人教版数学高中必修四《任意角的定义》

合集下载

[高中数学必修4]第一章 基本初等函数(Ⅱ)

[高中数学必修4]第一章  基本初等函数(Ⅱ)
集合 S 的每一个元素都与α 的终边相同,当 k=0 时,对应元素为α . 终边相同的角有无数个,相等的角的终边一定相同,但终边相同的角不一定相等,并 且它们相差 360°的整数倍. (5)象限角 在直角坐标系中讨论角,是使角的顶点与坐标原点重合,角的始边与 x 轴正半轴重合. 这时,角的终边在第几象限,就把这个角叫做第几象限角,如果终边在坐标轴上,那么这 个角叫做轴线角,并且认为这个角不属于任何象限. 第一象限角:k²360°<α <k²360°+90°,k∈Z;
22

必修四
用公式α =l求圆心角时,应注意其结果是圆心角的弧度数.这个公式在物理学上计算角
r
速度时经常用到,因此要熟练掌握它及其变形后的另外两种形式:l=α ²r 和 r= l(α ≠0).
α
运用这两个变形公式时,如果已知的角以度为单位,则应先把它化成弧度后再计算.可以
看出,这些公式各有各的用处.
切线上,其位置不随 的变化而变化;从图中可以看出,当 的终边在 y 轴上时,角 的
正切不存在;我们规定三角函数线的正方向与 x 轴(或 y 轴)正方向相同.
3. 同角三角函数的基本关系式
(1)基本关系
平方关系: sin2 cos2 1. 商数关系: sin tan .
cos 公式变形: cos tan sin;sin cos .
2
减区间是
(
2k , 3
2k )(k
Z)
.
2
2

必修四
对于函数 f (x) ,如果存在一个非零常数 T,使得当 x 取定义域内的每一个值时,都有 f (x T ) f (x) ,那么函数 f (x) 就叫做周期函数.非零常数 T 叫做这个函数的周期.如果 周期函数 f (x) 的所有周期中存在一个最小的正数,那么这个最小正数就叫做 f (x) 的最小

高中数学 1.1.1任意角 新人教A版必修4(2)

高中数学 1.1.1任意角 新人教A版必修4(2)

【解】 终边在30°角的终边所在直线上的角的集合为 S1={α|α=30°+k·180°,k∈Z},终边在180°-75°=105°角 的终边所在直线上的角的集合为S2={α|α=105°+k·180°,k ∈Z},因此,终边在图中阴影部分内的角α的取值范围为 {α|α=30°+k·180°≤α<105°+k·180°,k∈Z}.
终边相同的角
所有与角α终边相同的角,连同角α在内,可构成一 个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边 相同的角,都可以表示成角α与 整数个周角 的和.
5.终边相同的角相等吗?相等的角终边相同吗? 答:终边相同的角不一定相等,它们相差360°的整数 倍;相等的角,终边相同.
1.解读任意角的概念 (1)用运动的观点来定义角,就可以把角的概念推广到 任意角,包括任意大小的正角、负角和零角. (2)对角的概念的认识关键是抓住“旋转”二字. ①要明确旋转的方向; ②要明确旋转的大小; ③要明确射线未作任何旋转时的位置.
2.终边相同的角的关注点 所有与角α终边相同的角,连同角α在内可以用式子 k·360°+α,k∈Z表示,在运用时需注意以下四点: (1)k是整数,这个条件不能漏掉. (2)α是任意角. (3)k·360°与α之间用“+”连接,如k·360°-30°应看成 k·360°+(-30°),k∈Z. (4)终边相同的角不一定相等,终边相同的角有无数 个,它们相差周角的整数倍.相等的角终边一定相同.
课堂篇02
合作探究
终边相同的角及象限角
【例1】 将下列各角表示为k·360°+α(k∈ Z,0°≤α<360°)的形式,并指出是第几象限角.
(1)420°;(2)-510°;(3)1 020°.
【解】 (1)420°=360°+60°, 而60°角是第一象限角,故420°是第一象限角. (2)-510°=-2×360°+210°, 而210°是第三象限角,故-510°是第三象限角. (3)用1 020°除以360°的商为2,余数为300°, 即1 020°=2×360°+300°, 而300°是第四象限角,故1 020°是第四象限角.

