材料力学Ⅱ第六版刘鸿文
刘鸿文《材料力学》(第6版)复习笔记和课后习题及考研真题详解-第1~2章【圣才出品】

图 1-2-5 解:(1)应用截面法,叏 1-1 截面以下部分迚行叐力分枂,如图 1-2-6(a)所示。 由平衡条件可得:∑MA=0,FN1lsinα-Fx=0; 解得:FN1=Fx/(lsinα); 故当 x=l 时,1-1 截面内力有最大值:FN1max=F/sinα。 (2)应用截面法,叏 1-1 截面以下,2-2 截面右侧部分迚行叐力分枂,如图 1-2-6(b) 所示。 由平衡条件可得 ∑Fx=0,FN2-FN1cosα=0 ∑Fy=0,FS2-FN1sinα-F=0 ∑MO=0,FN1(l-x)sinα-M2=0 解得 2-2 截面内力:FN2=Fxcotα/l,FS2=(1-x/l)F,M2=xF(l-x)/l。 综上可知,当 x=l 时,FN2 有最大值,且 FN2max=Fcotα;当 x=0 时,FS2 有最大值, 且 FS2max=F;当 x=l/2 时,弯矩 M2 有最大值,且 M2max=Fl/4。
Δx 的比值为平均正应发,用 εm 表示,即
εm=Δs/Δx 平均正应发的枀限值即为正应发,用 ε 表示,也即
lim s
x0 x
3 / 161
圣才电子书 十万种考研考证电子书、题库规频学习平台
微体相邻棱边所夹直角改发量,称为切应发,用 γ 表示,单位为 rad,若 α 用表示发 形后微体相邻棱边的夹角,则
十万种考研考证电子书、题库规频学习平台
由平衡条件可得
∑Fy=0,F-FS=0
∑MC=0,Fb-M=0
则 n-n 截面内力为:FS=F,M=Fb。
图 1-2-2 1.2 试求图 1-2-3 所示结极 m-m 和 n-n 两截面上的内力,并挃出 AB 和 BC 两杆的 发形属于何类基本发形。
6 / 161
材料力学刘鸿文第六版最新课件第六章 弯曲变形

内容回顾
6.1:基本概念 挠度;转角;挠曲线;挠度和转角的关系;挠度 和转角的符号定义。
6.2:挠曲线的微分方程
d2w M dx2 EI
6.3:积分法求弯曲变形
w" M(x) EI
EIw M ( x )dx C1 (转角方程) EIw M ( x )dxdx C1 x C 2 (挠度方程)
确定积分常数C1和C2
确定积分常数C1和C2
(1)在简支梁中, 左右两铰支座处的
挠度 w A 和 wB 都等于0。
A
wA 0
(2)在悬臂梁中,固定端处的挠度 w A
和转角 A 都应等于0。
(3)在弯曲变形对称点,转角为0。
A
wA 0
A 0
B
wB 0
B
42
(4)若B支座改为弹簧支撑,则: (5)若B支座改为
又:
1M
EI
B
d2w M
ds
A
此式称为
dx2 EI
梁的挠曲线近似微分方15程
横力弯曲梁:
w" M(x) EI
近似原因 : (1) 略去了剪力的影响; (2) 略去了 w2项;
(3) tan w w ( x )
16
§6-3 用积分法求弯曲变形
一、微分方程的积分 w M ( x) EI
x a时,wC 左 wC 右
x L, w FBy
B
k
B kx
h F EA
A
C
a
bB
L
x 0, wA 0
x a时,C左 C右
x a时,wC左 wC右
x
L, wB
lBD
FByh EA
例题1 图示一抗弯刚度为 EI 的悬臂梁, 在自由端受一集中力 F
刘鸿文版材料力学课件2

