八年级上册数学-不等式的认识

合集下载

新浙教版八年级数学上册《认识不等式》教案

新浙教版八年级数学上册《认识不等式》教案

新浙教版八年级数学上册《认识不等式》教案一、教学内容本节课选自新浙教版八年级数学上册,涉及第三章《不等式》的第一节《认识不等式》。

详细内容包括:1. 不等式的定义及表示方法;2. 不等式的性质;3. 不等式的解集及表示方法;4. 不等式的简单应用。

二、教学目标1. 知识目标:使学生理解不等式的概念,掌握不等式的表示方法及其性质,了解不等式的解集;2. 能力目标:培养学生运用不等式解决实际问题的能力;3. 情感目标:激发学生学习数学的兴趣,增强克服困难的信心。

三、教学难点与重点重点:不等式的定义、性质及解集;难点:不等式的实际应用。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔;2. 学具:练习本、铅笔、直尺。

五、教学过程1. 实践情景引入利用多媒体展示生活中的实际问题,如:某商店举行购物满100元减30元的活动,小明带了80元,问小明最多能买多少元的商品?2. 知识讲解(1)不等式的定义及表示方法;(2)不等式的性质;(3)不等式的解集及表示方法。

3. 例题讲解(1)解不等式2x 5 > 3;(2)求解不等式组:$\begin{cases} 3x 2 < 4 \\ 2x + 5\geq 1 \end{cases}$。

4. 随堂练习(1)求解不等式5x 3 < 2x + 7;(2)求解不等式组:$\begin{cases} 4x + 3 > 7 \\ 2x 5\leq 1 \end{cases}$。

5. 课堂小结六、板书设计1. 不等式的定义及表示方法;2. 不等式的性质;3. 不等式的解集及表示方法;4. 例题解答步骤及答案。

七、作业设计1. 作业题目(1)求解不等式3x 4 > 5;(2)求解不等式组:$\begin{cases} 2x + 5 < 3 \\ 3x 2 \geq 4 \end{cases}$。

2. 答案八、课后反思及拓展延伸2. 拓展延伸:引导学生了解不等式的其他性质,如不等式的乘除性质,以及不等式的其他应用。

新浙教版八年级上册初中数学 3-1 认识不等式 教学课件

新浙教版八年级上册初中数学 3-1 认识不等式 教学课件
分析:(1)中“正数”用“>0”表示; (3)中“非正数”即负数或0,用“≤0”表示; (4)中“不大于”即“小于或等于”,用“≤”表示.
新课讲解
列不等式首先要找出表示不等关系的关键词,然后用
表示数量关系的式子表示不等式的左边和右边;
常用不等关系的基本语言的意义:
(1)a是正数等价于a>0; (2)a是负数等价于a<0;
新课讲解
4.圆锥的有关计算公式: 圆锥的高h,底面半径r,母线l的关系式:h2+r2=l2 (已知其中任意两个量,可以求出第三个量).
5. 易错警示:圆锥的母线长为圆锥侧面展开后所得 扇 形的半径,要注意与圆锥底面半径相区分.
新课讲解
典例分析
例 下列式子是不等式的>有( D )
①2x=20;②3>2;③x≠4-3;④5a+6b;
(3)a是非正数等价于a≤0; (4)a是非负数等价于a≥0;
(5)a大于b等价于a-b>0; (6)a小于b等价于a-b<0;
(7)a不大于b等价于a≤b; (8)a不小于b等价于a≥b;
(9)a,b同号等价于ab>0或 a >0;
b
(10)a,b异号等价于ab<0或
a
<0.,
b
新课讲解
典例分析
例 有10位菜农,每人可种甲种蔬菜3亩或乙种蔬菜2亩,已 知甲种蔬菜每亩可收入0.5万元,乙种蔬菜每亩可收入 0.8万元,若使总收入不低于15.6万元,试写出安排甲种 蔬菜的种植人数x应满足的不等式.
分析:总收入是甲种蔬菜的收入加上乙种蔬菜的收入,不 低于是大于或等于.
解:安排x人种甲种蔬菜,那么有(10-x)人种乙种蔬菜, 则0.5×3x+0.8×2×(10-x)≥15.6.
(1)分析题意,找出问题中的各种量; (2)弄清各种量之间的数量关系; (3)用代数式表示各种量; (4)用适当的不等号将具有不等关系的量连接起来.

