率是_________.15.已知a 、b 为实数,且1=b a ,1≠a ,设11+++=b b a a M ,1111+++=b a N ,则N M -的值等于________. 16. 如图5,在△ABC 中,AB =AC =5,BC =2,以AB 为直径的⊙O 分别交AC 、BC 两边于点D 、E ,则△CDE 的面积为_________.17. 一个几何体,是由许多规格相同的小正方体堆积而成的,其主视图、左视图如图6所示,要摆成这样的图形,图3图5 AB CD E O ·图4ABCDE P ·图6主视图左视图至少需用______块小正方体18. 若直线b y =(b 为实数)与函数342+-=x x y 的图象至少有三个公共点,则实数b 的取值范围是_________.三、解答题(本大题满分30分,每小题15分)19. 某大型超市元旦假期举行促销活动,规定一次购物不超过100元的不给优惠;超过100元而不超过300时,按该次购物全额9折优惠;超过300元的其中300元仍按9折优惠,超过部分按8折优惠.小美两次购物分别用了94.5元和282.8元,现小丽决定一次购买小美分两次购买的同样的物品,则小丽应该付款多少元?20. 如图7,正方形ABCD 的边长为1,点F 在线段CD 上运动,AE 平分∠BAF 交BC 边于点E . (1)求证: AF =DF +BE .(2)设DF =x (0≤x ≤1),△ADF 与△ABE 的面积和S 是否存在最大值?若存在,求出此时x 的值及S . 若不存在,请说明理由.图7ABC DE F2008年全国初中数学竞赛(海南赛区)初赛试卷参考答案一、1. D 2. D 3. A 4. C 5. D 6. A 7. C 8. C 9. B 10. B二、11. a ≤1 12. -1 13. 4.8 14. 271 15. 0 16. -1 17. 5218. 0<b ≤1解答提示:1.∵ 当a <0时,2a =|a |=-a . 故选D .2.21±=+m ,解得1=m 或3-=m . 故选D .3.()AB BC AC BC AC NC MC MN 21212121=-=-=-=,∴只要已知AB 即可.故选A .4. 分别以点A 、O 、P 三点为等腰三角形的顶点三种情况考虑.5. 关于x 的方程01)2(=-+x b a 无解,则02=+b a . ∴有0==b a 或者a 、b 异号,故选D .6. ∵一次函数)1(-=x k y 的图像经过点M (-1,-2),则有()211-=--k ,解得1=k .所以函数解析式为1-=x y .令0=x 代入得1-=y .故其图像与y 轴的交点是(0,-1).故选A .7.易得△ACD ≌△BCE .所以△BCE 可以看成是△ACD 绕着点C 顺时针旋转60°而得到的.又M 为线段AD 中点,P 为线段BE 中点,故CP 就是CM 绕着点C 顺时针旋转60°而得.所以CP =CM 且,∠PCM =60°,故△CPM 是等边三角形,选C .8.(1)由中位数及众数的意义以及表格可知当这组数据的中位数是40时,众数必然是40,所以A 错误.(2)当39码与40码的人数都是5时,中位数与众数不等,所以B 错误.(3)假设剩余10人全部穿39码鞋,可得平均数为39.35;假设剩余10人全部穿40码鞋,可得平均数为39.85.可以判断C 正确.(或者设穿39码鞋的有x 人,且由0≤x ≤10也可得解) 故选C .9. ∵ 62121OC OD 21OCAD ==⋅=⋅=k y x S A A 正方形,∴ 62121OF OE 21B B OCAD ==⋅=⋅=k y x S 长方形 ,故选B . 10.拿出任意三袋,假设它们的重量分别为x 千克、y 千克、z 千克,两两一称,记录下相应的重量,若分别等于a千克、b 千克、c 千克,则有方程组⎪⎩⎪⎨⎧=+=+=+c x z b z y ay x 容易求出x 、y 、z ;另外两袋分别与已知重量的其中一袋一起称,即可求出其重量.所以需要称5次,故选B .11.解不等式组⎩⎨⎧<->-001a x x 得⎩⎨⎧<>a x x 1,因为原不等式组无解,所以必有a ≤1.12.∵ ()()122-=-+=-b a b a b a ,又1=-b a ,则1-=+b a∴ ⎩⎨⎧=--=+11b a b a ,解得⎩⎨⎧-==1b a . 