5.1.1 任意角的概念
5.1.1 任意角

终边在终边在射线 y = -x 上的角的集合是
B 2250 k 3600 , k Z
所以终边在Y=x上的角的集合是 S | 2250 k 3600 , k Z
| 45 k 360 , k Z
k 180 , k Z
0
o
x
• 写出终边在坐标轴上的角的集合y
k 180 , k Z 90 k 180 , k Z o x k 90 , k Z
0 0 0 0
•解:终边在终边在射线 y = x 上的角的集合是
B α
始边
O A
终边
顶点
思考3:在齿轮传动中,被动轮与主动轮 是按相反方向旋转的.一般地,一条射线 绕其端点旋转,既可以按逆时针方向旋 转,也可以按顺时针方向旋转.你认为将 一条射线绕其端点按逆时针方向旋转600 所形成的角,与按顺时针方向旋转600所 形成的角是否相等?
思考4:为了区分形成角的两种不同的旋 转方向,可以作怎样的规定?如果一条 射线没有作任何旋转,它还形成一个角 吗?
0 0
ቤተ መጻሕፍቲ ባይዱ
y
o
x
| 90 180 2k 180 ,kZ
0 0 0
| 90 2k 180 , k Z
0 0
| 90 (2k 1)180 ,kZ
0 0
| 900 n1800 ,nZ
巩固与提高
y
• 写出终边在X轴上的角的集合
0
(4)终边相同的角不一定相等,但相等 的角,终边一定相同,终边相同的角 有无数多个,它们相差360°的整数倍.
高考数学复习知识点讲义课件34---任意角

知结构体系
(一)任意角 1.角的定义及分类 (1)角的概念:角可以看成平面内一条 射线绕着它的端点 旋转所成的图形 . (2)角的表示:如图所示,角α可记为“α”或“∠α”或“∠AOB”, 始边: OA ,终边: OB ,顶点 O .
(3)角的分类
名称 正角 负角 零角
定义 一条射线绕其端点按 逆时针 方 向旋转形成的角 一条射线绕其端点按 顺时针 方 向旋转形成的角 一条射线 没有 做任何旋转形成 的角
A.120°+k·360°,k∈Z
B.120°+k·180°,k∈Z
C.240°+k·360°,k∈Z
D.240°+k·180°,k∈Z
(2)下列角的终边与37°角的终边在同一直线上的是
A.-37°
B.143°
C.379°
D.-143°Biblioteka () ()[解析] (1)角2α与240°角的终边相同,则2α=240°+k·360°,k∈Z,则α= 120°+k·180°,k∈Z.
(二)象限角与终边相同的角 1. 象限角与终边相同的角
把角放在平面直角坐标系中,使角的顶点与 原点 重合,角的始 象 边与x轴的非负半轴重合,那么,角的 终边 在第几象限,就说 限 这个角是第几 象限角 ;如果角的终边在 坐标轴上 ,就认为这
角 个角不属于任何一个象限
终边 所有与角α终边相同的角,连同角α在内,可构成一个集合S= 相同 {β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表 的角 示成角α与整数个周角的和
答案:D
3.2 020°是
()
A.第一象限角
B.第二象限角
C.第三象限角
D.第四象限角
解析:2 020°=5×360°+220°,所以2 020°角的终边与220°角的终边相同,为 第三象限角.
【课件】任意角课件高一上学期数学人教A版(2019)必修第一册

“角α”或“ ∠α”可以
简记成“α”
概念引入(1)
图5.1-3(1)中的角是一个正角,它等于750°;图5.1-3(2)中,
正角α=210°,负角β=-150°,γ=-660°.正常情况下,如果以零
时为起始位置,那么钟表的时针或分针在旋转时所形成的角总是
负角.
图5.1-3
概念理解(1)
都有着循环往复、周而复始的规
律,这种变化规律称为周期性,
例如:地球自转引起的昼夜交替
变化和公转引起的四季交替变化,
月亮圆缺,潮汐变化,物体做匀
速圆周运动时的位置变化,物体
做简谐运动时的位移变化,交变
电流变化等,这些现象都可以用
三角函数刻画.
复习引入
初中所学的角是如何定义的?角的取值范围如何?
