任意角的概念与弧度制

合集下载

角的概念与弧度制

角的概念与弧度制
角的概念与弧度制
1、任意角的概念:设角的顶点在坐标原点,始边与 x 轴正半 轴重合,终边在坐标平面内, (1)从运动的角度看,可分为正角、负角和零角. (2)从终边位置来看,可分为象限角和轴线角. 象限角:若角 的终边落在第 k 象限,则称 为第 k 象限角; 注:若角 的终边在坐标轴上,则角 不属于任何象限角; (3)若 α 与 β 角的终边相同, 则 β 用 α 表示为 β=α+2kπ(k ∈Z).
)
练习 1: (1)给出下列四个命题: ①-
5 12
是第四象限角;
② 5 是第三象限角;
4
③475°是第二象限角; 其中正确的命题有
④- 7 是第一象限角;
4
9π (2)下列与 的终边相同的角的表达式中正确的是( 4 A.2kπ+45° (k∈Z) C.k· 360° -315° (k∈Z) 9π B.k· 360° + (k∈Z) 4 9π D.kπ+ (k∈Z) 4
)
例 2、分别写出终边在四个象限的角的集合
练习 2、已知角 是第二象限角,求: (1)角 是第几象限的角;
2
(2)角 2 终边的位置。
例 3、已知扇形的圆心角是 α,半径为 R,弧长为 l. (1)若 α=60° ,R=10 cm,求扇形的弧长 l 及该弧所在弓形的 面积; ; (2)若扇形的周长为 20 cm, 当扇形的圆心角 α 为多少弧度时, 这个扇形的面积最大;
弧长 l=|α|r 1 1 S= lr= |α|r21)锐角是第一象限角,反之亦然.( (2)终边在 x )
.(
π 轴上的角的集合是 αα=kπ+2,k∈Z
)
π (3)将分针拨快 10 分钟,则分针转过的角度是 .( 3 (4)第一象限的角一定不是负角.( )

任意角和弧度制的概念

任意角和弧度制的概念

任意角和弧度制角可以看成一条射线绕着它的端点旋转所成的图形。

1.任意角,包括正角、负角和零角。

我们规定:一条射线绕其端点按逆时针方向旋转形成的角叫做正角,按顺时针方向旋转形成的角叫做负角,如果一条射线没有作任何旋转,就称它形成了一个零角,这样零角的始边与终边重合。

如果α是零角,那么α=0°。

设α,β是任意两个角,如果它们的旋转方向相同且旋转量相等,那么就称α=β。

我们规定,把角α的终边旋转角β,这时终边所对应的角是α+β。

类似于实数a的相反数是-a,我们引入角α的相反角的概念。

我们把射线OA绕端点O按不同方向旋转相同的量所成的两个角叫做互为相反角。

角α的相反角记为-α。

角的减法可以转化为角的加法。

在直角坐标系内讨论角。

为了方便,角的顶点与原点重合,角的始边与x轴的非负半轴重合,那么,角的终边在第几象限就说这个角是第几象限角。

如果角的终边在坐标轴上,那么就认为这个角不属于任何一个象限。

2.弧度制角可以用度为单位进行测量,1度的角等于周角的1/360,这种用度作为单位来度量角的单位制叫做角度制。

另一种度量角的单位制是弧度制。

如图,射线OA 绕断点O 旋转到OB 形成角α,在旋转过程中,射线OA 上的一点P (不同于点O )的轨迹是一条圆弧,这条圆弧对应于圆心角α。

设︒=n α,r OP =,点P 所形成的圆弧的长为l 。

由180r n l π=,于是180πn r l =。

根据上面公式可以发现,圆心角α所对的弧长与半径的比值,只与α的大小有关。

也就是说这个比值随尔法的确定而唯一确定,这就启发我们,可以利用圆的弧长与半径的关系度量圆心角。

我们规定:长度等于半径长的圆弧,所对的圆心角叫做1弧度的角,弧度单位用符号rad 表示,读作弧度。

我们把半径为1的圆叫做单位圆。

根据上述规定,在半径为r 的圆中,弧长为l 的弧所对的圆心角为α rad,那么rl=α。

其中α的正负由角α的终边的旋转方向决定,即逆时针旋转为正,顺时针旋转为负。

任意角和弧度制、三角函数的概念

任意角和弧度制、三角函数的概念
2
π


所以 kπ+2 < 2<kπ+ 4 (k∈Z).
π


当 k=2n(n∈Z)时,2nπ+2 < 2<2nπ+ 4 , 2是第二象限角;



当 k=2n+1(n∈Z)时,2nπ+ 2 < 2 <2nπ+ 4 , 2是第四象限角.

综上可知,当 α 是第三象限角时,2是第二或第四象限角.
4
3
3
3
是真命题;-400°=-360°-40°,从而-400°是第四象限角,故③是真命
题;-315°=-360°+45°,从而-315°是第一象限角,故④是真命题.
π
π
(2)集合 π + ≤ ≤ π + ,∈Z 中的角的终边所表示的范围(阴影
4
2
部分)是( C )
π
π
当 k=2n(n∈Z)时,2nπ+ ≤ ≤2nπ+ ,
3
3
3

,k∈Z}.
3
= 2π +
解题心得1.角的终边在一条直线上比在一条射线上多一种情况.
2.判断角β所在的象限,先把β表示为β=2kπ+α,α∈[0,2π),k∈Z,再判断角α所
在的象限即可.

3.确定角 kα, (k≥2,且 k∈N*)的终边的位置:先用终边相同角的形式表示出



角 α 的范围,再写出 kα 或 的范围,最后根据 k 的可能取值讨论确定角 kα 或
∴终边在直线 y= 3x 上的角的集合为 =

高中数学必修四任意角与弧度制知识点汇总

高中数学必修四任意角与弧度制知识点汇总

任意角与弧度制 知识梳理:一、任意角和弧度制 1、角的概念的推广定义:一条射线OA 由原来的位置,绕着它的端点O 按一定的方向旋转到另一位置OB ,就形成了角α,记作:角α或α∠ 可以简记成α。

注意:(1)“旋转”形成角,突出“旋转”(2)“顶点”“始边”“终边”“始边”往往合于x 轴正半轴 (3)“正角”与“负角”——这是由旋转的方向所决定的。

例1、若13590<<<αβ,求βα-和βα+的范围。

(0,45) (180,270)2、角的分类:由于用“旋转”定义角之后,角的范围大大地扩大了。

可以将角分为正角、零角和负角。

正角:按照逆时针方向转定的角。

零角:没有发生任何旋转的角。

负角:按照顺时针方向旋转的角。

例2、(1)时针走过2小时40分,则分针转过的角度是 -960(2)将分针拨快10分钟,则分针转过的弧度数是 3π .3、 “象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角,角的顶点合于坐标原点,角的始边合于x 轴的正半轴。

角的终边落在第几象限,我们就说这个角是第几象限的角角的终边落在坐标轴上,则此角不属于任何一个象限,称为轴线角。

例1、30? ;390? ;?330?是第 象限角 300? ; ?60?是第 象限角585? ; 1180?是第 象限角 ?2000?是第 象限角。

例2、(1)A={小于90°的角},B={第一象限的角},则A∩B= ④ (填序号).①{小于90°的角} ②{0°~90°的角}③ {第一象限的角}④以上都不对(2)已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是(B )A .B=A∩CB .B∪C=CC .A ⊂CD .A=B=C例3、写出各个象限角的集合:例4、若α是第二象限的角,试分别确定2α,2α 的终边所在位置.解 ∵α是第二象限的角,∴k ·360°+90°<α<k ·360°+180°(k ∈Z ).(1)∵2k ·360°+180°<2α<2k ·360°+360°(k ∈Z ), ∴2α是第三或第四象限的角,或角的终边在y 轴的非正半轴上. (2)∵k ·180°+45°<2α<k ·180°+90°(k ∈Z ), 当k=2n (n ∈Z )时, n ·360°+45°<2α<n ·360°+90°; 当k=2n+1(n ∈Z )时, n ·360°+225°<2α<n ·360°+270°. ∴2α是第一或第三象限的角. 拓展:已知α是第三象限角,问3α是哪个象限的角∵α是第三象限角,∴180°+k ·360°<α<270°+k ·360°(k ∈Z ), 60°+k ·120°<3α<90°+k ·120°. ①当k=3m(m ∈Z )时,可得 60°+m ·360°<3α<90°+m ·360°(m ∈Z ). 故3α的终边在第一象限. ②当k=3m+1 (m ∈Z )时,可得 180°+m ·360°<3α<210°+m ·360°(m ∈Z ). 故3α的终边在第三象限. ③当k=3m+2 (m ∈Z )时,可得 300°+m ·360°<3α<330°+m ·360°(m ∈Z ).故3α的终边在第四象限. 综上可知,3α是第一、第三或第四象限的角. 4、常用的角的集合表示方法 1、终边相同的角:(1)终边相同的角都可以表示成一个0?到360?的角与)(Z k k ∈个周角的和。