新课标高中数学必修4人教A版----任意角(1)

新课标高中数学必修4人教A版----任意角(1)

课题:§1.1.1 任意角(1)一.教学任务分析:1.通过具体实例,认识角的概念推广的必要性.用“旋转”定义角的概念,理解“正角”“负角”“象限角”“终边相同的角”的含义.2.初步学会在平面直角坐标系中讨论任意角,并能熟练写出与已知角终边相同的角的集合.3.通过本节的学习,使学生对角的概念有了一个新的认识;树立运动变化观点,学会运用运动变化的观点认识事物.二.教学重点与难点:360的角的概念推广到任意角. 理解“正角”“负角”“象限角”“终边相教学重点:将 0~同的角”的含义.教学难点:角的概念推广,终边相同的角的表示.↓↓↓↓1.创设情景,揭示课题问题(1) 手表慢了5分钟,如何校对? 手表快了1.25小时,有如何校对?校对后,分针转了几度?教师组织学生讨论,交流,对不同的回答进行评价.通过此问题的讨论感知任意角.(2)初中是如何定义一个角的?角的范围是什么?角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图,一条射线由原来的位置OA,绕着它的端点O按逆时针方向旋转到终止位置OB,就形成角α.旋转开始时的射线OA叫做角的始边,OB叫终边,射线的端点O叫做叫α的顶点.——————————————第 1 页(共4页)————————————————————————————第 2 页 (共 4页)——————————————在体操比赛中我们经常听到这样的术语:“转体720o” (即转体2周),“转体1080o”(即转体3周);跳水运动员身体旋转.说明旋转第二周、第三周……,则形成了更大范围内的角,这些角显然超出了我们已有的认识范围.本节课将在已掌握~角的范围基础上,重新给出角的定义,并研究这些角的分类及记法.2.角的概念的推广 (1)正角,负角,零角的概念我们把按逆时针方向旋转所形成的角叫正角.按顺时针方向旋转所形成的角叫负角,如果一条射线没有作任何旋转,我们称它形成了一个零角. 教师通过图形说明解释.回答问题1.至此把角的概念推广到任意角. 3.象限角讨论:能否以同一射线为始边作出 660,150,210--.通过此题让学生感知没有统一的参考系表示角的不方便.在今后的学习中,我们常在直角坐标系内讨论角.建立直角坐标系内,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合.那么角的终边在第几象限,我们就说这个角是第几象限角. 教师引导学生口答:已知角的顶点与直角坐标系原点重合,始边落在x 轴的非负半轴上,作出下列各角,并指出它们是哪个象限的角? (1)4200;(2)-750;(3)8550;(4)-5100.(1)第一象限角;(2)第四象限角;(3)第二象限角;(4)第三象限角.思考:(1)锐角是第一象限角吗?第一象限角是锐角吗?为什么?锐角是第一象限角,第一象限角不一定是锐角;(2)锐角就是小于900的角吗?小于900的角可能是零角或负角,故它不一定是锐角;(3)锐角就是00~900的角吗?锐角:{θ|00<θ<900};00~900的角:{θ|00≤θ<900}.4.终边相同的角的表示法思考:在同一坐标系中,相等的角的终边有何关系? 终边相同的角有何关系?教师引导学生通过观察(1)下列角作出回答: 390︒ , -330︒ , 30︒, 1470︒,-1770︒.终边重合.(2)能否举出一个与300角终边相同的角?3900,-3300与300相差3600的整数倍,例如,3900=3600+300,-3300=-3600+300;与300角同终边的角还有7500,-6900等.两个终边相同角的特征:终边相同的角相差3600的整数倍.例如:7500=2×3600+300;-6900=-2×3600+300.那么除了这些角之外,与300角终边相同的角还有:3×3600+300-3×3600+3004×3600+300-4×3600+300……,……,由此,我们可以用S={β|β=k×3600+300,k∈Z}来表示所有与300角终边相同的角的集合.容易看出:所有与30°角终边相同的角,连同30°角(k=0)在内,都是集合S的元素;反过来,集合S的任一元素显然与30°角终边相同.一般地: 所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k×3600,k∈Z}5.例题讲评例1.在~范围内,找出与下列各角终边相同的角,并判定它们是第几象限角.(1);(2);(3).——————————————第 3 页(共4页)——————————————解:(1)∵∴与角终边相同的角是角,它是第三象限的角;(2)∵∴与终边相同的角是,它是第四象限的角;(3)所以与角终边相同的角是,它是第二象限角.6.课堂练习:课本P6练习7.课外作业:课本P10. 1,3——————————————第 4 页(共4页)——————————————。

