5G概念和架构
5G学习总结_5G网络整体架构及功能

5G网络整体架构及功能1、5G网络的整体架构5G的网络架构主要包括5G接入网和5G核心网,其中NG-RAN代表5G 接入网,5GC代表5G核心网。
2、5G接入网(NG-RAN)5G接入网主要包含一下两个节点:gNB: 为5G网络用户提供NR的用户平面和控制平面协议和功能ng-eNB:为4G网络用户提供NR的用户平面和控制平面协议和功能其中gNB和gNB之间,gNB和ng-eNB之间,ng-eNB和gNB之间的接口都为Xn接口2.1、gNB和ng-eNB的主要功能1、无线资源管理相关功能:无线承载控制,无线接入控制,连接移动性控制,上行链路和下行链路中UE的动态资源分配(调度)2、数据的IP头压缩,加密和完整性保护3、在用户提供的信息不能确定到AFM的路由时,为在UE在附着的时候选择到AMF路由;4、将用户平面数据路由到UPF5、提供控制平面信息向AMF的路由6、连接设置和释放7、寻呼消息的调度和传输8、广播消息的调度和传输9、移动性和调度的测量和测量报告配置10、上行链路中的传输级别数据包标记;11、会话管理13、QoS流量管理和无线数据承载的映射14、支持处于RRC_INACTIVE状态的UE15、NAS消息的分发功能16、无线接入网络共享17、双连接18、支持NR和E-UTRA之间的连接3、5G核心网(5GC)5G的核心网主要包含以下几部分:AMF:主要负责访问和移动管理功能(控制面)UPF:用于支持用户平面功能SMF:用于负责会话管理功能3.1、AMF的主要功能1、NAS信令终止2、NAS信令安全性3、AS安全控制4、用于3GPP接入网络之间的移动性的CN间节点信令5、空闲模式下UE可达性(包括控制和执行寻呼重传)6、注册区管理7、支持系统内和系统间的移动性8、访问认证、授权,包括检查漫游权9 、移动管理控制10、SMF(会话管理功能)选择3.2、UPF的主要功能1、系统内外移动性锚点2、与数据网络互连的外部PDU会话点3、分组路由和转发4、数据包检查和用户平面部分的策略规则实施5、上行链路分类器,支持将流量路由到数据网络6、分支点以支持多宿主PDU会话7、用户平面的QoS处理,例如,包过滤,门控,UL / DL速率执行8、上行链路流量验证(SDF到QoS流量映射)9、下行链路分组缓冲和下行链路数据通知触发3.3、SMF的主要功能1、会话管理2、UE IP地址分配和管理3、选择和控制UP功能4、配置UPF的传输方向,将传输路由到正确的目的地5、控制政策执行和QoS的一部分6、下行链路数据通知3.4、各个逻辑节点的主要功能图5G接入网和5G核心网之间的功能划分。
5G网络架构与关键技术

5G网络架构与关键技术随着技术的进步和人们对通信需求的不断增长,5G网络已成为当前科技领域的热门话题。
5G网络将是第五代移动通信技术的缩写,它将以更高的速度、更低的延迟和更稳定的连接来实现更快速、更可靠的数据传输。
本文将主要介绍5G网络的架构和关键技术。
1.5G网络架构核心网络:5G核心网络具有分布式架构,它分为多个网络切片(Network Slicing),每个切片都专门用于实现不同的通信需求,如增强型移动宽带(eMBB)、大规模机器通信(mMTC)和超可靠低延迟通信(URLLC)。
这样的设计可以为不同行业和业务提供个性化的网络体验。
边缘计算:由于5G网络下的大量数据传输和处理可能导致网络延迟增加,为了使数据传输更加高效,5G引入了边缘计算概念。
边缘计算通过将计算和存储能力推向网络边缘,将计算任务分配到更接近终端用户的边缘节点上,从而降低网络延迟和流量负载,提高网络性能和用户体验。
无线接入网:5G无线接入网具有多层次的分布式结构,包括宏基站、微基站和室内小基站。
宏基站用于覆盖广域,微基站用于提供高密度的覆盖和容量,室内小基站用于提供室内覆盖。
此外,5G还引入了Massive MIMO(Massive Multiple Input Multiple Output)技术,通过使用大量天线和波束成形技术来提高网络容量和覆盖范围。
2.关键技术为了实现5G网络的高速率、低时延和大容量等特点,5G网络依赖于许多关键技术。
毫米波通信:5G网络广泛使用毫米波频段(mmWave),它具有更宽的频谱和更高的传输速率。
然而,由于毫米波频段的特殊传播特性,如高传输损耗和较短的传输距离,需要使用波束成形和中继技术来克服这些问题。
超密集组网:5G网络可以实现超密集组网,即高密度的基站部署。
通过将基站部署在更多的地方,并使用更小的基站,可以提供更好的覆盖和更高的容量。
网络切片技术:5G网络可以根据不同的应用需求,将网络划分为多个独立的逻辑切片,每个切片都适用于不同的应用场景。
5G网络需求和架构