任意角和弧度制及任意角的三角函数考点与提醒归纳

任意角和弧度制及任意角的三角函数考点与提醒归纳

任意角和弧度制及任意角的三角函数考点与提醒归纳一、基础知识1.角的概念的推广(1)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+2k π,k ∈Z }.终边相同的角不一定相等,但相等的角其终边一定相同.2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式:有关角度与弧度的两个注意点(1)角度与弧度的换算的关键是π=180°,在同一个式子中,采用的度量制度必须一致,不可混用.(2)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度. 3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx (x ≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线、余弦线和正切线.二、常用结论汇总——规律多一点(1)一个口诀三角函数值在各象限的符号:一全正、二正弦、三正切、四余弦. (2)三角函数定义的推广设点P (x ,y )是角α终边上任意一点且不与原点重合,r =|OP |,则sin α=y r ,cos α=xr ,tan α=yx(x ≠0).(3)象限角(4)轴线角考点一 象限角及终边相同的角[典例] (1)若角α是第二象限角,则α2是( )A .第一象限角B .第二象限角C .第一或第三象限角D .第二或第四象限角(2)终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为________. [解析] (1)∵α是第二象限角, ∴π2+2k π<α<π+2k π,k ∈Z , ∴π4+k π<α2<π2+k π,k ∈Z. 当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角.故选C.(2)如图,在坐标系中画出直线y =3x ,可以发现它与x 轴的夹角是π3,在[0,2π)内,终边在直线y =3x 上的角有两个:π3,4π3;在[-2π,0)内满足条件的角有两个:-2π3,-5π3,故满足条件的角α构成的集合为⎩⎨⎧⎭⎬⎫-5π3,-2π3,π3,4π3.[答案] (1)C (2)⎩⎨⎧⎭⎬⎫-5π3,-2π3,π3,4π3[题组训练]1.集合⎩⎨⎧⎭⎬⎫α⎪⎪k π≤α≤k π+π4,k ∈Z 中的角所表示的范围(阴影部分)是( )解析:选B 当k =2n (n ∈Z )时,2n π≤α≤2n π+π4(n ∈Z ),此时α的终边和0≤α≤π4的终边一样,当k =2n +1(n ∈Z )时,2n π+π≤α≤2n π+π+π4(n ∈Z ),此时α的终边和π≤α≤π+π4的终边一样. 2.在-720°~0°范围内所有与45°终边相同的角为________. 解析:所有与45°终边相同的角可表示为: β=45°+k ×360°(k ∈Z ),则令-720°≤45°+k ×360°<0°(k ∈Z ), 得-765°≤k ×360°<-45°(k ∈Z ), 解得-765360≤k <-45360(k ∈Z ),从而k =-2或k =-1, 代入得β=-675°或β=-315°. 答案:-675°或-315°考点二 三角函数的定义[典例] 已知角α的终边经过点P (-x ,-6),且cos α=-513,则1sin α+1tan α=________.[解析] ∵角α的终边经过点P (-x ,-6),且cos α=-513,∴cos α=-x x 2+36=-513,解得x =52或x =-52(舍去),∴P ⎝⎛⎭⎫-52,-6,∴sin α=-1213, ∴tan α=sin αcos α=125,则1sin α+1tan α=-1312+512=-23.[答案] -23[解题技法]用定义法求三角函数值的2种类型及解题方法(1)已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后用三角函数的定义求解.(2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求解.[题组训练]1.已知角α的终边经过点(3,-4),则sin α+1cos α=( )A .-15B.3715C.3720D.1315解析:选D ∵角α的终边经过点(3,-4),∴sin α=-45,cos α=35,∴sin α+1cos α=-45+53=1315. 2.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( )A .-45B .-35C .35D .45解析:选B 设P (t,2t )(t ≠0)为角θ终边上任意一点,则cos θ=t5|t |.当t >0时,cos θ=55;当t <0时,cos θ=-55.因此cos 2θ=2cos 2θ-1=25-1=-35. 考点三 三角函数值符号的判定[典例] 若sin αtan α<0,且cos αtan α<0,则角α是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角[解析] 由sin αtan α<0可知sin α,tan α异号, 则α为第二象限角或第三象限角. 由cos αtan α<0可知cos α,tan α异号, 则α为第三象限角或第四象限角. 综上可知,α为第三象限角. [答案] C[解题技法] 三角函数值符号及角所在象限的判断三角函数在各个象限的符号与角的终边上的点的坐标密切相关.sin θ在一、二象限为正,cos θ在一、四象限为正,tan θ在一、三象限为正.学习时首先把取正值的象限记清楚,其余的象限就是负的,如sin θ在一、二象限为正,那么在三、四象限就是负的.值得一提的是:三角函数的正负有时还要考虑坐标轴上的角,如sin π2=1>0,cos π=-1<0.[题组训练]1.下列各选项中正确的是( ) A .sin 300°>0 B .cos(-305°)<0 C .tan ⎝⎛⎭⎫-22π3>0 D .sin 10<0解析:选D 300°=360°-60°,则300°是第四象限角,故sin 300°<0;-305°=-360°+55°,则-305°是第一象限角,故cos(-305°)>0;-22π3=-8π+2π3,则-22π3是第二象限角,故tan ⎝⎛⎭⎫-22π3<0;3π<10<7π2,则10是第三象限角,故sin 10<0,故选D. 2.已知点P (cos α,tan α)在第三象限,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选B 由题意得⎩⎨⎧cos α<0,tan α<0⇒⎩⎪⎨⎪⎧cos α<0,sin α>0,所以角α的终边在第二象限.[课时跟踪检测]A 级1.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( ) A .2 B .4 C .6D .8解析:选C 设扇形的半径为r (r >0),弧长为l ,则由扇形面积公式可得2=12lr =12|α|r 2=12×4×r 2,解得r =1,l =|α|r =4,所以所求扇形的周长为2r +l =6. 2.(2019·石家庄模拟)已知角α(0°≤α<360°)终边上一点的坐标为(sin 150°,cos 150°),则α=( )A .150°B .135°C .300°D .60°解析:选C 由sin 150°=12 >0,cos 150°=-32<0,可知角α终边上一点的坐标为⎝⎛⎭⎫12,-32,故该点在第四象限,由三角函数的定义得sin α=-32,因为0°≤α<360°,所以角α为300°.3.(2018·长春检测)若角α的顶点为坐标原点,始边在x 轴的非负半轴上,终边在直线y =-3x 上,则角α的取值集合是( )A.⎩⎨⎧⎭⎬⎫α⎪⎪α=2k π-π3,k ∈Z B.⎩⎨⎧⎭⎬⎫α⎪⎪α=2k π+2π3,k ∈Z C.⎩⎨⎧⎭⎬⎫α⎪⎪ α=k π-2π3,k ∈Z D.⎩⎨⎧⎭⎬⎫α⎪⎪α=k π-π3,k ∈Z 解析:选D 当α的终边在射线y =-3x (x ≤0)上时,对应的角为2π3+2k π,k ∈Z ,当α的终边在射线y =-3x (x ≥0)上时,对应的角为-π3+2k π,k ∈Z ,所以角α的取值集合是⎩⎨⎧⎭⎬⎫α⎪⎪α=k π-π3,k ∈Z .4.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3]解析:选A 由cos α≤0,sin α>0可知,角α的终边落在第二象限或y 轴的正半轴上,所以有⎩⎪⎨⎪⎧3a -9≤0,a +2>0,解得-2<a ≤3.5.在平面直角坐标系xOy 中,α为第二象限角,P (-3,y )为其终边上一点,且sin α=2y4,则y 的值为( ) A.3 B .-5 C.5 D.3或5解析:选C 由题意知|OP |=3+y 2,则sin α=y 3+y 2=2y4,解得y =0(舍去)或y =±5,因为α为第二象限角,所以y >0,则y = 5.6.已知角α=2k π-π5(k ∈Z ),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-3解析:选B 由α=2k π-π5(k ∈Z )及终边相同的概念知,角α的终边在第四象限,因为角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0.所以y =-1+1-1=-1. 7.已知一个扇形的圆心角为3π4,面积为3π2,则此扇形的半径为________. 解析:设此扇形的半径为r (r >0),由3π2=12×3π4×r 2,得r =2.答案:28.(2019·江苏高邮模拟)在平面直角坐标系xOy 中,60°角终边上一点P 的坐标为(1,m ),则实数m 的值为________.解析:∵60°角终边上一点P 的坐标为(1,m ),∴tan 60°=m1,∵tan 60°=3,∴m = 3.答案:39.若α=1 560°,角θ与α终边相同,且-360°<θ<360°,则θ=________. 解析:因为α=1 560°=4×360°+120°, 所以与α终边相同的角为360°×k +120°,k ∈Z , 令k =-1或k =0,可得θ=-240°或θ=120°. 答案:120°或-240°10.在直角坐标系xOy 中,O 为坐标原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.解析:依题意知OA =OB =2,∠AOx =30°,∠BOx =120°, 设点B 坐标为(x ,y ),则x =2cos 120°=-1,y =2sin 120°=3,即B (-1,3). 答案:(-1,3)11.已知1|sin α|=-1sin α,且lg(cos α)有意义.(1)试判断角α所在的象限;(2)若角α的终边上一点M ⎝⎛⎭⎫35,m ,且|OM |=1(O 为坐标原点),求m 的值及sin α的值. 解:(1)由1|sin α|=-1sin α,得sin α<0,由lg(cos α)有意义,可知cos α>0, 所以α是第四象限角.(2)因为|OM |=1,所以⎝⎛⎭⎫352+m 2=1,解得m =±45. 又因为α是第四象限角,所以m <0, 从而m =-45,sin α=y r =m |OM |=-451=-45.12.已知α为第三象限角. (1)求角α2终边所在的象限;(2)试判断 tan α2sin α2cos α2的符号.解:(1)由2k π+π<α<2k π+3π2,k ∈Z , 得k π+π2<α2<k π+3π4,k ∈Z ,当k 为偶数时,角α2终边在第二象限;当k 为奇数时,角α2终边在第四象限.故角α2终边在第二或第四象限.(2)当角α2在第二象限时,tan α2<0,sin α2>0, cos α2<0,所以tan α2sin α2cos α2取正号;当角α2在第四象限时,tan α2<0,sin α2<0, cos α2>0, 所以 tan α2sin α2cos α2也取正号.因此tan α2sin α2cos α2取正号.B 级1.若-3π4<α<-π2,从单位圆中的三角函数线观察sin α,cos α,tan α的大小是( )A .sin α<tan α<cos αB .cos α<sin α<tan αC .sin α<cos α<tan αD .tan α<sin α<cos α解析:选C 如图所示,作出角α的正弦线MP ,余弦线OM ,正切线AT ,因为-3π4 <α<-π2,所以α终边位置在图中的阴影部分,观察可得AT >OM >MP ,故有sin α<cos α<tan α.2.已知点P (sin α-cos α,tan α)在第一象限,且α∈[0,2π],则角α的取值范围是( )A.⎝⎛⎭⎫π2,3π4∪⎝⎛⎭⎫π,5π4B.⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫π,5π4C.⎝⎛⎭⎫π2,3π4∪⎝⎛⎭⎫5π4,3π2D.⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫3π4,π解析:选B 因为点P 在第一象限,所以⎩⎪⎨⎪⎧ sin α-cos α>0,tan α>0,即⎩⎨⎧sin α>cos α,tan α>0.由tan α>0可知角α为第一或第三象限角,画出单位圆如图.又sin α>cos α,用正弦线、余弦线得满足条件的角α的终边在如图所示的阴影部分(不包括边界),即角α的取值范围是⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫π,5π4.3.已知角θ的终边过点P (-4a,3a )(a ≠0).(1)求sin θ+cos θ的值;(2)试判断cos(sin θ)·sin(cos θ)的符号.解:(1)因为角θ的终边过点P (-4a,3a )(a ≠0),所以x =-4a ,y =3a ,r =5|a |,当a >0时,r =5a ,sin θ+cos θ=35-45=-15; 当a <0时,r =-5a ,sin θ+cos θ=-35+45=15. (2)当a >0时,sin θ=35∈⎝⎛⎭⎫0,π2, cos θ=-45∈⎝⎛⎭⎫-π2,0, 则cos(sin θ)·sin(cos θ)=cos 35·sin ⎝⎛⎭⎫-45<0; 当a <0时,sin θ=-35∈⎝⎛⎭⎫-π2,0, cos θ=45∈⎝⎛⎭⎫0,π2, 则cos(sin θ)·sin(cos θ)=cos ⎝⎛⎭⎫-35·sin 45>0. 综上,当a >0时,cos(sin θ)·sin(cos θ)的符号为负;当a <0时,cos(sin θ)·sin(cos θ)的符号为正.。