高中数学必修四任意角与弧度制知识点汇总

高中数学必修四任意角与弧度制知识点汇总

任意角与弧度制 知识梳理:一、任意角和弧度制 1、角的概念的推广定义:一条射线OA 由原来的位置,绕着它的端点O 按一定的方向旋转到另一位置OB ,就形成了角α,记作:角α或α∠ 可以简记成α。

注意:(1)“旋转”形成角,突出“旋转”(2)“顶点”“始边”“终边”“始边”往往合于x 轴正半轴 (3)“正角”与“负角”——这是由旋转的方向所决定的。

例1、若13590<<<αβ,求βα-和βα+的范围。

(0,45) (180,270)2、角的分类:由于用“旋转”定义角之后,角的范围大大地扩大了。

可以将角分为正角、零角和负角。

正角:按照逆时针方向转定的角。

零角:没有发生任何旋转的角。

负角:按照顺时针方向旋转的角。

例2、(1)时针走过2小时40分,则分针转过的角度是 -960(2)将分针拨快10分钟,则分针转过的弧度数是 3π .3、 “象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角,角的顶点合于坐标原点,角的始边合于x 轴的正半轴。

角的终边落在第几象限,我们就说这个角是第几象限的角角的终边落在坐标轴上,则此角不属于任何一个象限,称为轴线角。

例1、30? ;390? ;?330?是第 象限角 300? ; ?60?是第 象限角585? ; 1180?是第 象限角 ?2000?是第 象限角。

例2、(1)A={小于90°的角},B={第一象限的角},则A∩B= ④ (填序号).①{小于90°的角} ②{0°~90°的角}③ {第一象限的角}④以上都不对(2)已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是(B )A .B=A∩CB .B∪C=CC .A ⊂CD .A=B=C例3、写出各个象限角的集合:例4、若α是第二象限的角,试分别确定2α,2α 的终边所在位置.解 ∵α是第二象限的角,∴k ·360°+90°<α<k ·360°+180°(k ∈Z ).(1)∵2k ·360°+180°<2α<2k ·360°+360°(k ∈Z ), ∴2α是第三或第四象限的角,或角的终边在y 轴的非正半轴上. (2)∵k ·180°+45°<2α<k ·180°+90°(k ∈Z ), 当k=2n (n ∈Z )时, n ·360°+45°<2α<n ·360°+90°; 当k=2n+1(n ∈Z )时, n ·360°+225°<2α<n ·360°+270°. ∴2α是第一或第三象限的角. 拓展:已知α是第三象限角,问3α是哪个象限的角∵α是第三象限角,∴180°+k ·360°<α<270°+k ·360°(k ∈Z ), 60°+k ·120°<3α<90°+k ·120°. ①当k=3m(m ∈Z )时,可得 60°+m ·360°<3α<90°+m ·360°(m ∈Z ). 故3α的终边在第一象限. ②当k=3m+1 (m ∈Z )时,可得 180°+m ·360°<3α<210°+m ·360°(m ∈Z ). 故3α的终边在第三象限. ③当k=3m+2 (m ∈Z )时,可得 300°+m ·360°<3α<330°+m ·360°(m ∈Z ).故3α的终边在第四象限. 综上可知,3α是第一、第三或第四象限的角. 4、常用的角的集合表示方法 1、终边相同的角:(1)终边相同的角都可以表示成一个0?到360?的角与)(Z k k ∈个周角的和。

高中数学必修四:1.1.1《任意角》 PPT课件 图文

高中数学必修四:1.1.1《任意角》 PPT课件 图文

精讲领学
例题1 写出与下列各角终边相同的角的集合S,并把S中在 360~720范围的角写出来.
( 1 ) 6 0 ;( 2 ) 2 1 ;( 3 ) 3 6 3 1 4
解: ( 1 ) S {| k 3 6 0 6 0 , k Z }300,60,420
( 2 ) S {| k 3 6 0 2 1 , k Z }21,339,699
2、下列角中终边与330°相同的角是( ) A.30° B.-30° C.630° D.-630°
3、把-1485°转化为α+k·360° (0°≤α<360°, k∈Z)的形式是( ) A.45°-4×360° B.-45°-4×360° C.-45°-5×360° D.315°-5×360°
反馈固学
1.1.1 任意角
第一课时
(1)推广角的概念;理解并掌握正角、负角、零角的定义; (2)理解任意角以及象限角的概念; (3)掌握所有与角终边相同的角(包括角)的表示方法; (4)树立运动变化观点,深刻理解推广后的角的概念;
思考:那么工人在拧紧或拧松螺丝时,转动的角度 如何表示才比较合适?
逆时 针
4、下列结论中正确的是( ) A.小于90°的角是锐角 B.第二象限的角是钝角 C.相等的角终边一定相同 D.终边相同的角一定相等
5:任意两个角的数量大小可以相加、相减.
例如50°+80°=130°, 50°-80°=-30°, 你能解释一下这两个式子的几何意义吗?
130°是以50°角的终边为始边,逆时针旋转80°所成的角. -30°是以50°角的终边为始边,顺时针旋转80°所成的角.
注3:(1) 为任意角 (2) k Z这一条件必不可少;
(3) 终边相同的角不一定相等, 终边相等的角有无数多个,它们相差3600的整数倍.