5G网络需求和架构随着移动通信技术的不断发展,人们对于通信速度和用户体验的需求也愈发迫切。
在这样的背景下,第五代移动通信技术(5G)应运而生。
5G网络有着更高的带宽、更低的延迟和更大的容量,以满足用户对网络服务的日益增长的需求。
下面将对5G网络的需求和架构进行详细介绍。
首先,5G网络的需求主要可以总结为三个关键要素:更高的带宽、更低的延迟和更大的容量。
更高的带宽是指5G网络需要提供更高的数据传输速度。
随着云计算、物联网和大数据等技术的不断发展,人们对于快速传输大量数据的需求越来越大。
因此,5G网络需要具备比4G网络更高的带宽,以满足高清视频观看、在线游戏和大规模文件传输等应用的需求。
更低的延迟是指5G网络需要实现更快的响应速度。
在实时应用中,如智能交通系统、远程手术和虚拟现实等,低延迟是至关重要的。
因此,5G网络需要降低传输延迟,实现更快的数据传输和处理速度。
更大的容量是指5G网络需要处理更多的连接数量和数据流量。
随着物联网设备的普及和互联网用户数量的增加,网络需要具备更大的容量来支持同时连接大量终端设备和处理大量数据的要求。
基于以上需求,5G网络的架构设计具有以下特点:第一,5G网络采用了更多的小型蜂窝基站,以实现更高的网络密度。
传统的大型基站覆盖范围较大,但在高密度地区的容量和网络资源分配上存在瓶颈。
因此,5G网络采用了更多的小型蜂窝基站,将网络资源更精细地分布在用户附近,提高了网络容量和用户体验。
第二,5G网络采用了更多的高频段,以实现更高的带宽和更低的延迟。
传统的移动通信技术主要采用低频段,但低频段的带宽有限且容易受到干扰。
而5G网络采用了更多的高频段,可以提供更大的带宽和更低的延迟,满足高速数据传输和实时应用的需求。
第三,5G网络引入了网络切片技术,以实现灵活的网络配置和资源分配。
网络切片技术可以将网络划分为多个独立的虚拟网络,每个网络可以根据不同的需求进行灵活配置和优化,提供个性化的服务和用户体验。
5G通信技术和架构

5G通信技术和架构
5G通信技术是一种新一代移动通信技术,它具有更高的数据传输速度、更低的延迟和更多连接设备的能力。
下面将介绍5G通信技术的架构。
5G通信技术的架构
5G通信技术的架构主要由三个核心部分组成:用户设备(UE)、无线接入网(RAN)和核心网(CN)。
用户设备(UE)
用户设备是指使用5G网络进行通信的终端设备,如手机、平板电脑和物联网设备等。
UE是与网络进行通信的起始和终止点。
无线接入网(RAN)
无线接入网是连接用户设备和核心网的关键环节,它提供无线
接入服务。
RAN包括基站和天线等设备,用于接收和发送无线信号。
核心网(CN)
核心网是整个5G网络的核心部分,它负责处理用户数据和提
供各种网络服务。
CN包括多个功能模块,如用户管理、移动性管
理和安全认证等。
5G通信技术的架构是层次分明的,各个部分之间通过接口进
行通信和协作,以提供高效稳定的通信服务。
注意事项
- 在使用5G通信技术时,需要注意保护个人信息和数据安全。
- 5G通信技术的应用范围广泛,除了移动通信外,还可以应用
于智能交通、智能家居等领域。
- 5G通信技术的发展将对社会经济产生重要影响,提升了信息
交流的效率和便利性。
以上是对5G通信技术和架构的简要介绍,希望对您有所帮助。
参考资料:。
5G系统(5GS)的系统架构解读