第四章 §4.1 任意角和弧度制、三角函数的概念

第四章 §4.1 任意角和弧度制、三角函数的概念

题型二 弧度制及其应用
例 2 (1)已知一扇形的圆心角 α=π3,半径 R=10 cm,则此扇形的弧积为____3____ cm2.
由已知得 α=π3,R=10 cm, 所以 l=αR=π3×10=130π(cm), S 扇形=12αR2=12×π3×102=530π(cm2).
√C.第三、四象限
D.第一、四象限
因为cos α·tan α<0,所以cos α,tan α的值一正一负,所以角α的终边 在第三、四象限.
返回
课时精练
知识过关
一、单项选择题 1.给出下列四个命题,其中正确的是 A.-34π是第四象限角 B.43π是第二象限角 C.-400°是第一象限角
√D.-315°是第一象限角
思维升华
(1)利用三角函数的定义,已知角α终边上一点P的坐标,可以求出α的三 角函数值;已知角α的三角函数值,也可以求出点P的坐标. (2)利用角所在的象限判定角的三角函数值的符号时,特别要注意不要忽 略角的终边在坐标轴上的情况.
跟踪训练 3 (1)已知角 α 的终边过点 P(-8m,-6sin 30°),且 cos α=
A.2kπ-45°(k∈Z)
B.k·360°+94π(k∈Z)
√C.k·360°-315°(k∈Z)
D.kπ+54π(k∈Z)
自主诊断
与94π的终边相同的角可以写成 2kπ+94π(k∈Z),但是角度制与弧度制 不能混用,所以只有 C 正确.
自主诊断
3.(必修第一册P180T3改编)已知角θ的终边过点P(-12,5),则sin θ+cos θ
题型三 三角函数的概念
例 3 (1)(2023·北京模拟)在平面直角坐标系中,角 α 以 x 轴的非负半轴为