人教版高中数学必修4全册

人教版高中数学必修4全册

(2k+<<2k+
3
2
,
kZ)
第四象限角:
(2k+
3
2
<<2k+2,
kZ

2k-
2
<<2k,
kZ
)
②轴线角
x 轴的非负半轴: =k360º(2k)(kZ);
x 轴的非正半轴: =k360º+180º(2k+)(kZ);
y
轴的非负半轴:
=k360º+90º(2k+
2
)(kZ);
y 轴的非正半轴: =k360º+270º(2k+ 32) 或
(1) 2
(2)
3
评析: 在解选择题或填空题时,
如求角所在象限,也可以不讨论k的
几种情况,如图所示利用图形来判断.
四、什么是1弧度的角? 长度等于半径长的弧所对的圆心角。
B r
Or A
B
2r
Or A
(3)角度与弧度的换算.只要记住,就可
以方便地进行换算. 应熟记一些特殊角的
度数和弧度数. 在书写时注意不要同时
2
2
则α角属于(C ) A.第-象限; B.第二象限;
2
C.第三象限; D.第四象限.
点评: 本题先由α所在象限确定α/2所在象限,再α/2的 余弦符号确定结论.
例1 求经过1小时20分钟时钟的分针所转过的角度:
解:分针所转过的角度 1 20 360 480
60
例2 已知a是第二象限角,判断下列各角是第几象限角
知识网络结构
任意角的概念
角的度量方法 (角度制与弧度制)

人教版数学必修四三角函数复习讲义

人教版数学必修四三角函数复习讲义

第一讲 任意角与三角函数诱导公式1. 知识要点角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。

按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。

射线的起始位置称为始边,终止位置称为终边。

象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。

如果角的终边在坐标轴上,就认为这个角不属于任何象限。

终边相同的角的表示:α终边与θ终边相同(α的终边在θ终边所在射线上)⇔2()k k αθπ=+∈Z 。

注意:相等的角的终边一定相同,终边相同的角不一定相等.α终边在x 轴上的角可表示为:,k k Z απ=∈; α终边在y 轴上的角可表示为:,2k k Z παπ=+∈;α终边在坐标轴上的角可表示为:,2k k Z πα=∈. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.α与2α的终边关系:任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是0r =>,那么sin ,cos y xr rαα==, ()tan ,0y x x α=≠,cot x y α=(0)y ≠,sec rxα=()0x ≠,()csc 0r y y α=≠。

三角函数值只与角的大小有关,而与终边上点P 的位置无关。

三角函数线的特征:正弦线MP“站在x 轴上(起点在x 轴上)”、余弦线OM“躺在x 轴上(起点是原点)”、正切线AT“站在点(1,0)A 处(起点是A )”同角三角函数的基本关系式:1. 平方关系:222222sin cos 1,1tan sec ,1cot csc αααααα+=+=+= 2. 倒数关系:sin αcsc α=1,cos αsec α=1,tan αcot α=1, 3. 商数关系:sin cos tan ,cot cos sin αααααα==注意:1.角α的任意性。

《任意角》教学设计

《任意角》教学设计

《任意角》教学设计第一篇:《任意角》教学设计《任意角》教学设计教材分析:本小节是人教版A版必修四第一章第一节的内容。

角的概念的考查多结合三角函数的基础知识进行,对求角的集合的交、并等计算技能的考查,有一定综合性,涉及的知识点较多,不过多比较浅显。

三角函数的意义与三角函数的符号一般在最基本的层面上用选择、填空题的形式考查。

此节是三角函数的基础,在锐角三角函数的基础上,通过具体事例,再利用单位圆进一步研究任意角的三角函数,并用集合与对应的语言来刻画。

这样,在研究三角函数之前,就有必要先将角的概念推广,从而建立角的集合与实数集之间的对应关系。

信息技术的使用可动态表现角的终边旋转的过程,有利于学生观察到角的变化与终边位置的关系,进而更好地了解任意角和弧度的概念,体会角的“周而复始”的变化规律,为研究三角函数的周期性奠定基础。