s
FN
轴力引起的正应力 —— s : 在横截面上均布。
FN s A
或者
F s A
上述公式适用于任意形状等截面杆件,其正负与轴 力的正负号相同(拉为正,压为负)
20
§2-3 拉(压)杆斜截面上的应力
k 设有一等直杆受拉力P作用。 求:斜截面k-k上的应力。 解:采用截面法 由平衡方程:Pa=P k P P P
27
FN 1 s1 63.7MPa A1
s max s 1 63.7MPa
可见BC段因截面较大,应力 反而要小。
[例7] 如图,受压等截面杆,A=400mm**2,F=50kN,试求斜截面m-
m上 的正应力与切应力。
m 40o m m
s
50o m
解:杆件横截面面上的正应力
FN s0 1.25 108 Pa A
单元体的性质—a、平行面上,应力均布;
M
P
s
b、平行面上,应力相等。
s
s
s
s
23
【例4】 直径为d =1 cm 杆受拉力P =10 kN的作用,试求最大剪 应力,并求与横截面夹角30°的斜截面上的正应力和剪应力。 解:拉压杆斜截面上的应力,直接由公式求之:
s 0
P 410000 127.4MPa 2 A 3.1410
由题目可见,斜截面m-m的方位角为 a 50 于是,斜截面上的正应力与切应力分别为
s 50 s 0 cos 2 a 51.6MPa
50
s0
2
sin 2a 61.6MPa
28
应力方向如图示
§2-4、5 材料在拉伸、压缩时的力学性能 力学性能:材料在外力作用下表现的有关强度、变形方面的特性。 一、试验条件及试验仪器 1、试验条件:常温(20℃);静载(极其缓慢地加载); 标准试件。
材料力学刘鸿文第六版全部整合教案整编能量方法

1 2 FN Dl
FN 2l 2EA
x dx q(x)·dx
略去高阶微量,认为dx只承受FN (x)
dV
1 2
FN
(
x
)d
Dl
FN 2( )dx 2EA
FN(x)
FN(x)+dFN (x)
dx
V
l dV
FN 2( x )dx l 2EA
2、扭转
T=me
l
加载过程中始终有
me me
Tl
Me
⑵ 应变能
V
L
M 2 (x) dx
2EI
L
1 2EI
(M e
Fx)2 dx
M
2 e
L
M e FL2
F 2 L2
2EI 2EI 6EI
B L
F
⑶ 当F和Me分别作用时
A Me
V 1
MeL 2EI
V 2
F 2 L3 6EI
V1 V 2 V
⑷ 求载荷所作的功
wA
(wA)F
(wA)Me
FL3 3EI
A l
F
B
C
a
解:
FRA
Me l
-
Fa l
Me
B
FRB
F(l + l
a)
-
Me l
A x1
FRA
l
AB:
M1( x1 )
(Me l
-
Fa l ) x1
-
Me
FRB
M1( x1 F
)
-
a l
x1
M1( x1 ) x1 - 1
求自由端B的挠度。
F
A
材料力学刘鸿文第六版最新课件第十一章 交变应力

按正弦规律变化的交变应力 如图所示。
σmax σm σmin σ a
在交变应力中,应力每重复变化一次称为一个“应力循环”。
应力重复变化的次数称为“应力循环次数”,用N表示。
应力的极大值称为最大应力,用σmax表示;
应力的极小值称为最小应力,用σmin表示。
循环特征 r——最小应力与最大应力的比值
第十一章 交变应力
§11.1 交变应力与疲劳失效 §11.2 交变应力的循环特征,应力幅和平均应力 §11.3 疲劳(持久)极限 §11.4 影响疲劳极限的因素 §11.5 对称循环下构件的疲劳强度计算 §11.6 疲劳极限曲线 §11.7 不对称循环下构件的疲劳强度计算 §11.8 弯扭组合交变应力的强度计算 §11.9 变幅交变应力 §11.10 提高构件疲劳强度的措施
15
外形突变影响的描述 有效应力集中系数 对称循环时的有效应力集中系数为:
k
( 1)d ( 1 )k
对扭转:
k
( 1)d ( 1)k
其中,(-1)d , (-1)d , 表示无应力集中的光滑试样的持久极限; (-1)k , (-1)k , 表示有应力集中的相同尺寸的试样的持久极限。
显然,有: k 1, k 1 值越大说明应力
坐标平面上确定A、B、C三点。折线ACB即为简化曲线。
a
A
1
O
r 1
r 0
G
G ( m, a )
C
(
0
,0
max
M W
860 12.3 106
70 MN
m2
min 70 MN m 2
r 1
28
2.确定 K
由图11-9,a 中曲线2查得端铣加工的键槽,当材料
材料力学刘鸿文第六版最新课件第九章 压杆稳定