第1讲 任意角和弧度制、三角函数的概念

第1讲任意角和弧度制、三角函数的概念1.了解任意角的概念和弧度制的概念.2.能进行弧度与角度的互化.3.理解任意角的三角函数(正弦、余弦、正切)的定义.1.任意角(1)任意角包括正角、负角和零角.(2)象限角:在平面直角坐标系中,使角的顶点与原点重合,角的始边与x轴的非负半轴重合,那么,角的终边在□1第几象限,就说这个角是第几□2象限角;如果角的终边在□3坐标轴上,就认为这个角不属于任何一个象限.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S=□4{β|β=α+k·360°,k∈Z}.2.弧度制的定义和公式(1)定义:把长度等于□5半径长的圆弧所对的圆心角叫做1弧度的角,正角的弧度数是一个□6正数,负角的弧度数是一个□7负数,零角的弧度数是□80.(2)公式角α的弧度数公式|α|=lr(弧长用l表示)角度与弧度的换算1°=π180rad;1rad=□9(180π)°弧长公式弧长l=□10|α|r扇形面积公式S=□1112lr=□1212|α|r2扇形的弧长公式、面积公式中角的单位要用弧度,在同一式子中,采用的度量制必须一致.3.任意角的三角函数(1)概念:任意角α的终边与单位圆交于点P(x,y)时,sinα=□13y,cosα=□14x,tan α=□15y x(x ≠0).(2)概念推广:三角函数坐标法定义中,若取点P (x ,y )是角α终边上异于顶点的任一点,设点P 到原点O 的距离为r ,则sin α=□16y r ,cos α=□17x r ,tan α=□18y x(x ≠0).常用结论1.三角函数值在各象限的符号规律:一全正,二正弦,三正切,四余弦.2.象限角与不属于任何象限的角(1)(2)(3)3.重要不等关系:若α∈(0,π2),则sin α<α<tan α.1.思考辨析(在括号内打“√”或“×”)(1)小于90°的角是锐角.()(2)锐角是第一象限角,第一象限角也都是锐角.()(3)角α的三角函数值与其终边上点P 的位置无关.()(4)若α为第一象限角,则sin α+cos α>1.()答案:(1)×(2)×(3)√(4)√2.回源教材(1)67°30′化为弧度是()A.3π8B.38C.673π1800D.6731800解析:A 67°30′=67.5×π180=38π.(2)已知α是第一象限角,那么α2是()A.第一象限角B.第二象限角C.第一或第二象限角D.第一或第三象限角解析:D 易知2k π<α<π2+2k π,k ∈Z ,故k π<α2<π4+k π,所以α2是第一或第三象限角.(3)已知角θ的终边经过点P (-12,5),则sin θ+cos θ=.解析:由三角函数的定义可得sin θ+cos θ=5(-12)2+52+-12(-12)2+52=513-1213=-713.答案:-713任意角及其表示例1(1)(多选)若α是第二象限角,则()A.-α是第一象限角B.α2是第一或第三象限角C.3π2+α是第二象限角D.2α是第三或第四象限角或终边在y 轴负半轴上解析:BD因为α是第二象限角,所以可得π2+2k π<α<π+2k π,k ∈Z .对于A ,-π-2k π<-α<-π2-2k π,k ∈Z ,则-α是第三象限角,所以A 错误.对于B ,可得π4+k π<α2<π2+k π,k ∈Z ,当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角,所以B 正确.对于C ,2π+2k π<3π2+α<5π2+2k π,k ∈Z ,即2(k +1)π<3π2+α<π2+2(k +1)π,k ∈Z ,所以3π2+α是第一象限角,所以C 错误.对于D ,π+4k π<2α<2π+4k π,k ∈Z ,所以2α的终边位于第三象限或第四象限或y 轴负半轴上,所以D 正确.故选BD.(2)集合{α|k π+π4≤α≤k π+π2,k ∈Z }中的角所表示的范围(阴影部分)是()解析:C当k =2n (n ∈Z )时,2n π+π4≤α≤2n π+π2,此时α表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1(n ∈Z )时,2n π+π+π4≤α≤2n π+π+π2,此时α表示的范围与π+π4≤α≤π+π2表示的范围一样.故选C.反思感悟1.表示区间角的三个步骤(1)先按逆时针方向找到区域的起始和终止边界.(2)再按由小到大的顺序分别标出起始和终止边界对应的-360°~360°范围内的角α和β,写出最简区间{x |α<x <β},其中β-α<360°.(3)最后令起始、终止边界对应角α,β再加上360°的整数倍,即得区间角的集合.2.象限角的两种判断方法(1)图象法:在平面直角坐标系中,作出已知角并根据象限角的定义直接判断已知角是第几象限角.(2)转化法:先将已知角化为k ·360°+α(0°≤α<360°,k ∈Z )的形式,即找出与已知角终边相同的角α,再由角α的终边所在的象限判断已知角是第几象限角.训练1(1)把-380°表示成θ+2k π(k ∈Z )的形式,则θ的值可以是()A.π9B.-π9C.8π9D.-8π9解析:B∵-380°=-20°-360°,∴-380°=(-π9-2π)rad ,故选B.(2)终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为.解析:如图,在平面直角坐标系中画出直线y=3x,可以发现它与x轴的夹角是π3,在[0,2π)内,终边在直线y=3x上的角有两个,即π3,4π3;在[-2π,0)内满足条件的角有两个,即-2π3,-5π3,故满足条件的角α构成的集合为{-5π3,-2π3,π3,4π3}.答案:{-5π3,-2π3,π3,4π3}弧度制及其应用例2已知扇形的圆心角是α,半径为R,弧长为l.(1)若α=π3,R=10cm,求扇形的弧长l;(2)若扇形的周长是20cm,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?(3)若α=π3,R=2cm,求扇形的弧所在的弓形的面积.解:(1)因为α=π3,R=10cm,所以l=|α|R=π3×10=10π3(cm).(2)由已知,得l+2R=20,所以S=12lR=12(20-2R)R=10R-R2=-(R-5)2+25.所以当R=5cm时,S取得最大值,此时l=10cm,α=2.(3)设弓形面积为S弓形,由题意知l=2π3cm,所以S弓形=12×2π3×2-12×22×sinπ3=(2π3-3)(cm2).反思感悟应用弧度制解决问题时的注意点(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,或用基本不等式解决.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.训练2如图,图1是杭州2022年第19届亚运会的会徽,名为“潮涌”,整个会徽象征着新时代中国特色社会主义大潮的涌动和发展.图2是会徽的几何图形,设弧AD 的长度是l 1,弧BC 的长度是l 2,几何图形ABCD 的面积为S 1,扇形BOC 的面积为S 2,若l 1l 2=2,则S1S 2=()图1图2A.1B.2C.3D.4解析:C 设∠BOC =α,由l 1l 2=2,得OA ·αOB ·α=OA OB =2,即OA =2OB ,∴S1S 2=12α·OA 2-12α·OB 212α·OB 2=OA 2-OB 2OB 2=4OB 2-OB 2OB 2=3.故选C.三角函数的定义及其应用三角函数的定义例3(1)(2024·哈尔滨期中)已知角α的终边经过点P (-3,4),则sin α-cos α-11+tan α的值为()A.-65 B.1C.2D.3解析:A由(-3)2+42=5,得sin α=45,cos α=-35,tan α=-43,代入原式得45-(-35)-11+(-43)=-65.(2)如果点P 在角23π的终边上,且|OP |=2,则点P 的坐标是()A.(1,3)B.(-1,3)C.(-3,1)D.(-3,-1)解析:B由三角函数定义知,cos 23π=x P |OP |=-12,sin 23π=y P |OP |=32,所以x P =-1,y P =3,即P 的坐标是(-1,3).三角函数值的符号例4(1)点P (sin 100°,cos 100°)落在()A.第一象限内B.第二象限内C.第三象限内D.第四象限内解析:D因为sin 100°=sin(90°+10°)=cos 10°>0,cos 100°=cos(90°+10°)=-sin 10°<0,所以点P (sin 100°,cos 100°)落在第四象限内.(2)已知sin θ<0,tan θ<0,则角θ的终边位于()A.第一象限B.第二象限C.第三象限D.第四象限解析:D 由sin θ<0,tan θ<0,根据三角函数的符号与角的象限间的关系,可得角θ的终边位于第四象限.反思感悟1.三角函数定义的应用(1)直接利用三角函数的定义,找到给定角的终边上一个点的坐标,及这点到原点的距离,确定这个角的三角函数值.(2)已知角的某一个三角函数值,可以通过三角函数的定义列出含参数的方程,求参数的值.2.要判定三角函数值的符号,关键是要搞清三角函数中的角是第几象限角,再根据正、余弦函数值在各象限的符号确定值的符号.如果不能确定角所在象限,那就要进行分类讨论求解.训练3(1)(多选)已知角α的终边与单位圆交于点P (35,m5),则sin α的值可能是()A.45B.35C.-45 D.-35解析:AC由题意可得sin α=m 5(35)2+(m 5)2=m 32+m 2=m5,解得m =±4.当m =4时,sin α=45;当m =-4时,sin α=-45.故A ,C 正确,B ,D 错误.(2)(多选)已知角θ的终边经过点(-2,-3),且θ与α的终边关于x 轴对称,则()A.sin θ=-217B.α为钝角C.cos α=-277D.点(tan θ,tan α)在第四象限解析:ACD因为角θ的终边经过点(-2,-3),所以sin θ=-37=-217,故A 正确.因为θ与α的终边关于x 轴对称,所以α的终边经过点(-2,3),则α为第二象限角,不一定为钝角,且cos α=-27=-277,故B 错误,C 正确.因为tanθ=32>0,tan α=-32<0,所以点(tan θ,tan α)在第四象限,D 正确.故选ACD.限时规范训练(二十四)A级基础落实练1.与-2023°终边相同的最小正角是()A.137°B.133°C.57°D.43°解析:A因为-2023°=-360°×6+137°,所以与-2023°终边相同的最小正角是137°.2.下列与角9π4的终边相同的角的表达式中正确的是()A.2kπ+45°(k∈Z)B.k·360°+9π4(k∈Z)C.k·360°-315°(k∈Z)D.kπ+5π4(k∈Z)解析:C对于A,B,2kπ+45°(k∈Z),k·360°+9π4(k∈Z)中角度和弧度混用,不正确;对于C,因为9π4=2π+π4与-315°是终边相同的角,故与角9π4的终边相同的角可表示为k·360°-315°(k∈Z),C正确;对于D,kπ+5π4(k∈Z),不妨取k=0,则表示的角5π4与9π4终边不相同,D错误.3.已知角θ的顶点与原点重合,始边与x轴非负半轴重合,若A(-1,y)是角θ终边上一点,且sinθ=-31010,则y=()A.3B.-3C.1D.-1解析:B因为sinθ=-31010<0,A(-1,y)是角θ终边上一点,所以y<0,由三角函数的定义,得yy2+1=-31010,解得y=-3(正值舍去).4.(2024·鹰潭期中)点A(sin1240°,cos1240°)在直角坐标平面上位于()A.第一象限B.第二象限C.第三象限D.第四象限解析:D1240°=3×360°+160°,160°是第二象限角,所以sin1240°>0,cos1240°<0,P点在第四象限.5.(2023·河东一模)在面积为4的扇形中,其周长最小时半径的值为()A.4B.22C.2D.1解析:C设扇形的半径为R(R>0),圆心角为α,则12αR2=4,所以α=8R2,则扇形的周长为2R+αR=2R+8R≥22R·8R=8,当且仅当2R=8 R,即R=2时,取等号,此时α=2,所以周长最小时半径的值为2.6.给出下列命题:①第二象限角大于第一象限角;②三角形的内角一定是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sinα=sinβ,则α与β的终边相同;⑤若cosθ<0,则θ是第二或第三象限的角.其中正确命题的序号是()A.②④⑤B.③⑤C.③D.①③⑤解析:C①由于120°是第二象限角,390°是第一象限角,故第二象限角大于第一象限角不正确,即①不正确;②直角不属于任何一个象限,故三角形的内角是第一象限角或第二象限角错误,即②不正确;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关,即③正确;④若sinα=sinβ,则α与β的终边相同或终边关于y轴对称,即④不正确;⑤若cosθ<0,则θ是第二象限角或第三象限角或θ的终边落在x轴的负半轴上,即⑤不正确.其中正确命题的序号是③,故选C.7.(多选)已知角α的顶点为坐标原点,始边为x轴的非负半轴,终边上有一点P(1,2sinα),且|α|<π2,则角α的可能取值为()A.-π3B.0C.π6D.π3解析:ABD因为角α的终边上有一点P(1,2sinα),所以tanα=2sinα,所以sinαcosα=2sinα,①若α=0,则sinαcosα=2sinα成立;②若α≠0,则cosα=12,因为|α|<π2,所以α=π3或α=-π3.8.已知角α的终边过点P(-8m,-6sin30°),且cosα=-45,则m的值为.解析:因为r=64m2+9,所以cosα=-8m64m2+9=-45,所以4m264m2+9=125,因为m>0,解得m=12.答案:1 29.α为第二象限角,且|cosα2|=-cosα2,则α2在象限.解析:∵α为第二象限角,∴α2为第一或第三象限角,又|cos α2|=-cos α2,∴cos α2<0,∴α2在第三象限.答案:第三10.若角α的终边与函数5x +12y =0(x <0)的图象重合,则2cos α+sin α=.解析:∵角α的终边与函数5x +12y =0(x <0)的图象重合,∴α为第二象限角,且tan α=-512,即sin α=-512cos α.∴sin 2α+cos 2α=(-512cos α)2+cos 2α=1,解得cos α=-1213.∴sin α=-512cos α=-512×(-1213)=513.∴2cos α+sin α=2×(-1213)+513=-1913.答案:-191311.用弧度制表示终边落在如图所示阴影部分内(含边界)的角θ的集合是.解析:由题图,终边OB 对应角为2k π-π6且k ∈Z ,终边OA 对应角为2k π+3π4且k ∈Z ,所以阴影部分角θ的集合是[2k π-π6,2k π+3π4],k ∈Z .答案:[2k π-π6,2k π+3π4],k ∈Z12.已知扇形的圆心角为23π,扇形的面积为3π,则该扇形的周长为.解析:设扇形的半径为R,利用扇形面积计算公式S=12×23πR2=3π,可得R=3,所以该扇形的弧长为l=23π×3=2π,所以周长为l+2R=6+2π.答案:6+2πB级能力提升练13.(多选)在平面直角坐标系xOy中,角α以Ox为始边,终边经过点P(-1,m)(m>0),则下列各式的值一定为负的是()A.sinα+cosαB.sinα-cosαC.sinαcosαD.sinαtanα解析:CD因为角α终边经过点P(-1,m)(m>0),所以α在第二象限,所以sinα>0,cosα<0,tanα<0,如果α=23π,所以sinα+cosα=32-12>0,所以选项A不满足题意;sinα-cosα>0;sinαcosα<0;sinαtanα<0,故CD正确.14.(2023·长治模拟)水滴是刘慈欣的科幻小说《三体Ⅱ·黑暗森林》中提到的由三体文明使用强相互作用力(SIM)材料所制成的宇宙探测器,因为其外形与水滴相似,所以被人类称为水滴.如图所示,水滴是由线段AB,AC和圆的优弧BC围成,其中AB,AC恰好与圆弧相切.若圆弧所在圆的半径为1,点A到圆弧所在圆的圆心的距离为2,则该封闭图形的面积为()A.3+2π3 B.23+2π3C.23+π3D.3+π3解析:A 如图,设圆弧所在圆的圆心为O ,连接OA ,OB ,OC ,依题意得OB ⊥AB ,OC ⊥AC ,且OB =OC =1,OA =2,则AB =AC =3,∠BAC =π3,所以∠BOC =2π3,所以该封闭图形的面积为2×12×3×1+12×(2π-2π3)×12=3+2π3.15.(2024·牡丹江模拟)在平面直角坐标系xOy 中,已知点A (35,45),将线段OA绕原点顺时针旋转π3得到线段OB ,则点B 的横坐标为.解析:易知A (35,45)在单位圆上,记终边在射线OA 上的角为α,如图所示,根据三角函数定义可知,cos α=35,sin α=45;OA 绕原点顺时针旋转π3得到线段OB ,则终边在射线OB 上的角为α-π3,所以点B 的横坐标为cos(α-π3)=cos αcos π3+sin αsin π3=3+4310.答案:3+431016.若点P (sin α-cos α,tan α)在第一象限,则在[0,2π)内α的取值范围是.解析:由题意可得α-cos α>0,α>0,∈[0,2π),α>0,∈[0,2π),可得α∈(0,π2)或α∈(π,3π2),当α∈(0,π2),即α为第一象限角,则sin α>0,cos α>0,∵sin α-cos α>0,则tan α>1,∴α∈(π4,π2);当α∈(π,3π2),即α为第三象限角,则sin α<0,cos α<0,∵sin α-cos α>0,则0<tan α<1,∴α∈(π,5π4);综上所述,α∈(π4,π2∪(π,5π4).答案:(π4,π2)∪(π,5π4)。