3.1 认识不等式八年级上册数学浙教版

3.1 认识不等式八年级上册数学浙教版
2.不等号:这些用来连接的符号统称不等号.
说明:有些不等式中不含未知数,如 ;有些不等式中含有未知数,如 .
3.常见不等号及实际意义:
名称
符号
读法
实际意义
举例
小于号

小于
小于、不足、低于、少于
大于号

大于
大于、高出、超过、多于
小于等于号

小于或等于
不大于、不超过、至多、最多
大于等于号
知识点3 在数轴上表示简单的不等式 重难点
所有的实数在数轴上都可以找到一个点与之对应,所以数轴上的点可以表示全体实
不等式
意义
表示小于 的全体实数
表示大于 的全体实数
表示小于或等于 的全体实数
表示大于或等于 的全体实数
在数轴上的表示
本节知识归纳
解:(1) ;(2)(4)
(2) 的 与 的 的和是非负数; “非负数”即“正数和0”,用“ <m></m> ”表示
(3) 与3的和不小于5; “不小于”即“大于或等于”,用“≥”表示
(4) 的 与 的和大于 的3倍.
例题点拨:用不等式表示不等关系时,尤其要注意条件中是否含有“不”字,如不少于、不低于用“≥”表示,不大于、不超过用“≤”表示.
知识点2 列不等式重点 重点
1.用不等式表示不等关系的一般步骤:
(1)找准题中表示不等关系的量;
(2)正确理解题中表示不等关系的词语,如多、少、快、慢、超过、不足等确切的含义;
(3)选择与题意符合的不等号将表示不等关系的量连接起来.
2.常见不等式的基本语言与符号表示:
不等式的基本语言
符号表示
不等式的基本语言
典例2 用“<”“>”“≥”或“≤”填空:

湘教版数学八年级上册-4.2--不等式的基本性质

湘教版数学八年级上册-4.2--不等式的基本性质

(3) 1 x-2> 2 x-5.
2
3
解:(1) 根据不等式的基本性质1,
两边都加上 2 得 2x<2.
根据不等式的基本性质 2,
两边除以 2 得 x<1.
(2) 3x-9<6x; 解:(2) 根据不等式的基本性质 1,
两边都加上 9-6x 得 -3x < 9.
根据不等式的基本性质 3,两边都除以-3 得 x>-3.
解(3:) 12(3x-) 根2>据不32 x等-式5.的基本性质1,
两边都加上 2- 2 x 得 - 1 x>-3. 根据不等式的基3本性质 3,6
两边都除以- 1
6

x < 18.
不等式 的性质
不等式 → 如果 a b,c 0,
的性质2
那么 ac bc,a b
cc
不等式 的性质3

如果a b,c 0, 那么ac bc,a b
解析:根据不等式的基本性质可判断,a+1 为 负数,即 a+1<0,可得 a<-1.
方法总结:只有当不等式的两边都乘(或除以)一 个负数时,不等号的方向才改变.
例3 利用不等式的性质解下列不等式,并在数轴上
表示其解集:
(1) x - 7>26;
(3) 2 x>50;
3
思路:
(2) 3x<2x + 1; (4) -4x>3.

x < -2.
移项
由(2)可以看出,运用不等式基本性质1 对 3x < 2x - 2 进行化简的过程,就是对不等式 3x < 2x - 2 作了如下变形:
3x < 2x -2
-
把不等式一边的某一项变号后移到另一边,我们 把这种变形称为移项.

浙教版数学八年级上册3.1《认识不等式》教案

浙教版数学八年级上册3.1《认识不等式》教案

浙教版数学八年级上册3.1《认识不等式》教案一. 教材分析《认识不等式》是浙教版数学八年级上册第三章的第一节内容。

本节内容主要介绍了不等式的定义、不等式的性质以及不等式的解法。

通过本节的学习,使学生能够理解不等式的概念,掌握不等式的性质,并能够运用不等式解决一些实际问题。

二. 学情分析学生在学习本节内容前,已经掌握了有理数的相关知识,对数学符号和运算有一定的了解。

但学生对不等式的概念和性质可能较为陌生,因此,在教学过程中,需要通过具体的例子和实际问题,帮助学生理解和掌握不等式的相关知识。

三. 教学目标1.理解不等式的概念,能够正确读写不等号。

2.掌握不等式的性质,并能够运用不等式解决实际问题。

3.培养学生的逻辑思维能力和解决实际问题的能力。

四. 教学重难点1.不等式的概念和性质。

2.不等式的解法。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题,引导学生思考和探索,通过具体案例让学生理解和掌握不等式的知识,通过小组合作学习,培养学生的团队协作能力和解决实际问题的能力。