角可以看成平面内
角的加法:设α,β是任意两个角,我们规
定,把角α的终边旋转角β,这时终边所对
应的角是a+β.
相反角:类似于实数a的相反数是-a,我
们引入任意角α的相反角的概念.
如图,我们把射线OA绕端点0按不同方向旋
转相同的量所成的两个角叫做互为相反角,
概念的理解(1)
两个角也能像两个实数那样进行加减运算吗?
角的减法:像实数减法的“减去一个数等于
第二象限
O
第三象限
第一象限
x
第四象限
270°+k·360°
(-90°+k·360°)
k·360°
深化与思考
思维升华
表示区间(域)角的三个步骤
第一步:先按逆时针方向找到区域的起始和终止边界.
第二步:按由小到大分别标出起始和终止边界对应的
5.1.1任意角

S= β β=-32o +k360o ,k Z
思考3:一般地,所有与角α终边相同的角,连同角α在内所构成的集合S可以怎样表示?
S={β|β=α+k·360°,k∈Z}, 即任一与α终边相同的角,都可以表示成角α与整数个周角的和.
注意:
(1) K∈Z,α是任意角。
(2) K·360°与α 之间是“+”号, 如 K·360°-30°应看成K·360°+ (-30°)
正角:按逆时针方向旋转形成的角。 我们规定: 负角:按顺时针方向旋转形成的角。
零角:射线不作旋转时形成的角。
记法:角 或∠ 可以简记为
如图,正角 210 ,负角 150 ,负角 660
2、相等、相反角,角的加减
角与角的旋转方向相同且旋转 量相等,那么就称 。
把射线OA绕端点O按不同方向旋转相同的量所成的两个角叫做互为相反角。
4、终边相同的角
y
思考1: -32°,328°,-392°是第几象限的角?这些角有什么内在联系? 不难发现,-32°,328°,-392°的终边都在第四象限,而且都是OB。
328°
o -32°
x
-32°
-392°
B
思考2:所有与-32°角终边相同的角,连同-32°角在内,可构成一个集合S,你能用描述法表示集合S吗?
角的相反角记为.
设,是任意两个角,规定:把角的终边旋转角,这时终边所对应的角是 。
那么: ( )这样,角的减法可以转化为角的加法。
B
例如:50 80
C B
80
1300 50
O
问题探究:50 80 呢?
50°-80°= 50°+(-80°)
O
2024-2025学年高中数学第五章三角函数5.1.1任意角教案新人教A版必修第一册

2. 利用多媒体手段,直观展示任意角的形象,帮助学生理解。
3. 实例分析,让学生通过实际问题体会任意角的应用。
教学过程:
1. 导入:回顾角度的基本概念,引出任意角的概念。
2. 新课讲解:讲解任意角的定义,引导学生掌握用弧度制表示角的方法。
3. 课堂互动:进行角度转换练习,让学生巩固所学知识。
4. 应用拓展:通过实例分析,让学生了解任意角在实际问题中的应用。
5. 总结:回顾本节课的主要内容,强调任意角的概念及表示方法。
6. 作业布置:布置相关练习题,巩固所学知识。
教学反思:
本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高学生的学习兴趣和效果。同时,关注学生在学习过程中的问题,及时进行解答,确保学生能够熟练掌握任意角的概念及表示方法。
教学目标:
1. 理解任意角的概念,掌握用弧度制表示角的方法。
2. 了解任意角与标准角的关系,能进行简单的角度转换。
3. 培养学生的空间想象力,提高学生的数学思维能力。
教学重点:
1. 任意角的概念及表示方法。
2. 任意角与标准角的关系。
教学难点:
1. 任意角的概念的理解。
2. 弧度制的应用。
教学方法:
2024-2025学年高中数学 第五章 三角函数 5.1.1 任意角教案 新人教A版必修第一册
主备人
备课成员
教材分析
本节课为人教A版必修第一册第五章《三角函数》的5.1.1节“任意角”。本节内容主要介绍任意角的概念及其表示方法,是学习三角函数的基础。通过本节课的学习,学生应掌握任意角的定义,了解用弧度制表示角的方法,并理解任意角与标准角的关系。
任意角ppt课件

第五章 三角函数
5.1 任意角和弧度制 5.1.1 任意角
高一数学组
学习目标
1. 了解任意角的概念,理解并掌握正角、负角、零角的定义. 2. 能在规定范围内,找到与已知角终边相同的角,并判定其为第几象限角. 3. 能写出与任一已知角终边相同的角的集合,能表示特殊位置(或给定区域 内)的角的集合.