任意角、弧度制及任意角的三角函数

任意角、弧度制及任意角的三角函数1.角的概念(1)任意角:①定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S ={β|β=k ·360°+α,k ∈Z }. (3)象限角:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限. 2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫作1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0. (2)角度制和弧度制的互化:180°=π rad,1°=π180 rad ,1 rad =⎝⎛⎭⎫180π°. (3)扇形的弧长公式:l =|α|·r ,扇形的面积公式:S =12lr =12|α|·r 2.3.任意角的三角函数任意角α的终边与单位圆交于点P (x ,y )时, 则sin α=y ,cos α=x ,tan α=yx (x ≠0).三个三角函数的性质如下表:4.三角函数线如下图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过A (1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .为正弦线;有向线段OM 为余弦线;有向线为正切线概念方法微思考1.总结一下三角函数值在各象限的符号规律. 提示 一全正、二正弦、三正切、四余弦.2.三角函数坐标法定义中,若取点P (x ,y )是角α终边上异于顶点的任一点,怎样定义角α的三角函数?提示设点P 到原点O 的距离为r ,则sin α=y r ,cos α=x r ,tan α=yx (x ≠0).题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)锐角是第一象限的角,第一象限的角也都是锐角.( × ) (2)角α的三角函数值与其终边上点P 的位置无关.( √ ) (3)不相等的角终边一定不相同.( × )(4)若α为第一象限角,则sin α+cos α>1.( √ ) 题组二 教材改编2.角-225°= 弧度,这个角在第 象限. 答案 -5π4二3.若角α的终边经过点Q ⎝⎛⎭⎫-22,22,则sin α= ,cos α= . 答案22 -224.一条弦的长等于半径,这条弦所对的圆心角大小为 弧度.答案 π3题组三 易错自纠5.集合⎩⎨⎧⎭⎬⎫α⎪⎪k π+π4≤α≤k π+π2,k ∈Z 中的角所表示的范围(阴影部分)是( )答案 C解析 当k =2n (n ∈Z )时,2n π+π4≤α≤2n π+π2,此时α表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1 (n ∈Z )时,2n π+π+π4≤α≤2n π+π+π2,此时α表示的范围与π+π4≤α≤π+π2表示的范围一样,故选C. 6.已知点P ⎝⎛⎭⎫32,-12在角θ的终边上,且θ∈[0,2π),则θ的值为( )A.5π6B.2π3 C.11π6 D.5π3答案 C 解析 因为点P ⎝⎛⎭⎫32,-12在第四象限,所以根据三角函数的定义可知tan θ=-1232=-33,又θ∈⎝⎛⎭⎫3π2,2π,所以θ=11π6. 7.在0到2π范围内,与角-4π3终边相同的角是 . 答案2π3解析 与角-4π3终边相同的角是2k π+⎝⎛⎭⎫-4π3(k ∈Z ),令k =1,可得与角-4π3终边相同的角是2π3. 8.(2018·合肥模拟)函数y =2cos x -1的定义域为 .答案 ⎣⎡⎦⎤2k π-π3,2k π+π3(k ∈Z ) 解析 ∵2cos x -1≥0, ∴cos x ≥12.由三角函数线画出x 满足条件的终边范围(如图阴影部分所示),∴x ∈⎣⎡⎦⎤2k π-π3,2k π+π3(k ∈Z ).题型一 角及其表示1.下列与角9π4的终边相同的角的表达式中正确的是 ( )A.2k π+45°(k ∈Z )B.k ·360°+9π4(k ∈Z ) C.k ·360°-315°(k ∈Z ) D.k π+5π4(k ∈Z )答案 C解析 与角9π4的终边相同的角可以写成2k π+9π4(k ∈Z ),但是角度制与弧度制不能混用,所以只有答案C 正确.2.设集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪ x =k 2·180°+45°,k ∈Z ,N =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k4·180°+45°,k ∈Z ,那么( ) A.M =N B.M ⊆N C.N ⊆M D.M ∩N =∅ 答案 B解析 由于M 中,x =k 2·180°+45°=k ·90°+45°=(2k +1)·45°,2k +1是奇数;而N 中,x =k4·180°+45°=k ·45°+45°=(k +1)·45°,k +1是整数,因此必有M ⊆N ,故选B.3.终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为 . 答案 ⎩⎨⎧⎭⎬⎫-53π,-23π,π3,43π解析 如图,在坐标系中画出直线y =3x ,可以发现它与x 轴的夹角是π3,在[0,2π)内,终边在直线y =3x 上的角有两个:π3,43π;在[-2π,0)内满足条件的角有两个:-23π,-53π,故满足条件的角α构成的集合为⎩⎨⎧⎭⎬⎫-53π,-23π,π3,43π.4.若角α是第二象限角,则α2是第 象限角.答案 一或三解析 ∵α是第二象限角, ∴π2+2k π<α<π+2k π,k ∈Z , ∴π4+k π<α2<π2+k π,k ∈Z .当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角. 综上,α2是第一或第三象限角.思维升华 (1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k (k ∈Z )赋值来求得所需的角. (2)确定kα,αk(k ∈N +)的终边位置的方法先写出kα或αk 的范围,然后根据k 的可能取值确定kα或αk 的终边所在位置.题型二 弧度制及其应用例1 已知一扇形的圆心角为α,半径为R ,弧长为l .若α=π3,R =10 cm ,求扇形的面积.解 由已知得α=π3,R =10 cm ,∴S 扇形=12α·R 2=12·π3·102=50π3(cm 2).引申探究1.若例题条件不变,求扇形的弧长及该弧所在弓形的面积. 解 l =α·R =π3×10=10π3(cm),S 弓形=S 扇形-S 三角形=12·l ·R -12·R 2·sin π3=12·10π3·10-12·102·32=50π-7533(cm 2). 2.若例题条件改为:“若扇形周长为20 cm ”,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?解 由已知得,l +2R =20,则l =20-2R (0<R <10). 所以S =12lR =12(20-2R )R =10R -R 2=-(R -5)2+25,所以当R =5 cm 时,S 取得最大值25 cm 2,此时l =10 cm ,α=2 rad. 思维升华 应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度. (2)求扇形面积最大值的问题时,常转化为二次函数的最值问题.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.跟踪训练1 (1)若圆弧长度等于圆内接正三角形的边长,则其圆心角的弧度数为( ) A.π6 B.π3 C.3 D. 3 答案 D解析 如图,等边三角形ABC 是半径为r 的圆O 的内接三角形,则线段AB 所对的圆心角∠AOB =2π3,作OM ⊥AB ,垂足为M ,在Rt △AOM 中,AO =r ,∠AOM =π3,∴AM =32r ,AB =3r , ∴l =3r ,由弧长公式得α=l r =3rr= 3.(2)一扇形是从一个圆中剪下的一部分,半径等于圆半径的23,面积等于圆面积的527,则扇形的弧长与圆周长之比为 . 答案518解析 设圆的半径为r ,则扇形的半径为2r3,记扇形的圆心角为α, 由扇形面积等于圆面积的527,可得12α⎝⎛⎭⎫2r 32πr 2=527, 解得α=5π6.所以扇形的弧长与圆周长之比为l C =5π6·2r 32πr =518.题型三 三角函数的概念命题点1 三角函数定义的应用例2 (1)(2018·合肥模拟)已知角α的终边与单位圆的交点为P ⎝⎛⎭⎫-12,y ,则sin α·tan α等于( ) A.-33 B.±33 C.-32 D.±32答案 C解析 由OP 2=14+y 2=1,得y 2=34,y =±32.当y =32时,sin α=32,tan α=-3, 此时,sin α·tan α=-32.当y =-32时,sin α=-32,tan α=3, 此时,sin α·tan α=-32.所以sin α·tan α=-32.(2)设θ是第三象限角,且⎪⎪⎪⎪cos θ2=-cos θ2,则θ2是( ) A.第一象限角 B.第二象限角 C.第三象限角D.第四象限角解析 由θ是第三象限角知,θ2为第二或第四象限角,∵⎪⎪⎪⎪cos θ2=-cos θ2,∴cos θ2<0, 综上可知,θ2为第二象限角.命题点2 三角函数线例3 (1)满足cos α≤-12的角的集合是 .