六. 教学准备1.PPT课件。

2.相关案例和实际问题。

3.练习题。

七. 教学过程1.导入(5分钟)通过一个实际问题:小明和小华赛跑,小明用10分钟跑完1000米,小华用8分钟跑完1000米,请问谁跑得快?引出不等式的概念。

2.呈现(10分钟)呈现不等式的定义和性质,通过PPT课件和例题,让学生理解和掌握不等式的概念和性质。

3.操练(10分钟)让学生分组讨论,通过PPT上的练习题,运用不等式的性质解决问题。

教师巡回指导,解答学生的问题。

4.巩固(10分钟)让学生独立完成PPT上的练习题,教师选取部分题目进行讲解和分析,巩固学生对不等式的理解和掌握。

5.拓展(10分钟)让学生通过小组合作学习,解决一个实际问题:一家超市举行促销活动,购买一件商品价格为200元,购买两件商品价格为300元,请问购买几件商品最划算?引导学生运用不等式解决实际问题。

八年级数学浙教版上册教案:3.1 认识不等式

八年级数学浙教版上册教案:3.1 认识不等式

3.1认识不等式一、教材分析《3.1认识不等式》是浙教版数学八年级上册第三章的第一节. “不等式”是为了描述客观世界中的不等量关系而产生的数学模型. 一元一次不等式这章内容是中学阶段代数不等式的起始内容,是今后进一步学习不等式的证明和解不等式的重要基础.而3.1认识不等式这节又是整章内容的基础,是学生最初接触不等式,因此要通过较多的实际问题情境,让学生充分经历不等式概念的发生过程,体验不等式也是刻画客观世界的重要数学模型.另外要充分运用数轴这一重要的数学工具,体验数形结合的思想方法,为今后的图解法奠定基础.二、学情分析七年级时学生已经学习了数,后来又把数上升到了式,接着又学习了式与式之间的相等关系(包括一元一次方程和二元一次方程组等),知道了方程是解决部分实际问题的重要数学模型.但客观世界中不仅存在着大量的相等关系,也存在着许许多多的不等关系.“不等式”就是用来刻画不等关系的重要数学模型.学生从本节课开始接触不等式,开启代数学习的新篇章.三、教学目标(一)根据具体问题中的大小关系了解不等式的意义, 了解不等号的意义.(二)会根据给定条件列不等式.(三)会用数轴表示简单的不等式:(四)感受生活中存在着大量的不等关系,初步体会不等式是研究量与量之间关系的重要模型之一,经历由具体实例建立不等式模型的过程,进一步发展符号感和模型意识.四、重点、难点重点:不等式的概念和列不等式.难点:在数轴上表示不等式以及例2,例2既要理解不等式的意义,又要会在数轴上表示,并用来解决实际问题,在能力上有较高的要求.五、教学流程(一)创设情境,引入新课引言:同学们,七年级时我们已经学习了数,后来又把数上升到了式,接着又学习了式与式之间的相等关系(包括一元一次方程和二元一次方程组等),知道了方程是解决部分实际问题的重要数学模型.那么请大家思考下面这个问题.引问 1:某人驾车的速度是50km/h,若用v (km/h)表示他驾车的速度,那么我们可以列出v与50之间的关系式是?(V=50)引问2:若此人现在加大油门, 那么他驾车的速度v (km/h)与50之间的关系式是?(v>50)师:实际上量与量之间除了相等关系之外,还有不相等关系.接下去我们即将学习的就是不等式模型.那么今天这节课我们就先来认识一下不等式.此时引入课题《3.1认识不等式》.设计意图:利用两个引问发现实际生活中量与量之间除了相等关系外,还有不相等关系,从而引入课题《3.1认识不等式》.体现数学来源于生活,因此有学好它的充分必要性.(二) 走进生活,探求新知合作学习:1.下列问题中的数量关系能用等式表示吗?若不能,该用怎样的式子来表示?(1)图3-1是公路上对汽车的限速标志,表示汽车在该路段行驶的速度不得超过40km/h.用v(km/h)表示汽车的速度,怎样表示v与40之间的关系?(2)据科学家测定,太阳表面的温度不低于6000℃.设太阳表面的温度为t(℃)怎样表示t与6000之间的关系?(3)如图3-2,天平左盘放3个乒乓球,右盘放5g砝码,天平倾斜.设每个乒乓球的质量为x(g),怎样表示x与5之间的关系?(4)如图3-3,小聪与小慧玩跷跷板.大家都不用力时,跷跷板左低、右高,小聪的身体质量为p (kg),书包的质量为2 kg,小慧的身体质量为q (kg),怎样表示p,q之间的关系?(5)要使代数式有意义,x的值与3之间有什么关系?此合作学习的内容在课前已进行独立自主的预习,再在课内进行小组内的合作交流.2.议一议:观察由上述问题得到的关系式,它们有什么共同的特点?学生发表自己的观点期间老师对五个不等号阐述如下:量与量之间无非就是三种关系,前者与后者之间或相等或大于或小于.当两个量之间不相等时就有可能是大于或小于,那就产生了“≠”这个符号;如果。