稳 时
B
B
B
挠
D
l l 0.7l l 0.5l
l 2l l 0.5l
曲
线 形
C
C
状
A
A
A
C— 挠曲 C、D— 挠
线拐点 曲线拐点
C— 挠曲线拐点
临界力Pcr 欧拉公式
Pcr
2
l
EI
2
Pcr (0.27El)I2
Pcr (0.25El)I2
Pcr (22lE)I2
长度系数μ 1
0.7
0.5
2
Pcr
2
l
线平衡构形转变为弯曲平衡构 形,扰动除去后,能够恢复到 直线平衡构形,则称原来的直 线平衡构形是稳定的
FP>FPcr :在扰动作用下,直线
平衡构形转变为弯曲平衡构形, 扰动除去后,不能恢复到直线 平衡构形,则称原来的直线平 衡构形是不稳定的。
§9.2 §9.3 不同支座条件下细长压杆的临界压力
Pcr
解: 查表N020a: A =3.55×10-3 m2, i=21.2mm
强度方面:
P A
400 103 3.55 10 2
113MPa<[]
稳定方面: 欧拉公式:
l
i
1.0 3 21.2 103
142
cr
2E 2
2 200 109
1422
98MPa
<113MPa
压杆失稳破坏
例题3:图示托架,承受荷载F =10KN, 杆的外径D=
= 0.5
[例2] 求下列细长压杆的临界力。
y y
x
z
z
h
L1
L2
解:①绕
y 轴,两端铰支:
材料力学刘鸿文第六版最新课件第十三章 能量方法

13-3 应变能的普遍表达式
基础知识
广义
线弹性结构上受一个外力作用,任一点的位移与该力成正比。
线弹性结构上任意一点的广义位移与各广义力成线性 齐次关系。
比例加载时,线弹性结构上任一外力作用点沿外力方 向的位移与该点的广义力成正比。
F1
1
应变能只取决于受力变形的最终状态,因
此可采用便于计算的方式计算应变能。
P1
P2
1 dV 2 M( x )d
一般情况下: 剪力对变形的影响很小,剪切 应变能远远小于弯曲应变能。
M 2( x )dx dV 2EI
w = M(x) = dθ EI dx
d M( x) dx
EI
M 2( x )dx
V l 2EI
应变能的特点:
(1)基本变形的应变能通式:
1
V
W
F 2
F2
F3
采用比例加载
2 3
外力
比例
0
位移
比例
F1、F2、F3
1、 2、 3
0
V
W
1 2
F11
1 2
F2 2
1 2
F33
n i1
1 2
Fii
即:线弹性体的变形能等于每一外力与其相应位移乘
积的二分之一的总和。
克拉贝依隆原理
对于组合变形
M (x)
Fs(x)
FN (x)
T (x)
M (x)
FN (x)
Me
⑵ 应变能
V
L
M 2 (x) dx
2EI
L
1 2EI
(M e
Fx)2 dx
M
2 e
L
M e FL2
材料力学刘鸿文第六版最新课件 第二章 拉伸 压缩 剪切(2.1-2.4)