故()1102008200820082008-=--=-b a .13. 设菱形ABCD 的边长为x ,则AB =BC =x ,又EC =2,所以BE =x -2,因为AE ⊥BC 于E ,所以在Rt △ABE 中, cosB x x 2-=,又cosB 54=,于是542=-x x ,解得x =10,即AB =10.所以易求BE =8,AE =6,当EP ⊥AB 时,PE 取得最小值. 故由三角形面积公式有:21AB ²PE =21BE ²AE ,求得PE 的最小值为4.8 .14.用树状图列出一个回合中三个人所出手势的各种结果.上面只画出树状图的一部分(列出9种结果),把图中小丁的“剪”改为“布”重复上述画法,可再列出9种结果,最后改为“锤”同样也列出9种结果,所以共有27种结果,故求得P (布,布,布)=27115.∵1=b a ,1≠a ,∴ =+++=+++=+++=)1()1(11a b b b a a b a b b b a a a b b a a M N b a =+++1111. ∴ N M -=0.16. 如图,连结AE 、BD ,作DF ⊥EC 于点F . ∵ AB 是⊙O 的直径 ,∴ ∠ADB =∠AEB =90°又∵ AB =AC ,∴CE =21BC =1,∴ AE =222=-CE AC∵ BD AC AE BC ⋅=⋅2121,∴ BD =554,∴ 在△ABD 中,AD =553,∴ CD =552 又∵△CDF ∽△CAE ,∴AEDFCA CD =,可求得DF =54. ∴ △CDE 的面积为5221=⋅DF CE . 解法2:如图,连结AE 、BD ,DE .∵ AB 是⊙O 的直径 ,∴ ∠ADB =∠AEB =90°又∵ AB =AC ,∴ BE =CE =1,∴ AE =222=-CE AC .∵ BD AC AE BC ⋅=⋅2121,∴ BD =554,∴ 在△ABD 中,AD =553,∴ CD =552. ∴ S △CDE =21S △BDC =⨯2152552554212121=⨯⨯⨯=⨯⨯CD BD . 17.5块. 18. y =x 2-4x +3=(x -2)2x 2-4x +3|的图象如图②所示,剪 剪 剪 布 锤布 剪 布 锤 锤 剪 布 锤 小丁 小明 小倩 A BCD E F O ² A B CE P ABC DE O ²而当b 取遍所有实数时,y =b 表示所有与y 轴垂直的直线,结合①②,易知b 的取值范围为0<b ≤1.三、19.因为100³0.9=90<94.5<100,300³0.9=270<282.8,所以有两种情况:设小美第二次购物的原价为x 元,则(x -300)³0.8+300³0.9=282.8解得,x =316 情况1: 小美第一次购物没有优惠,第二次购物原价超过300元 则小丽应付(316+94.5-300)³0.8+300³0.9=358.4(元)情况2: 小美第一次购物原价超过100元,第二次购物原价超过300元; 则第一次购物原价为:94.5÷0.9=105(元)所以小丽应付(316+105-300)³0.8+300³0.9=362.8(元).20.(1)证明: 如图,延长CB 至点G ,使得BG =DF ,连结AG . 因为ABCD 是正方形,所以在Rt △ADF 和Rt △ABG 中,AD =AB ,∠ADF =∠ABG =90°,DF =BG . ∴ Rt △ADF ≌Rt △ABG (SAS ),∴AF =AG ,∠DAF =∠BAG . 又 ∵ AE 是∠BAF 的平分线 ∴∠EAF =∠BAE , ∴ ∠DAF +∠EAF =∠BAG +∠BAE 即∠EAD =∠GAE .∵ AD ∥BC ,∴∠GEA =∠EAD ,∴∠GEA =∠GAE ,∴ AG =GE . 即AG =BG +BE .∴ AF =DF +BE ,得证.(2)AB BE AD DF S S S ABE ADF ⋅+⋅=+=∆∆2121∵ AD =AB =1, ∴ )(21BE DF S +=由(1)知,AF =DF +BE , 所以AF S 21=.在Rt △ADF 中,AD =1,DF =x , ∴12+=x AF ,∴1212+=x S .由上式可知,当x 2达到最大值时,S 最大.而0≤x ≤1,所以,当x =1时,S 最大值为2211212=+x .A B C DE F G 俯视图 2 1 2。