八年级数学不等式的基本性质

八年级数学不等式的基本性质

第二节不等式的基本性质1.2不等式的基本性质—目标导引1.历经不等式基本性质探索,进一步体会不等式与等式的区别.2.掌握并能灵活运用不等式的基本性质1.2不等式的基本性质—内容全解1.不等式的基本性质不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变.不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向要变向.2.等式性质与不等式性质的区别其最大区别在于不等式的两边都乘以(或除以)同一个负数,不等号的方向要改变第二课时●课题§1.2 不等式的基本性质●教学目标(一)教学知识点1.探索并掌握不等式的基本性质;2.理解不等式与等式性质的联系与区别.(二)能力训练要求通过对比不等式的性质和等式的性质,培养学生的求异思维,提高大家的辨别能力.(三)情感与价值观要求通过大家对不等式性质的探索,培养大家的钻研精神,同时还加强了同学间的合作与交流.●教学重点探索不等式的基本性质,并能灵活地掌握和应用.●教学难点能根据不等式的基本性质进行化简.●教学方法 类推探究法即与等式的基本性质类似地探究不等式的基本性质. ●教具准备 投影片两张 第一张:(记作§1.2 A ) 第二张:(记作§1.2 B ) ●教学过程Ⅰ.创设问题情境,引入新课[师]我们学习了等式,并掌握了等式的基本性质,大家还记得等式的基本性质吗? [生]记得.等式的基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.[师]不等式与等式只有一字之差,那么它们的性质是否也有相似之处呢?本节课我们将加以验证.Ⅱ.新课讲授1.不等式基本性质的推导[师]等式的性质我们已经掌握了,那么不等式的性质是否和等式的性质一样呢?请大家探索后发表自己的看法.[生]∵3<5 ∴3+2<5+2 3-2<5-2 3+a <5+a 3-a <5-a所以,在不等式的两边都加上(或减去)同一个整式,不等号的方向不变. [师]很好.不等式的这一条性质和等式的性质相似.下面继续进行探究. [生]∵3<5 ∴3×2<5×23×21<5×21. 所以,在不等式的两边都乘以同一个数,不等号的方向不变. [生]不对. 如3<53×(-2)>5×(-2) 所以上面的总结是错的.[师]看来大家有不同意见,请互相讨论后举例说明. [生]如3<4 3×3<4×33×31<4×31 3×(-3)>4×(-3)3×(-31)>4×(-31)3×(-5)>4×(-5)由此看来,在不等式的两边同乘以一个正数时,不等号的方向不变;在不等式的两边同乘以一个负数时,不等号的方向改变.[师]非常棒,那么在不等式的两边同时除以某一个数时(除数不为0),情况会怎样呢?请大家用类似的方法进行推导.[生]当不等式的两边同时除以一个正数时,不等号的方向不变;当不等式的两边同时除以一个负数时,不等号的方向改变.[师]因此,大家可以总结得出性质2和性质3,并且要学会灵活运用.2.用不等式的基本性质解释π42l >162l 的正确性[师]在上节课中,我们知道周长为l 的圆和正方形,它们的面积分别为π42l 和162l ,且有π42l >162l 存在,你能用不等式的基本性质来解释吗?[生]∵4π<16 ∴π41>161 根据不等式的基本性质2,两边都乘以l 2得π42l >162l 3.例题讲解将下列不等式化成“x >a ”或“x <a ”的形式: (1)x -5>-1; (2)-2x >3; (3)3x <-9. [生](1)根据不等式的基本性质1,两边都加上5,得 x >-1+5 即x >4;(2)根据不等式的基本性质3,两边都除以-2,得x <-23; (3)根据不等式的基本性质2,两边都除以3,得 x <-3.说明:在不等式两边同时乘以或除以同一个数(除数不为0)时,要注意数的正、负,从而决定不等号方向的改变与否.4.议一议投影片(§1.2 A )或除以某一个数时就能确定是正数还是负数,从而能决定不等号方向的改变与否.在本题中讨论的是字母,因此首先要决定的是两边同时乘以或除以的某一个数的正、负.本题难度较大,请大家全面地加以考虑,并能互相合作交流. [生](1)正确∵a <b ,在不等式两边都加上c ,得 a +c <b +c ; ∴结论正确.同理可知(2)正确.(3)根据不等式的基本性质2,两边都乘以c ,得 ac <bc , 所以正确.(4)根据不等式的基本性质2,两边都除以c ,得c a <cb 所以结论错误.[师]大家同意这位同学的做法吗? [生]不同意.[师]能说出理由吗? [生]在(1)、(2)中我同意他的做法,在(3)、(4)中我不同意,因为在(3)中有a <b ,两边同时乘以c 时,没有指明c 的符号是正还是负,若为正则不等号方向不变,若为负则不等号方向改变,若c =0,则有ac =bc ,正是因为c 的不明确性,所以导致不等号的方向可能是变、不变,或应改为等号.而结论ac <bc .只指出了其中一种情况,故结论错误.在(4)中存在同样的问题,虽然c ≠0,但不知c 是正数还是负数,所以不能决定不等号的方向是否改变,若c >0,则有c a <c b ,若 c <0,则有c a >cb,而他只说出了一种情况,所以结果错误.[师]通过做这个题,大家能得到什么启示呢?[生]在利用不等式的性质2和性质3时,关键是看两边同时乘以或除以的是一个什么性质的数,从而确定不等号的改变与否.[师]非常棒.我们学习了不等式的基本性质,而且做过一些练习,下面我们再来研究一下等式和不等式的性质的区别和联系,请大家对比地进行.[生]不等式的基本性质有三条,而等式的基本性质有两条.区别:在等式的两边同时乘以或除以同一个数(除数不为0)时,所得结果仍是等式;在不等式的两边同时乘以或除以同一个数(除数不为0)时会出现两种情况,若为正数则不等号方向不变,若为负数则不等号的方向改变.