新课引入
探究新知识
练习2 终边落在x轴的正半轴上的角的集合怎样表示?终边落在x轴的负半 轴上的角的集合怎样表示?终边落在x轴上的角的集合怎样表示?
解: 终边落在x轴的正半轴上的角的集合为{α|α=k·360°,k∈Z},终边 落在x轴的负半轴上的角的集合为{α|α=180°+k·360°,k∈Z},终边落 在x轴上的角的集合为{α|α=k·180°,k∈Z}.
(2)始边重合于x轴的正半轴
终边落在第几象限就是第几象限角
新课引入
探究新知识
思考1 将角按照上述方法放在直角坐标系中后,给定一个角,就有唯一的 一条终边与之对应.反之,对于直角坐标系内任意一条射线OB (如图),
以它为终边的角是否唯一?如果不唯一,那么终边相同的角有什么关系?
分析 不唯一,如果-32°角的终边是OB,那么 328°,-392°,…角的终边都是OB,即所有与 角α终边相同的角,连同角α在内,可构成一个集
新课引入
探究新知识
2.运用终边相同的角的注意点 所有与角α终边相同的角,连同角α在内可以用式子k·360+α,k∈Z表示,在运用时 需注意以下四点: (1) k是整数,这个条件不能漏掉. (2) α是任意角. (3) k·360°与α之间用“+”连接,如k·360°-30°应看成k·360°+(-30°),k∈Z. (4)终边相同的角不一定相等,但相等的角终边一定相同,终边相同的角有无数个, 它们相差周角的整数倍.
5.1.1 任意角

5.1.1任意角(人教A 版普通高中教科书数学必修第一册第五章)一、教学目标1.了解任意角以及象限角的概念,会判断一个任意角是第几象限角,发展数学抽象素养.2.理解角的加减运算以及相反角的概念.3.掌握与角α终边相同的角的表示方法.二、教学重难点1.将0︒到360︒范围的角扩充到任意角.2.任意角概念的构建,用集合表示终边相同的角.三、教学过程1.呈现背景 提出问题现实世界中的许多运动、变化都有着循环往复、周而复始的规律,这种规律称为周期性.例如:地球自转、地球于太阳公转,月亮圆缺、潮汐变化等,数学中的圆周运动也是一种常见的周期性变化现象.问题1:如图,O 上的点P 以A 为起点做逆时针方向的旋转.如何刻画点P 的位置变化呢?【预设的答案】我们知道,角可以看成一条射线绕着它的端点旋转所成的图形.在图中,射线的端点是圆心O ,它从起始位置OA 按逆时针方向旋转到终止位置OP ,形成一个角,射线OA ,OP 分别是角α的始边和终边,点P 是终边OP 与O 的交点.可以借助角α的大小变化刻画点P 的位置变化.【设计意图】创设情境,以圆为载体研究周期性变化对理解角的扩充更有帮助.由初中知识可知,射线OA 绕端点O 按逆时针方向旋转一周回到起始位置,在这个过程中可以得到0~360︒︒范围内的角.如果继续旋转,那么所得到的的角就超出这个范围了.所以,为了借助角的大小变化刻画圆周运动,需要先扩大角的范围.AA PO2.任意角的概念、运算及分类现实生活中随处可见超出0~360︒︒范围的角.例如,体操中有“前空翻转体540度”,“后空翻转体720度”,齿轮的旋转等.问题2:这些角有哪些不同,体现在哪几个方面?【预设的答案】不同体现在旋转量和旋转方向.【设计意图】引导学生从生活实际出发用数学的眼光分析问题,归纳刻画角的两个方面——旋转量和旋转方向.很显然,0~360︒︒角难以满足我们的需要,所以我们需要对角的概念进行推广.2.1角的概念类比实数的学习,我们对角的范围进行扩充:一条射线绕其端点按逆时针方向旋转形成的角叫做正角,按顺时针方向旋转形成的角叫做负角.如果一条射线没有做任何旋转,就称它形成了一个零角.2.2角的表示与作图【数学情境】你能分别作出750°、210°、-150°、-660°吗?【设计意图】再次强调决定一个角的要素是旋转方向和旋转量.2.3角的运算问题3:类比实数,思考下列问题:(1)你认为相等的两个角应该怎样规定?(2)两角相加又是怎样规定的?