答案 ⎩⎨⎧⎭⎬⎫α⎪⎪2k π+23π≤α≤2k π+43π,k ∈Z 解析 作直线x =-12交单位圆于C ,D 两点,连接OC ,OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围,故满足条件的角α的集合为⎩⎨⎧⎭⎬⎫α⎪⎪2k π+23π≤α≤2k π+43π,k ∈Z .(2)若-3π4<α<-π2,从单位圆中的三角函数线观察sin α,cos α,tan α的大小关系是 .答案 sin α<cos α<tan α解析 如图,作出角α的正弦线MP ,余弦线OM ,正切线AT ,观察可知sin α<cos α<tan α.思维升华 (1)利用三角函数的定义,已知角α终边上一点P 的坐标可求α的三角函数值;已知角α的三角函数值,也可以求出点P 的坐标.(2)利用三角函数线解不等式要注意边界角的取舍,结合三角函数的周期性写出角的范围. 跟踪训练2 (1)已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0.则实数a 的取值范围是( ) A.(-2,3] B.(-2,3) C.[-2,3)D.[-2,3]解析 ∵cos α≤0,sin α>0,∴角α的终边落在第二象限或y 轴的正半轴上.∴⎩⎪⎨⎪⎧3a -9≤0,a +2>0, ∴-2<a ≤3. (2)在(0,2π)内,使得sin x >cos x 成立的x 的取值范围是( ) A.⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫π,5π4 B.⎝⎛⎭⎫π4,πC.⎝⎛⎭⎫π4,5π4D.⎝⎛⎭⎫π4,π∪⎝⎛⎭⎫5π4,3π2答案 C解析 当x ∈⎣⎡⎭⎫π2,π时,sin x >0,cos x ≤0,显然sin x >cos x 成立;当x ∈⎝⎛⎦⎤0,π4时,如图,OA 为x 的终边,此时sin x =|MA |,cos x =|OM |,sin x ≤cos x ;当x ∈⎝⎛⎭⎫π4,π2时,如图,OB 为x 的终边,此时sin x =|NB |,cos x =|ON |,sin x >cos x .同理当x ∈⎣⎡⎭⎫π,5π4时,sin x >cos x ;当x ∈⎣⎡⎭⎫5π4,2π时,sin x ≤cos x ,故选C.1.下列说法中正确的是( ) A.第一象限角一定不是负角 B.不相等的角,它们的终边必不相同 C.钝角一定是第二象限角D.终边与始边均相同的两个角一定相等 答案 C解析 因为-330°=-360°+30°,所以-330°角是第一象限角,且是负角,所以A 错误;同理-330°角和30°角不相等,但它们终边相同,所以B 错误;因为钝角的取值范围为(90°,180°),所以C 正确;0°角和360°角的终边与始边均相同,但它们不相等,所以D 错误.2.已知扇形的周长是6,面积是2,则扇形的圆心角的弧度数是( ) A.1 B.4 C.1或4 D.2或4 答案 C解析 设扇形的半径为r ,弧长为l , 则⎩⎪⎨⎪⎧2r +l =6,12rl =2,解得⎩⎪⎨⎪⎧ r =1,l =4或⎩⎪⎨⎪⎧r =2,l =2. 从而α=l r =41=4或α=l r =22=1.3.(2018·西安调研)已知角θ的终边经过点P (4,m ),且sin θ=35,则m 等于( )A.-3B.3C.163 D.±3答案 B 解析 sin θ=m 16+m 2=35,且m >0,解得m =3.4.点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为( )A.⎝⎛⎭⎫-12,32B.⎝⎛⎭⎫-32,-12 C.⎝⎛⎭⎫-12,-32D.⎝⎛⎭⎫-32,12 答案 A解析 点P 旋转的弧度数也为2π3,由三角函数定义可知Q 点的坐标(x ,y )满足x =cos 2π3=-12,y =sin 2π3=32. 5.若sin θ·cos θ>0,sin θ+cos θ<0,则θ在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 答案 C解析 ∵sin θ·cos θ>0,∴sin θ>0,cos θ>0或sin θ<0,cos θ<0.当sin θ>0,cos θ>0时,θ为第一象限角,当sin θ<0,cos θ<0时,θ为第三象限角.∵sin θ+cos θ<0,∴θ为第三象限角.故选C.6.sin 2·cos 3·tan 4的值( ) A.小于0B.大于0C.等于0D.不存在答案 A解析 ∵sin 2>0,cos 3<0,tan 4>0,∴sin 2·cos 3·tan 4<0. 7.已知角α的终边过点P (-8m ,-6sin 30°),且cos α=-45,则m 的值为( ) A.-12 B.-32 C.12 D.32答案 C解析 由题意得点P (-8m ,-3),r =64m 2+9,所以cos α=-8m64m 2+9=-45,解得m =±12, 又cos α=-45<0,所以-8m <0,即m >0, 所以m =12.8.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sin α=sin β,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确命题的个数是( )A.1B.2C.3D.4答案 A解析 举反例:第一象限角370°不小于第二象限角100°,故①错;当三角形的内角为90°时,其既不是第一象限角,也不是第二象限角,故②错;③正确;由于sin π6=sin 5π6,但π6与5π6的终边不相同,故④错;当cos θ=-1,θ=π时,其既不是第二象限角,也不是第三象限角,故⑤错.综上可知,只有③正确.9.若圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是 .答案 2 解析 设圆半径为r ,则圆内接正方形的对角线长为2r ,∴正方形边长为2r ,∴圆心角的弧度数是2r r= 2. 10.若角α的终边与直线y =3x 重合,且sin α<0,又P (m ,n )是角α终边上一点,且|OP |=10,则m -n = .答案 2解析 由已知tan α=3,∴n =3m ,又m 2+n 2=10,∴m 2=1.又sin α<0,∴m =-1,n =-3.故m -n =2.11.已知角α的终边上一点P 的坐标为⎝⎛⎭⎫sin 2π3,cos 2π3,则角α的最小正值为 . 答案 11π6解析 由题意知,点P ⎝⎛⎭⎫32,-12,r =1,所以点P 在第四象限,根据三角函数的定义得cos α=sin 2π3=32, 故α=2k π-π6(k ∈Z ),所以α的最小正值为11π6. 12.函数y =sin x -32的定义域为 . 答案 ⎣⎡⎦⎤2k π+π3,2k π+23π,k ∈Z 解析 利用三角函数线(如图),由sin x ≥32,可知 2k π+π3≤x ≤2k π+23π,k ∈Z .13.已知角α的终边在如图所示阴影表示的范围内(不包括边界),则角α用集合可表示为 .答案 ⎩⎨⎧⎭⎬⎫α⎪⎪2k π+π4<α<2k π+56π,k ∈Z 解析 ∵在[0,2π)内,终边落在阴影部分角的集合为⎝⎛⎭⎫π4,56π,∴所求角的集合为⎩⎨⎧⎭⎬⎫α⎪⎪2k π+π4<α<2k π+56π,k ∈Z . 14.若角α的终边落在直线y =3x 上,角β的终边与单位圆交于点⎝⎛⎭⎫12,m ,且sin α·cos β<0,则cos α·sin β= .答案 ±34解析 由角β的终边与单位圆交于点⎝⎛⎭⎫12,m ,得cos β=12,又由sin α·cos β<0知,sin α<0,因为角α的终边落在直线y =3x 上,所以角α只能是第三象限角.记P 为角α的终边与单位圆的交点,设P (x ,y )(x <0,y <0),则|OP |=1(O 为坐标原点),即x 2+y 2=1,又由y =3x 得x =-12,y =-32,所以cos α=x =-12,因为点⎝⎛⎭⎫12,m 在单位圆上,所以⎝⎛⎭⎫122+m 2=1,解得m =±32,所以sin β=±32,所以cos α·sin β=±34.15.《九章算术》是我国古代数学成就的杰出代表作,其中“方田”章给出了计算弧田面积时所用的经验公式,即弧田面积=12×(弦×矢+矢2).弧田(如图1)由圆弧和其所对弦围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为2π3,半径为3米的弧田,如图2所示.按照上述经验公式计算所得弧田面积大约是 平方米.(结果保留整数,3≈1.73)答案 5解析 如题图2,由题意可得∠AOB =2π3,OA =3,所以在Rt △AOD 中,∠AOD =π3,∠DAO =π6,OD =12AO =12×3=32,可得CD =3-32=32,由AD =AO ·sin π3=3×32=332,可得AB =2AD =2×332=3 3.所以弧田面积S =12(弦×矢+矢2)=12×⎝⎛⎭⎫33×32+94=943+98≈5(平方米). 16.如图,A ,B 是单位圆上的两个质点,点B 的坐标为(1,0),∠BOA =60°.质点A 以1 rad /s 的角速度按逆时针方向在单位圆上运动,质点B 以2 rad/s 的角速度按顺时针方向在单位圆上运动.则经过1 s 后,∠BOA 的弧度为 ;质点A ,B 在单位圆上第一次相遇所用的时间为 s.答案 π3+3 5π9解析 经过1 s 后,质点A 运动1 rad ,质点B 运动2 rad ,此时∠BOA 的弧度为π3+3. 设经过t s 后质点A ,B 在单位圆上第一次相遇,则t (1+2)+π3=2π, 解得t =5π9, 即经过5π9s 后质点A ,B 在单位圆上第一次相遇.。