联系:不等式的基本性质和等式的基本性质,都讨论的是在两边同时加上(或减去),同时乘以(或除以,除数不为0)同一个数时的情况.且不等式的基本性质1和等式的基本性质1相类似.Ⅲ.课堂练习1.将下列不等式化成“x >a ”或“x <a ”的形式.(1)x -1>2 (2)-x <65 [生]解:(1)根据不等式的基本性质1,两边都加上1,得x >3 (2)根据不等式的基本性质3,两边都乘以-1,得x >-65 2.已知x >y ,下列不等式一定成立吗? (1)x -6<y -6; (2)3x <3y ; (3)-2x <-2y . 解:(1)∵x >y ,∴x -6>y -6. ∴不等式不成立; (2)∵x >y ,∴3x >3y ∴不等式不成立;(3)∵x >y ,∴-2x <-2y ∴不等式一定成立. 投影片(§1.2 B )Ⅳ.课时小结1.本节课主要用类推的方法探索出了不等式的基本性质.2.利用不等式的基本性质进行简单的化简或填空.Ⅴ.课后作业习题1.2Ⅵ.活动与探究1.比较a与-a的大小.解:当a>0时,a>-a;当a=0时,a=-a;当a<0时,a<-a.说明:解决此类问题时,要对字母的所有取值进行讨论.2.有一个两位数,个位上的数字是a,十位上的数是b,如果把这个两位数的个位与十位上的数对调,得到的两位数大于原来的两位数,那么a与b哪个大哪个小?解:原来的两位数为10b+a.调换后的两位数为10a+b.根据题意得10a+b>10b+a.根据不等式的基本性质1,两边同时减去a,得9a+b>10b两边同时减去b,得9a>9b根据不等式的基本性质2,两边同时除以9,得a>b.●板书设计●备课资料 参考练习1.根据不等式的基本性质,把下列不等式化成“x >a ”或“x <a ”的形式: (1)x -2<3;(2)6x <5x -1; (3)21x >5;(4)-4x >3. 2.设a >b .用“<”或“>”号填空. (1)a -3 b -3;(2)2a 2b ; (3)-4a -4b ;(4)5a 5b ;(5)当a >0,b 0时,ab >0; (6)当a >0,b 0时,ab <0; (7)当a <0,b 0时,ab >0; (8)当a <0,b 0时,ab <0. 参考答案:1.(1)x <5;(2)x <-1; (3)x >10;(4)x <-43. 2.(1)> (2)> (3)< (4)>(5)> (6)< (7)< (8)>.●迁移发散 迁移1.若a <b ,则下列不等式中成立的是哪些,说明理由. ①-3+a <-3+b ②-3a <-3b③-3a -1<-3b -1 ④-3a +1>-31b +1 解:在已知条件下成立的有①,其余皆错.错因:②在a <b 的条件下,根据不等式的基本性质3应有-3a >-3b ; ③基本上同②;④在a <b 条件下,由不等式的基本性质,两边必须加(减、乘、除)同一个整式或数.2.判断x =-51能否满足不等式3-2x <5+6x ,x =-1呢? 解:将x =-51代入得:3-2×(-51)<5+6×(-51)3+52<5-56,519517 ∴x =-51满足不等式3-2x <5+6x当x =-1时,代入不等式得:3-2×(-1)<5+6×(-1),3+2<5-6,5<-1 显然不能成立.∴x =-1不能满足不等式3-2x <5+6x . 发散本节我们用到了我们以前学过的知识如下:等式的基本性质1:等式的两边都加上(或都减去)同一个整式,等式仍成立.等式的基本性质2:等式的两边都乘以(或除以)同一个不为零的数,等式仍成立.●方法点拨[例1]判断下列各运算运用了不等式的哪一条性质. ①∵2<3 ∴2×5<3×5 ②∵2<3 ∴2+x <3+x③∵2<3 ∴2×(-1)>3×(-1) 解:①运用了不等式的性质2. ②运用了不等式的性质1. ③运用了不等式的性质3.[例2]判断下列运算是否正确,请说明理由. ∵2<3 ∴2a <3a .点拨:在此没有说明a 的取值,所以要分三种情况讨论.即a >0,a =0,a <0. 解:此运算错误.当a >0时,则有2a <3a . 当a =0时,不等式不成立. 当a <0时,则有2a >3a .[例3]根据不等式的性质.把下列不等式化为x >a 或x <a 的形式. (1)2x -15<5 (2)3x >2x +1 (3)3x +1<5x -2(4)31x >51x +1. 解:(1)先由不等式基本性质1,两边都加15得:2x <5+15.即2x <20. 再由不等式基本性质2,两边都乘以21得:x <10. (2)由不等式的基本性质1,两边都减去2x 得:3x -2x >1.即x >1.(3)先由不等式的基本性质1,两边都加上-5x -1得:3x -5x <-2-1,即-2x <-3.再由不等式的性质3,两边都除以-2得:x >23(注意不等号变向). (4)先由不等式的基本性质1,两边都减去51x 得:31x -51x <1,即152x <1.再由不等式的基本性质2,两边都乘以215得:x <215.[例4]在下列横线上填上适当的不等号(>或<)(1)如果a >b ,则a -b __________0. (2)如果a <b ,则a -b __________0. (3)如果2x <x ,则x __________0.(4)如果a >0,b <0,则ab __________0. (5)如果a +b >a ,则b __________0.(6)如果a >b ,则2(a -b )__________3(a -b ). 解:(1)> (2)< (3)< (4)< (5)> (6)<●作业指导 随堂练习1.解:(1)先由不等式的基本性质1,两边加1得:4x >2+1. 即4x >3.再由不等式基本性质2,两边都除以4得:x >43. (2)由不等式的基本性质3,两边都乘以-1得:x >-65. 2.解:(1)不成立. (2)不成立.