(3)你知道什么是互为相反角吗?两角怎样相减?【预设的答案】(1)旋转方向相同且旋转量相等.+.(2)角α的终边旋转角β,这时终边所对应的角是αβ(3)类似于实数中的相反数我们引入相反角的概念.我们把射线OA绕端点O按不同方向旋转相同的量所成的两个角叫做互为相反角.类似于实数a的相反数是a-,角α的相反角记为α-.类似实数减法中“减去一个数等于加上这个数的相反数”,减去一个角等于加上这个角的相反角.即()αβαβ-=+-.【设计意图】让学生尝试定义角的相等和加减法,体会定义的合理性.2.4象限角角的范围扩充后,为了讨论的方便,我们通常在直角坐标系中研究角.角的顶点与原点重合,角的始边与x 轴的非负半轴重合.问题4:根据终边位置的不同,可以把角分为哪几类?【预设的答案】根据角的终边所在象限,将角分为第一象限角,第二象限角,第三象限角,第四象限角.【设计意图】让学生体会在直角坐标系中研究角是自然和合理的.这样我们得到了象限角的概念:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合.那么角的终边在第几象限,就说这个角是第几象限角.如果角的终边在坐标轴上,那么就认为这个角不属于任何一个象限,也称为轴线角.问题5:锐角是第几象限角?第一象限角一定是锐角吗?【预设的答案】因为锐角是指大于0︒且小于90︒的角,所以锐角是第一象限角,第一象限角不一定是锐角.【设计意图】让学生明确“锐角”“第一象限角”之间的关系,避免混淆.2.5终边相同的角问题6:在直角坐标系中,将角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么与32-︒角终边重合的角还有哪些?有多少个?【预设的答案】328°,688°,-392°,-752°;无数个追问:它们与32-︒角有什么关系?能不能用集合的形式将它们表达出来?【预设的答案】相差360°的整数倍,可以用{}32360,S k k ββ==-︒+⋅︒∈Z 表示. 追问:将32-︒推广到一般角α,结论应该是什么?【预设的答案】{}360,S k k ββα==+⋅︒∈Z .【设计意图】通过对特殊角之间关系的研究得到一般性的结论,符合学生由特殊到一般的认知规律,并且培养了学生的数学抽象素养.一般地,我们有:所有与角α终边相同的角,连同角α在内,可构成一个集合{}360,S k k ββα==+⋅︒∈Z ,即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.3.典例分析例1 在0~360︒︒范围内,找出与下列各角终边相同的角,并判定它是第几象限角.(1)-120º;(2)640º;(3)-950º12′.【预设的答案】(1)与-120º终边相同的角为240º,它是第三象限角.(2)与640º终边相同的角为280º,它是第四象限角.(3)与-950º12′终边相同的角为129º48',它是第二象限角.【设计意图】利用终边相同的角判定其象限,为以后证明恒等式、化简及利用诱导公式求三角函数的值等奠定基础.例2 写出终边在y 轴上的角的集合.【预设的答案】终边落在y 轴非负半轴上的角构成集合:{}190360,S k k ββ==︒+⋅︒∈Z ,终边落在y 轴非正半轴上的角构成集合{}2270360,S k k ββ==︒+⋅︒∈Z ,观察发现,12S S 中的角均相差180︒的整数倍,用集合表示是{}90180,S k k ββ==︒+⋅︒∈Z .另外,我们还可以用这种方式求出12S S :12=|=90360|=270360=|=902180|=901802180|=902180|=9021180|=90180S S S k k k k k k k k k k k k n n ββββββββββββββ=︒+⋅︒∈︒+⋅︒∈︒+⋅︒∈︒+︒+⋅︒∈=︒+⋅︒∈︒++⋅︒∈=︒+⋅︒∈Z Z Z Z Z Z Z {,}{,}{,}{,}{,}{(),}{,}.