§2.12 应力集中的概念 §2.13 剪切和挤压的实用计算
目录
§2.1
轴向拉伸与压缩的概念和实例
目录
§2.1
轴向拉伸与压缩的概念和实例
目录
§2.1
轴向拉伸与压缩的概念和实例
目录
§2.1
轴向拉伸与压缩的概念和实例
目录
§2.1
轴向拉伸与压缩的概念和实例
蓝鲸1号
目录
§2.1
轴向拉伸与压缩的概念和实例
圣 维 南 原 理
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
例题2.2
A 1
45°
C
2
FN 1
y
FN 2 45° B
F
图示结构,试求杆件AB、CB的 应力。已知 F=20kN;斜杆AB为直 径20mm的圆截面杆,水平杆CB为 15×15的方截面杆。 B 解:1、计算各杆件的轴力。 (设斜杆为1杆,水平杆为2杆) F 用截面法取节点B为研究对象 F 0 F cos 45 FN 2 0 x N1 x Fy 0 F sin 45 F 0 N1
A B C D
F1
轴力图
FN kN
F2
10
F3
F4
25
10
x
① 横坐标表示横截面所在的位置; ② 纵坐标表示相应横截面上的轴力; ③ 轴力为拉力时,值为正,绘在x轴的上侧; ④ 轴力为压力时,值为负,绘在x轴的下侧; ⑤ 直观看出各段是受压还是受拉; ⑥ 直观看出轴力最大值所在位置,确定最危险的截面,为强度计算 提供依据。
kL x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料力学Ⅱ第六版刘鸿文
引言
材料力学是材料科学的基础学科之一,是研究材料的力学
性质和行为的学科。
《材料力学Ⅱ第六版刘鸿文》是一本经典的材料力学教材,是材料力学专业的重要参考书之一。
本文将对该书进行介绍和总结,包括内容概述、特点以及对读者的启发和影响等方面。
内容概述
《材料力学Ⅱ第六版刘鸿文》是一本针对材料力学专业的
教材,主要涵盖了材料力学的基本理论和方法。
全书分为七个章节,分别是力学基本原理、线弹性力学、力学体构理论、弹塑性力学、裂纹力学、断裂力学和疲劳力学。
每个章节都涵盖了相应的基本概念、理论模型和数学方法。
此外,书中还包括了大量的案例和习题,用于帮助读者巩固所学知识并提高解题能力。
特点
《材料力学Ⅱ第六版刘鸿文》的特点主要有以下几个方面:
1.系统性强:该书内容组织严谨,逻辑性强,将材料
力学的各个方面有机地结合在一起,形成了一个完整的体系。
2.难度适中:该书在讲解材料力学的基本概念和理论
时,采用了简明扼要的语言和清晰明了的图示,易于理解和掌握。
3.知识丰富:该书涵盖了材料力学的各个领域,包括
线弹性力学、力学体构理论、弹塑性力学、裂纹力学、断裂力学和疲劳力学等,读者可以从中获得全面的知识。
4.实用性强:该书不仅讲解了理论知识,还包含了大
量的案例和习题,帮助读者将所学知识应用于实际问题的解决,培养实际操作能力。
对读者的启发和影响
《材料力学Ⅱ第六版刘鸿文》作为一本经典的材料力学教材,对读者的启发和影响是十分深远的。
首先,该书对读者的专业技能提高有着积极的促进作用。
通过学习该书,读者可以掌握材料力学的基本理论和方法,培养独立解决实际问题的能力。
其次,该书对读者的思维方式和学习方法有着重要的影响。
《材料力学Ⅱ第六版刘鸿文》注重理论和实践的结合,引导读者进行系统思考和综合分析,培养了读者的逻辑思维能力和创新能力。
最后,该书对读者的职业发展有着积极的推动作用。
材料
力学是材料科学领域的基础学科,对从事材料科学研究和工程实践的人员来说,是必备的专业知识。
通过学习《材料力学Ⅱ第六版刘鸿文》,读者可以打下坚实的理论基础,为未来的职业发展打下坚实的基础。
结论
《材料力学Ⅱ第六版刘鸿文》是一本经典的材料力学教材,内容丰富、系统性强,对读者的启发和影响深远。
通过学习该书,读者可以掌握材料力学的基本理论和方法,培养独立解决实际问题的能力,提高专业技能和学术水平。
因此,该书不仅适合材料力学专业的学生使用,也适合从事相关研究和工程实践的专业人员参考使用。