(3)由不等式的基本性质3得成立. 习题1.21.解:(1)< (2)< (3)> (4)<2.解:(1)先由不等式的基本性质1,两边都减去3得:5x <-1-3 即5x <-4.再由不等式的基本性质2,两边都除以5得:x <-54. (2)由不等式的基本性质3,两边都乘以-3得:x <-15.试一试解:当a >0时,2a >a ;当a =0时2a =a ;当a <0时,2a <a .§1.2 不等式的基本性质●温故知新 想一想,做一做填空1.等式的两边都加上或都减去__________,结果仍是等式. 2.等式两边都乘以或除以__________,结果仍是等式. 3.用__________连接而成的式子叫做不等式.4.①若a 为非负数,则a __________(列出不等式). ②若a 为非正数,则a __________. ③若a 不小于3,则a __________. ④若a 不大于-3,则a __________. 你做对了吗?我们一起来对对答案:1.同一个整式2.同一个不为零的整式3.“<” “≤” “>” “≥”4.①≥0 ②≤0 ③≥3 ④≤-3 看看书,动动脑填空1.不等式的两边都加上(或减去)同一个整式,不等式的方向__________. 2.不等式的两边都乘以(或除以)同一个正数,不等号的方向__________. 3.不等式两边都乘以(或除以)同一个负数,不等号方向__________.2.不等式的基本性质作业导航理解并掌握不等式的基本性质,会运用不等式的基本性质有根据地进行不等式的变形.一、选择题1.若a +3>b +3,则下列不等式中错误的是( ) A.-55ba -<B.-2a >-2bC.a -2<b -2D.-(-a )>-(-b ) 2.若a >b ,c <0,则下列不等式成立的是( ) A.ac >bcB.cb c a < C.a -c <b -c D.a +c <b +c3.有理数a 、b 在数轴上的位置如图1所示,在下列各式中对a 、b 之间的关系表达不正确的是( )图1A.b -a >0B.ab >0C.c -b <c -aD.ab 11> 4.已知4>3,则下列结论正确的是( ) ①4a >3a ②4+a >3+a ③4-a >3-a A.①② B.①③ C.②③ D.①②③5.下列判断中,正确的个数为( ) ①若-a >b >0,则ab <0 ②若ab >0,则a >0,b >0 ③若a >b ,c ≠0,则ac >bc④若a >b ,c ≠0,则ac 2>bc 2⑤若a >b ,c ≠0,则-a -c <-b -c A.2 B.3 C.4 D.5二、填空题(用不等号填空)6.若a <b ,则-3a +1________-3b +1.7.若-35x >5,则x ________-3. 8.若a >b ,c ≤0,则ac ________bc .9.若ba b a --||=-1,则a -b ________0. 10.若ax >b ,ac 2<0,则x ________ab .三、解答题11.指出下列各题中不等式变形的依据. (1)由21a >3,得a >6. (2)由a -5>0,得a >5. (3)由-3a <2,得a >-32. 12.根据不等式性质,把下列不等式化成x >a 或x <a 的形式. (1)x +7>9 (2)6x <5x -3(3)51x <52 (4)-32x >-113.如果a >ab ,且a 是负数,那么b 的取值范围是什么?*14.已知m <0,-1<n <0,试将m ,mn ,mn 2从小到大依次排列.参考答案一、1.B 2.B 3.D 4.C 5.B二、6> 7.< 8.≤ 9.< 10.< 三、11.略12.(1)x >2 (2)x <-3 (3)x <2 (4)x <23 13.b >1 14.m <mn 2<mn§1.2 不等式的基本性质(15分钟练习)班级:_______ 姓名:_______一、快速抢答用“>”或“<”填空,并在题后括号内注明理由: (1)∵a >b∴a -m ________b -m ( ) (2)∵a >2b ∴2a________b ( ) (3)∵3m >5n ∴-m ________-35n( ) (4)∵4a >5a∴a ________0( ) (5)∵-24n m -< ∴m ________2n ( )(6)∵2x -1<9∴x ________5( )二、下列说法正确吗?(1)若a <b ,则ac 2<bc 2.( ) (2)若b <0,则a -b >a .( )(3)若x >y ,则x 2>y 2.( )(4)若x 2>y 2,则x -2>y -2.( ) (5)3a 一定比2a 大.( )三、认真选一选(1)若m +p <p ,m -p >m ,则m 、p 满足的不等式是( ) A.m <p <0 B.m <p C.m <0,p <0 D.p <m(2)已知x >y 且xy <0,a 为任意实数,下列式子正确的是( )A.-x >yB.a 2x >a 2y C.a -x <a -y D.x >-y(3)实数a 、b 满足a +b >0,ab <0,则下列不等式正确的是( ) A.|a |>|b | B.|a |<|b |C.当a <0,b >0时,|a |>|b |D.当a >0,b <0时,|a |>|b | 四、根据不等式的性质,把下列不等式化为x >a 或x <a 的形式 (1)3432-<x (2)-0.3x >0.9 (3)x +2≤-3 (4)4x ≥3x +5参 考 答 案一、(1)>,不等式的性质1(2)>,不等式的性质2(3)<,不等式的性质3(4)<,不等式的性质1(5)>,不等式的性质3(6)<,不等式的性质1和2二、(1)× (2)√ (3)× (4)× (5)×三、(1)C (2)C (3)D四、(1)x<-2 (2)x<-3 (3)x≤-3-2 (4)x≥5。