5G系统(5GS)的系统架构解读1.一般概念5G系统架构被定义为支持数据连接和服务,使部署能够使用诸如网络功能虚拟化和软件定义网络。
5G系统架构应利用已确定的控制平面(CP)网络功能之间基于服务的交互。
一些关键原则和概念是:——将用户平面(UP)功能与控制平面(CP)功能分开,允许独立的可扩展性、演进和灵活部署,例如集中位置或分布式(远程)位置。
——模块化功能设计,例如实现灵活高效的网络切片。
——在适用的情况下,将程序(即网络功能之间的交互集)定义为服务,以便它们的重用成为可能。
——使每个网络功能及其网络功能服务能够与其他NF及其网络进行交互如果需要,通过服务通信代理直接或间接地使用功能服务。
该架构不排除使用另一个中间功能来帮助路由控制平面消息(例如,像DRA)。
——最小化接入网络(AN)和核心网络(CN)之间的依赖关系。
该架构定义为具有通用ANCN接口的融合核心网络,该接口集成了不同的访问类型,例如3GPP接入和非3GPP接入。
——支持统一的认证框架。
——支持“无状态”NF,其中“计算”资源与“存储”资源分离。
——支持能力公开。
——支持本地和集中式服务的并发访问。
为了支持低延迟服务和对数据网络的本地访问,UP功能可以部署在接入网络附近。
——支持在访问的PLMN中使用本地路由流量和本地突破流量进行漫游。
2.网络功能和实体5G系统架构由以下网络功能(NF)组成:——身份验证服务器功能(AUSF)。
——访问和移动管理功能(AMF)。
——数据网络(DN),例如运营商服务、互联网接入或第3方服务。
——非结构化数据存储功能(UDSF)。
——网络曝光函数(NEF)。
——网络存储库功能(NRF)。
——网络切片准入控制功能(NSACF)。
——网络切片特定和SNPN身份验证和授权功能(NSSAAF)。
——网络切片选择功能(NSSF)。
——策略控制功能(PCF)。
——会话管理功能(SMF)。
——统一数据管理(UDM)。
5G核心网的构架和一些基础概念

5G核心网的构架和一些基础概念5G无线接入网络架构,主要包括5G 接入网和5G 核心网,其中NG—RAN 代表5G 接入网,5GC 代表5G 核心网.5G核心网主要包括哪些呢?先说一下关键的AMF,SMF,UPF。
•AMF:全称Access and Mobility Management Function,接入和移动管理功能,终端接入权限和切换等由它来负责.•SMF:全称Session Management Function,会话管理功能,提供服务连续性,服务的不间断用户体验,包括IP地址和/或锚点变化的情况。
•UPF:全称User Plane Function,用户面管理功能,与UPF关联的PDU 会话可以由(R)AN节点通过(R)AN和UPF之间的N3接口服务的区域,而无需在其间添加新的UPF或移除/重新—分配UPF。
我们看一下5G的系统构架图:AMF/SMF/UPF 处于主体的作用。
AMF承载以下主要功能:接入和移动管理功能(AMF)包括以下功能。
在AMF的单个实例中可以支持部分或全部AMF功能:•终止RAN CP接口(N2)。
•终止NAS(N1),NAS加密和完整性保护。
•注册管理.•连接管理。
•可达性管理。
•流动性管理。
•合法拦截(适用于AMF事件和LI系统的接口)。
•为UE和SMF之间的SM消息提供传输.•用于路由SM消息的透明代理.•接入身份验证。
•接入授权.•在UE和SMSF之间提供SMS消息的传输.•安全锚功能(SEAF)。
•监管服务的定位服务管理。
•为UE和LMF之间以及RAN和LMF之间的位置服务消息提供传输。
•用于与EPS互通的EPS 承载ID分配。
•UE移动事件通知.无论网络功能的数量如何,UE和CN之间的每个接入网络只有一个NAS接口实例,终止于至少实现NAS安全性和移动性管理的网络功能之一.除了上述AMF的功能之外,AMF还可以包括以下功能以支持非3GPP 接入网络: •支持N2接口与N3IWF. 在该接口上,可以不应用通过3GPP 接入定义的一些信息(例如,3GPP 小区标识)和过程(例如,与切换相关),并且可以应用不适用于3GPP接入的非3GPP 接入特定信息。
5G 核心网的构架和基础概念

5G 核心网的构架和一些基础概念上期我们说到5G无线接入网络架构,主要包括5G 接入网和5G 核心网,其中NG-RAN 代表5G 接入网,5GC 代表5G 核心网。
还是这张图:5G核心网主要包括哪些呢?先说一下关键的AMF,SMF,UPFAMF:全称Access and Mobility Management Function,接入和移动管理功能,终端接入权限和切换等由它来负责。
SMF:全称Session Management Function,会话管理功能,提供服务连续性,服务的不间断用户体验,包括IP地址和/或锚点变化的情况。
UPF:全称User Plane Function,用户面管理功能,与UPF关联的PDU会话可以由(R)AN节点通过(R)AN和UPF之间的N3接口服务的区域,而无需在其间添加新的UPF或移除/重新- 分配UPF。
我们看一下5G的系统构架图:AMF\SMF\UPF 处于主体的作用。
非漫游状态下的过程AMF承载以下主要功能:接入和移动管理功能(AMF)包括以下功能。
在AMF的单个实例中可以支持部分或全部AMF功能:▪-终止RAN CP接口(N2)。
▪-终止NAS(N1),NAS加密和完整性保护。
▪-注册管理。
▪-连接管理。
▪-可达性管理。
▪-流动性管理。
▪-合法拦截(适用于AMF事件和LI系统的接口)。
▪-为UE和SMF之间的SM消息提供传输。
▪-用于路由SM消息的透明代理。
▪-接入身份验证。
▪-接入授权。
▪-在UE和SMSF之间提供SMS消息的传输。
▪-安全锚功能(SEAF)。
▪-监管服务的定位服务管理。
▪-为UE和LMF之间以及RAN和LMF之间的位置服务消息提供传输。
▪-用于与EPS互通的EPS 承载ID分配。
▪-UE移动事件通知。
无论网络功能的数量如何,UE和CN之间的每个接入网络只有一个NAS接口实例,终止于至少实现NAS安全性和移动性管理的网络功能之一。
除了上述AMF的功能之外,AMF还可以包括以下功能以支持非3GPP 接入网络:-支持N2接口与N3IWF。
全面:一文看懂5G网络(接入网+承载网+核心网)