一、教学目标:1、知识与技能(1)推广角的概念、引入大于的概念;(2)理解任意角并掌握正角、负角、零角的定义;(3)理解象限角的概念,学会在平面内建立适当的坐标系来讨论角;并进而理解“正角”“负角”“象限角”“终边相同的角”的含义;(4)掌握所有与角终边相同的角(包括角)的表示方法;角和负角,要求学生掌握用“旋转”定义角(5)创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识;(6)揭示知识背景,引发学生学习兴趣;(7)树立运动变化观点,深刻理解推广后的角的概念;2、过程与方法通过创设情境:“转体三周半,逆(顺)时针旋转”,角有大于角、零角和旋转方向不同所形成的角等,说明角不够用了,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习.3、情态与价值通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分.角的概念推广以后,知道角之间的关系.理解掌握终边相同角的表示方法,学会运用运动变化的观点认识事物.二、教学重、难点重点: 理解正角、负角和零角的定义,掌握终边相同角的表示法;及象限角的含义.难点: 终边相同的角的表示.三、学法与教学用具之前的学习使我们知道最大的角是周角,最小的角是零角.通过回忆和观察日常生活中实际例子,把对角的理解进行了推广.把角放入坐标系环境中以后,了解象限角的概念.通过角终边的旋转掌握终边相同角的表示方法.我们在学习这部分内容时,首先要弄清楚角的表示符号,以及正负角的表示.另外还有相同终边角的集合的表示等.教学用具:电脑、电子白板,粉笔,三角板四、教学设计【创设情境】思考:1、初中时我们是如何定义一个角的?角的范围是多少?2、如果你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25 小时,你应当如何将它校准?当时间校准以后,分针转了多少度?学生活动:1、①角的第一种定义是有公共端点的两条射线组成的图形叫做角.②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.范围(0°,360°)2、[实际操作]看看我们教室的时钟,会发现,校正过程中分针需要顺时针方向或逆时针方向旋转,有时转不到一周,有时转一周以上,这就是说之前的之间的角已经不够用了,这就是我们这节课要研究的主要内容——任意角设计意图:形象,具体的让学生感知角可以通过终边不停的旋转得到,以前的角度范围明显不满足现实要求,所以要进一步推广【探究新知】1、初中时,角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图1一条射线由原来的位置着它的端点按逆时针方向旋转到终止位置线叫做角的始边,叫终边,射线的端点,就形成角叫做叫,绕.旋转开始时的射的顶点.记做:∠AOB或说明:在不引起混淆的前提下,“角”或“”可以简记为.图12、再如在体操比赛中我们经常听到这样的术语:“转体720”(即转体2周),“转体1080o”(即转体3周)、自行车车轮、两个齿轮旋转的示意图等都是按照不同方向旋转时成不同的角,要准确地描述这些角,不仅要知道角形成的结果,而且要知道角形成的过程,即必须要知道旋转量,又要知道旋转方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版数学高中必修四《任意角的定义》
人教版数学高中必修四《任意角的定义》
1、任意角的定义。

2、终边相同的角的关系。

详细请看本课视频。

本课程终生免费,目的是为了更好的为学生服务,为了让更多的人听到焦老师的课程,您可以点击标题下方“焦阳初中数学”快速关注,也可以保存并转发此公众号名片,您的关注,是对公益事业的支持,你的转发,也是在做公益,谢谢。

感谢各位朋友的支持,感谢大家的推广。

今天,我们要学习的课程是人教版数学高中必修三《任意角的定义》。

今后每天会更新七、八、九年级及高中的课程,同步于课堂,敬请关注,谢谢。

关于“北师大版“和“苏教版“课程的声明:
目前焦老师一个人在做这个公益平台,录制课程蓝本为人教版数学教材,但是各教材的制订,课程标准是相同的,只是编排顺序不同,所以您看到的课程虽然是人教版课程,但不影响北师版的学习。

公众号置顶,添加到桌面,学生观看更方便。

人教版数学高中必修三《任意角的定义》。

相关文档
最新文档