【设计意图】引导学生体会用集合表示终边相同的角时,表示方式不唯一,要注意采用简约的形式.例3 写出终边在直线y x =上的角的集合S .S 中满足不等式360720β-︒≤<︒的元素β有哪些?【预设的答案】在0~360︒︒范围内,终边在直线=y x 上的角有两个:45︒,225︒. 因此,终边在直线=y x 上的角的集合=|=45360|=225360=|=452180|=4521180=|=45180S k k k k k k k k n n ββββββββββ︒+⋅︒∈︒+⋅︒∈︒+⋅︒∈︒++⋅︒∈︒+⋅︒∈Z Z Z Z Z {,}{,}{,}{(),}{,}.S 中适合不等式360720β- ︒︒≤<的元素β有452180=315︒-⨯︒-︒,451180=135︒-⨯︒-︒,450180=45︒+⨯︒︒,451180=225︒+⨯︒︒,452180=405︒+⨯︒︒,453180=585︒+⨯︒︒.【设计意图】巩固终边相同的角的表示.4.归纳小结四、课外作业1.已知角的顶点与直角坐标系的原点重合,始边与x 轴的非负半轴重合,作出下列各角,并指出它们是第几象限角:(1)420°; (2)-75°; (3)855°; (4)-510°.2.写出终边与-225°终边相同的角的集合,并找出集合中适合不等式720360β- ︒︒≤<的元素β.。
安徽省对口高考复习第五章三角函数

第五章 三角函数(基础模块∙上)一、知识点节次知识点 5.1角的概念推广5.1.1任意角的概念角角的始边 角的终边 角的顶点 正角 负角 零角第几象限角 界限角5.1.2终边相同的角定义表示(象限角、界限角) 5.2弧度制5.2.1弧度制1弧度的角 弧度制角度与弧度的换算公式 特殊角的换算 5.2.2应用举例机械传动 公路弯道5.3任意角的三角函数5.3.1任意角的三角函数的概念 三角函数定义域已知终边上一点 5.3.2各象限角的三角函数值的正负号象限表示5.3.3界限角的三角函数值特殊角的三角函数值 5.4同角三角函数的基本关系 5.4.1同角三角函数的基本关系式单位圆 平方关系 商的关系 5.4.2含有三角函数的式子的求值与化简商的关系5.5诱导公式5.5.1()Z k k ∈⋅+ 360α的诱导公式()Z k k ∈⋅+ 360α的诱导公式5.5.2 -α的诱导公式-α的诱导公式5.5.3 180°α±的诱导公式 180°α±的诱导公式 5.5.4 利用计算器求任意角的三角函数值5.6三角函数的图像和性质5.6.1正弦函数的图像和性质周期现象 周期函数 周期最小正周期 正弦曲线有界性 有界函数无界函数 正弦函数性质 五点法作图5.6.2余弦函数的图像和性质余弦曲线 余弦函数性质 5.7已知三角函数值求角 5.7.1已知正弦函数值求角 5.7.2已知余弦函数值求角 5.7.3已知正切函数值求角 阅读与欣赏 光周期现象及其应用第一章 三角公式(拓展模块)节次知识点1.1两角和与差的正弦公式与余弦公式1.1.1两角和与差的余弦公式 两角和与差的余弦公式 1.1.2两角和与差的正弦公式 两角和与差的正弦公式 1.1.3两角和与差的正切公式 两角和与差的正切公式 1.1.4二倍角公式二倍角公式 1.2正弦型函数1.2.1正弦型函数的周期 正弦型函数 计算公式1.2.2正弦型曲线正弦型曲线正弦型曲线变化规律 正弦型曲线五点规律 振幅、频率、相位、初相 a sin x +b cos x 的转化 1.3正弦定理与余弦定理 1.3.1正弦定理 正弦定理 1.3.2余弦定理余弦定理1.3.3正弦定理与余弦定理应用举例阅读与欣赏 刘徽与《海岛算经》二、结构展示三角函数三角公式角的度量 三角函数角概念推广 弧度制 终边相同角 定义、单位圆特殊角诱导公式同角函数 三角函数符号三、考纲解读1、角度概念,弧度制了解角的概念,理解弧度制;终边相同的角的关系是重要的考点之一。