24任意角与弧度制知识点总结

②几何法:即利用三角函数线来作出正弦函数在0,2 内的图象,再通过平移得到
y sin x 的图象。
③五点法:在函数 y sin x , x 0,2 的图象上,起关键作用的点有以下五个:
0,0, 2 ,1,,0, 32 ,1,2,0
必修四第一章知识点总结
一、意角的概念
(1)、角的概念 角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。 (2)、角的分类 ①按逆时针方向旋转形成的角叫做正角。 ②按顺时针方向旋转形成的角叫做负角。 ③如果一条射线没有作任何旋转,我们称它形成了一个零角。这样,零角的始边与终 边重合。 这样,我们就把角的概念推广到了任意角,包括正角、负角和零角。
量角的单位制
无关
以省略
有关
五、任意角的三角函数
(1)、直角坐标系内用点的坐标表示锐角三角函数
设锐角 的顶点与原点 O 重合,始边与 x 轴的非负半轴重合,那么它的终边在第一象
限。在 的终边上任取一点 P a,b ,它与原点的距离 r a2 b2 0 ,过 P 作 x 轴的
垂线,垂足为 M ,则线段 OM 的长度为 a , MP 的长度为 b 。根据初中学过的三角函数定
(4)、正弦函数、余弦函数的奇偶性
正弦函数 y sin x ( x R )是奇函数,余弦函数 y cos x ( x R )是偶函数。
(5)、正弦函数、余弦函数的单调性 ①由正弦曲线和余弦曲线可得正弦函数和余弦函数的单调性如下:
函数
y