浙教版八年级上册 3.1 认识不等式 课件(共24张PPT)

浙教版八年级上册 3.1 认识不等式 课件(共24张PPT)
q<2+p
(5)要使代数式 xx+-3有3意义,x的值与3 之间有什么关系?
x≠3
像 v≤40,t≥6000,3x>5,q<p+2,x≠3
这样,用符号“<”(或“≤”),“>” (或“≥”),“≠”连成的数学式子,叫
不等式。这些用来连接的符号统称不等号。
(两个代数式,用不等号连接)
开启智慧之门
2、用不等式表示: (1)a与b的平方和大于3 (2)x与y差的平方不小于2 (3)m与2的差是非负数
3、填空
(1)某食品包装袋上标有“净含量385克 5克”,
则食品的合格净含量x的范围是________
(2)写出满足不等式 x 4 的所有正整数______ (3)写出满足不等式 x 2的最小整数______
(4)–2 ≤X<1又表示怎样的数的全体?
在数轴上表示不等式,你认为需要确定什么?
(1)确定空心点或实心点 (2)确定方向
温馨提醒
请完成课本课内练习3
一起来探索吧!
1、如何在数轴上表示X<a?
a
2、如何在数轴上表示X≥a?
a
3、如何在数轴上表示b<X<a(b<a)?
b
a
下列表示怎样的不等式?
下列问题中的数量关系能用等式表示吗?若不
能,应该用怎样的式子来表示:
(1)如图,是公路上对汽车
40
的限速标志,表示汽车在
该路段行驶的速度不得超
超 速