全面:一文看懂5G网络(接入网+承载网+核心网)本文以无线接入网为线索,梳理一下无线侧接入网+承载网+核心网的架构,主讲无线接入网,浅析承载网和核心网,帮助大家更深入的了解5G,也帮助新手更好的入门。
在我们正式讲解之前,我想通过这张网络简图帮助大家认识一下全网的网络架构,通过对全网架构的了解,将方便对后面每一块网络细节的理解。
这张图分为左右两部分,右边为无线侧网络架构,左边为固定侧网络架构。
无线侧:手机或者集团客户通过基站接入到无线接入网,在接入网侧可以通过RT N或者IP R A N或者PT N解决方案来解决,将信号传递给BS C/R N C。
在将信号传递给核心网,其中核心网内部的网元通过IP承载网来承载。
固网侧:家客和集客通过接入网接入,接入网主要是GP O N,包括ON T、OD N、OL T。
信号从接入网出来后进入城域网,城域网又可以分为接入层、汇聚层和核心层。
B R A S为城域网的入口,主要作用是认证、鉴定、计费。
信号从城域网走出来后到达骨干网,在骨干网处,又可以分为接入层和核心层。
其中,移动叫CM N E T、电信叫169、联通叫163。
固网侧和无线侧之间可以通过光纤进行传递,远距离传递主要是有波分产品来承担,波分产品主要是通过WD M+S D H的升级版来实现对大量信号的承载,OT N是一种信号封装协议,通过这种信号封装可以更好的在波分系统中传递。
最后信号要通过防火墙到达IN T E R N E T,防火墙主要就是一个N A T,来实现一个地址的转换。
这就是整个网络的架构。
看完宏观的架构,让我们深入进每个部分,去深入解读一下吧。
什么是无线接入网?首先大家看一下这个简化版的移动通信架构图:无线接入网,也就是通常所说的RAN(Radio Access Network)。
简单地讲,就是把所有的手机终端,都接入到通信网络中的网络。
大家耳熟能详的基站(Ba s e S t a t i o n),就是属于无线接入网(RA N)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
按照3GPP的计划,5G最早会在2020年开始部署。
虽然尚不清楚5G会沿用现有的LTE 技术,还是采用革命性的新空口技术,但是5G的总体目标是清楚的:
数据速率达到20Gbps甚至更好——至少是4G的10倍;
即使在高负载场景和小区边缘场景,吞吐量也能达到100Mbps;
在全覆盖区域提高用户体验的统一性;
非常小的时延——1毫秒甚至更少,至少是4G的十分之一;方便对实时控制有更高要求的系统的部署;
使用更好的频段——高于5GHz,也可以包括毫米波段(30GHz甚至更高);
更宽的无线信道——1到2 GHz,甚至更宽;
分层和自组织部署模式;
使用授权频段和开放频段;
对人类型通信和机器型通信的同等支持——包括充分有效地支持小数据包传输;
先进的频谱分享能力;
图1概括了网络从现有的LTE网络到未来的LTE-A网络以及5G网络的演变。
图1
5G的最基本考虑是在充分利用现有的LTE技术投资的基础上,开发新频段和新技术的能力。
5G设计强调将现有的4G网络与5G提供的能力结合起来。
有一种方法是提高部署在现有频段的LTE网络的能力,使得它能够与部署在更高频段并且有更宽带宽的新接入技术互联互通(如图2所示)。
图2
5G需要决策是在新频段使用LTE接入技术,还是发明新的接入技术(如图3所示)。
新的接入技术必须能提高接入网的性能,并且兼容现有的LTE网络。
图3
为了达到既兼容LTE网络以充分保护现有的投资,同时提升网络的能力,5G设计者正在评估下表罗列的候选技术。