sin
x

2k

2
,2k

2

3 2



sin

高中数学5.1任意角和弧度制

高中数学5.1 任意角和弧度制一、概述高中数学中,三角函数是一个重要内容。

而在学习三角函数之前,我们需要先了解一些基本概念,比如任意角和弧度制。

本文将围绕着这两个概念展开讲解,帮助读者更好地理解和掌握这些内容。

二、任意角的概念1. 任意角是指不限制在0°到360°之间的角。

在平面直角坐标系中,任意角可以被表示为一个终边落在坐标轴上的角。

这意味着任意角可以包括整个360°的范围。

2. 我们通常用θ来表示任意角,其实任意角可以被表示为θ=360k +α,其中k是整数,α是小于360°的正角,它是唯一的。

三、弧度制的概念1. 弧度制是另一种角度的度量方式,它是以圆的半径长为单位进行度量的。

一个圆的全周长为2πr,所以一个圆的一周等于2π弧度。

2. 我们知道360°等于2π弧度,所以1°等于π/180弧度。

角度和弧度之间可以通过π进行转换。

3. 弧度制适合用于求解圆的性质问题,因为它更直接地与圆的半径有关,可以简化很多计算,并且更具有普适性。

四、任意角与弧度的转换1. 已知一个角的度数,求其对应的弧度。

我们可以根据1°等于π/180弧度的关系,进行计算转换。

30°对应的弧度是30°×π/180=π/6弧度。

2. 已知一个角的弧度,求其对应的度数。

同样可以根据π弧度等于180°进行转换计算。

π/3弧度对应的度数是π/3÷π×180°=60°。

五、扩展知识1. 在解决某些三角函数的问题时,可能会遇到弧度制和角度制混用的情况。

在这种情况下,我们需要先将角度统一转换为弧度,然后再进行计算。

2. 在高等数学中,弧度制被广泛应用于导数、积分和微分等计算中。

了解弧度制可以为后续高等数学的学习奠定坚实基础。

六、总结任意角和弧度制是高中数学中一个基础而重要的知识点,它为后续学习三角函数和高等数学打下了基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

任意角的概念与弧度制
1、角的概念的推广:
角可以看作平面内一条射线绕端点从一个位置(始边)旋转到另一个位置(终边)形成的图形.规定按照逆时针方向旋转而成的角叫做正角;按照顺时针方向旋转而成的角叫做负角:射线没有旋转时称零角.任意角的概念与弧度制
1.角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.
正角:按逆时针方向旋转所形成的角.
负角:按顺时针方向旋转所形成的角.
零角:如果一条射线没有做任何旋转,我们称它形成了一个零角.
要点诠释:
角的概念是通过角的终边的运动来推广的,既有旋转方向,又有旋转大小,同时没有旋转也是一个角,从而得到正角、负角和零角的定义.
2.终边相同的角、象限角
终边相同的角为
角的顶点与原点重合,角的始边与轴的非负半轴重合.那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角.
要点诠释:
(1)终边相同的前提是:原点,始边均相同;
(2)终边相同的角不一定相等,但相等的角终边一定相同;
(3)终边相同的角有无数多个,它们相差的整数倍.
3、终边相同的角与象限角:
与角终边相同的角构成一个集合,;顶点与坐标原点重合,始边与轴正半轴重合,角的终边在第几象限,就把这个角叫做第几象限的角.知识点二:弧度制
弧度制
(1)长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1,或1弧度,或1(单
位可以省略不写).
(2)弧度与角度互换公式:
1rad=≈°=57°18′,1°=≈(rad)
(3)弧长公式:(是圆心角的弧度数),
扇形面积公式:.
要点诠释:
(1)角有正负零角之分,它的弧度数也应该有正负零之分,如等等,一般地, 正角的弧度数是
一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定.
(2)角的弧度数的绝对值是:,其中,是圆心角所对的弧长,是半径.
3、弧度制的概念及换算:
规定长度等于半径长的圆弧所对的圆心角叫做1弧度的角.弧度记作rad.注意在用弧度制时,“弧度”或“rad”可以略去不写.
在半径为的圆中,弧长为的弧所对圆心角为,则
所以,rad,(rad),1(rad).
4、弧度制下弧长公式:
;弧度制下扇形面积公式.
类型一:象限角
1.已知角;
(1)在区间内找出所有与角有相同终边的角;
(2)集合,,那么两集合的关系是什么?
解析:(1)所有与角有相同终边的角可表示为:,
则令,

解得,从而或
代回或.
(2)因为表示的是终边落在四个象限的平分线上的角的集合;
而集合表示终边落在坐标轴或四个象限平分线上的角的集
合,从而:.
总结升华:(1)从终边相同的角的表示入手分析问题,先表示出所有与角有相同终边的角,然后列出一个关于的不等式,找出相应的整数,代回求出所求解;(2)可对整数的奇、偶数情况展开讨论.
2.已知“是第三象限角,则是第几象限角?
思路点拨:已知角的范围或所在的象限,求所在的象限是常考题之一,一般解法有直接法和几何法,其中几何法具体操作如下:把各象限均分n等份,再从x轴的正向的上方起,依次将各区域标上I、Ⅱ、Ⅲ、Ⅳ,并循环一周,则原来是第几象限的符号所表
示的区域即为 (n∈N*)的终边所在的区域.
解法一:因为是第三象限角,所以,
∴,
∴当k=3m(m∈Z)时,为第一象限角;
当k=3m+1(m∈Z)时,为第三象限角,
当k=3m+2(m∈Z)时,为第四象限角,
故为第一、三、四象限角.
解法二:把各象限均分3等份,再从x轴的正向的上方起依
次将各区域标上I、Ⅱ、Ⅲ、Ⅳ,并依次循环一周,
则原来是第Ⅲ象限的符号所表示的区域即为的终边
所在的区域.
由图可知,是第一、三、四象限角.
总结升华:
(1)要分清弧度制与角度制象限角和终边在坐标轴上的角;
(2)讨论角的终边所在象限,一定要注意分类讨论,做到不重不落,尤其对象限界角应引起注意.
举一反三:
【变式1】集合,,则( )
A、B、C、D、
【答案】C
思路点拨:( 法一) 取特殊值-1,-3,-2,-1,0,1,2,3,4
(法二)在平面直角坐标系中,数形结合
(法三)集合M变形,
集合N变形,
是的奇数倍,是的整数倍,因此.
【变式2】设为第三象限角,试判断的符号.
解析:为第三象限角,
当时,此时在第二象限.
当时,此时在第四象限.
综上可知:
类型二:扇形的弧长、面积与圆心角问题
3.已知一半径为r的扇形,它的周长等于所在圆的周长的一半,那么扇形的中心角是多少弧度合多少度扇形的面积是多少?
解:设扇形的圆心角是,因为扇形的弧长是,所以扇形的周长是
依题意,得
≈≈
总结升华:弧长和扇形面积的核心公式是圆周长公式和圆面积公式,当用圆心角的弧度数代替时,即得到一般的弧长公式和扇形面积公式:
举一反三:
【变式1】一个扇形的周长为,当扇形的圆心角等于多少弧度时,这个扇形的面积最大并求出这个扇形的最大面积.
思路点拨:运用扇形的面积公式和弧长公式建立函数关系,运用函数的性质来解决最值问题.
解:设扇形的半径为,则弧长为,
于是扇形的面积
当时,(弧度),取到最大值,此时最大值为.
故当扇形的圆心角等于2弧度时,这个扇形的面积最大,最大面积是.
总结升华:求扇形最值的一般方法是根据扇形的面积公式,将其转化为关于半径(或圆心角)的函数表达式,进而求解.
1、角度制与弧度制的互化:(1);(2).
解:为第三象限;为轴上角
为第二象限;为第三象限角小结:[1]用弧度表示角时,“弧度”两字不写,可写“”;
[2]角度制化弧度时,分数形式,且“”不取近似值.
2、用角度和弧度分别写出分别满足下列条件的角的集合:
(1)第一象限角;(2)锐角; (3)小于的角;
(4)终边与角的终边关于轴对称的角; (5)终边在直线上的角.
解:(1)或;
(2)或;
(3)或;
(4)分析:因为所求角的终边与角的终边关于轴对称,可以选择代表角,
因此问题转化
为写出与角的终边相同的角的集合即;
(5)或.
注意:角度制与弧度制不能混用!
3、若是第二象限角,则是第几象限角反之,是第二象限角,是第几象限角?
解:若是第二象限角,则,
两边同除以2,得
当为奇数时,是第三象限角;当为偶数时,是第一象限角
反之,若是第二象限角,则
两边同乘以2,得
所以是第一或第二象限角或终边在轴正半轴上的轴上角.
注意:数形结合.。

相关文档
最新文档