过40km/h,用v(km/h)表
示汽车的速度,怎样表示v
与40之间的关系?
v≤40
(2)据科学家测定,太 阳表面的温度不低于 60000c,设太阳表面的 温度为t(0c),怎样表 示t与 6000之间 的关系?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8.1 认识不等式教学设计(公开课)
【教学目标】
1.知识与技能:了解不等式及其解的意义;
2.过程与方法:分析和探索实际问题中的数量关系;
3.情感态度与价值观:通过对实际问题的探索,体会现实世界中大量存在着数量间的不等关系,比较数量的大小,研究它们的变化规律,是人们在工作和生活中解决实际问题的需要。

【教学重点和难点】
1.重点:了解不等式的意义;
2.难点:不等式的解的探索过程。

【学法指导】
1.独立思考与合作探究;
2.培养学生分析问题、解决问题的能力;
3.培养学生寻找、探索规律;
4.归纳概括的能力;
5.联系生活、联系实际;
6.类比学习的方法。

一、设置情境,引入概念
世纪公园的票价是:每人5元;一次购票满30张,每张可少收1元。

某班有27名少先队员去世纪公园进行活动。

当领队王小华准备好了零钱到售票处买27张票时,爱动脑筋的李敏同学喊住了王小华,提议买30张票。

但有的同学不明白,明明我们只有27个人,买30张票,岂不是“浪费”吗?
问题1:究竟李敏的提议对不对呢?是不是真的浪费呢?
[算一算]
买27张门票,要付款
5×27=135(元)
买30张门票,要付款
4×30=120(元)
显然120<135
这就是说,买30张票比买27张票付款要少,表面上看是“浪费”了3张票,实际上反而节省了。

问题2:“当人数少于30人时,至少要有多少人去世纪公园买30张票反而合算”依题意你能列出数学式子解决这个问题吗?
[师生问答]
问:假设有x人进公园, x<30,那么,按实际人数买票X张,每张5元,要付款多少元?
答:5x元
问:如果买30张票时付款多少元呢?
答:30×4=120元
问:如果买30张票合算,应有什么关系?
答:120<5x
[概念引入1]
仔细观察下式,指出它们的共同点:
120<135,x <30,120<5x , 再如3+4>1+4, 2x+3≥6,3a-4≤6 , a≠b等。

不等式的概念:一般地,用不等号“<”(或“≤”),“>”(或“≥”), “≠”连接表示不等关系的式子叫做不等式。

[仔细想一想]
判断下列各式中哪些是不等式:
⑴x+1=2 ⑵5m-3>1
⑶x-6 ⑷11a-4≤6
⑸7> 4 ⑹2x-y≥0
[联系实际]
让学生自己列举生活中不等关系的实例。

问题3:当x取哪些数值时,120<5x成立?
前面已经算过,当x=27时,上式成立。

让我们再取一些值试一试,将结果填入下表。

当x=25,26,27,28,29时,不等式120<5x成立;
也就是说,少于30人时,至少要25人进公园,买30张票反而合算。

[概念引入2]
不等式的解:能使不等式成立的未知数的值,叫不等式的解
如例,不等式120<5x 中含有未知数,
x=25,26, 27,28,29等都是120<5x 的解,
而x=24,23,22,21则都不是不等式120<5x 的解。

二、类比概括
三、例题分析
例1:用不等式表示下列关系,并写出两个满足各不等式的数:
(1)x 的一半小于-1 (2)y 与4的和大于0.5
(3)a 是负数; (4)b 是非负数;
解: (1)21
x <-1 如:x= -3, - 4
(2)y +4>0.5 如: y= 0, 1
(3)a <0 如:a= - 3, - 4 (4)b 是非负数,就是b 不是负数,它可以是正数或零,即b>0或b =0,通常可表示成b ≥0。

如:b = 0 , 2
例2:用不等式表示下列关系
(1) x²是非负数。

x² ≥0,
(2) 3x 与1的和不大于4 3x+1≤4,
(3) a 的5倍与1的差不小于-6 5a-1≥-6.
例3:下列各数中,哪些是不等式x +2>5的解?哪些不是?
-3,-2,-1,0,1.5,2.5,3,3.5,5,7。

六、本课小结
1、不等式的概念;
2、用不等式表示简单的数量关系;
3、不等式的解的概念;
4、类比概括
七、作业布置
1、课本第42页习题8.1 第2,3题
2、《同步伴读》相应练习。

相关文档
最新文档