八年级数学上册 第3章 一元一次不等式 3.3 一元一次不等式(二)练习 (新版)浙教版
初中数学浙教版八年级上册第3章 一元一次不等式3.4 一元一次不等式组-章节测试习题(2)

章节测试题1.【答题】把不等式组的解集表示在数轴上,正确的是()A. B.C. D.【答案】B【分析】把各不等式的解集在数轴上表示出来即可.【解答】解:不等式组的解集在数轴上表示为:选B.【点评】本题考查的是在数轴上表示不等式组的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.2.【答题】不等式组的最小整数解为()A. -1B. 0C. 1D. 2【答案】B【分析】先求出不等式组的解集,再求其最小整数解即可.【解答】不等式组解集为-1<x≤2,其中整数解为0,1,2.故最小整数解是0.选B.【点评】本题考查了一元一次不等式组的整数解,属于基础题,正确解出不等式的解集是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.3.【答题】不等式组的解集是()A. -2≤x≤1B. -2<x<1C. x≤-1D. x≥2【答案】A【分析】分别解出每个不等式的解集,再求其公共部分.【解答】解:,由①得,x≥-2;由②得,x≤1;故不等式组的解集为-2≤x≤1.选A.【点评】本题考查了解一元一次不等式,会找其公共部分是解题的关键.4.【答题】不等式组的解集是()A. x≥2B. x>-2C. x≤2D. -2<x≤2【答案】A【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,解不等式①得,x>-2,解不等式②得,x≥2,所以,不等式组的解集是x≥2.选A.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).5.【答题】不等式组的解集是()A. B.C. D.【答案】B【分析】分别解出不等式的解集,再求出其公共部分,然后在数轴上表示出来.【解答】解:,由①得,x≤2,由②得,x>-2,故不等式得解集为-2<x≤2,在数轴上表示为:,选B.【点评】本题考查了不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.【答题】把不等式组的解集在数轴上表示正确的是()A. B. C. D.【答案】C【分析】求出不等式组的解集,表示在数轴上即可.【解答】解:,由②得:x≤3,则不等式组的解集为1<x≤3,表示在数轴上,如图所示:.故选C.【点评】此题考查了在数轴上表示不等式的解集,以及解一元一次不等式组,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.7.【答题】不等式组的解集在数轴上表示为()A. B.C. D.【答案】C【分析】分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.【解答】解:,解不等式①得,x≥2,解不等式②得,x<3,故不等式的解集为:2≤x<3,在数轴上表示为:.选C.【点评】本题考查的是解一元一次不等式组及在数轴上表示不等式组的解集,关键是能根据不等式的解集找出不等式组的解集.8.【答题】使不等式x-1≥2与3x-7<8同时成立的x的整数值是()A. 3,4B. 4,5C. 3,4,5D. 不存在【答案】A【分析】先分别解出两个一元一次不等式,再确定x的取值范围,最后根据x的取值范围找出x 的整数解即可.【解答】解:根据题意得:,解得:3≤x<5,则x的整数值是3,4;选A.【点评】此题考查了一元一次不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.9.【答题】不等式组的整数解是()A. -1,0,1B. 0,1C. -2,0,1D. -1,1【答案】A【分析】首先解不等式组,再从不等式组的解集中找出适合条件的整数即可.【解答】解:,由不等式①,得x>-2,由不等式②,得x≤1.5,所以不等组的解集为-2<x≤1.5,因而不等式组的整数解是-1,0,1.选A.【点评】此题考查的是一元一次不等式组的整数解,正确解出不等式组的解集是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.10.【答题】若关于x的不等式组的解表示在数轴上如图所示,则这个不等式组的解是()A. x≤2B. x>1C. 1≤x<2D. 1<x≤2【答案】D【分析】根据数轴表示出解集即可.【解答】根据题意得:不等式组的解集为1<x≤2.故选D.【点评】此题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.11.【答题】一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为()A. B.C. D.【答案】C【分析】由图示可看出,从-1出发向右画出的折线且表示-1的点是实心圆,表示x≥-1;从2出发向左画出的折线且表示2的点是空心圆,表示x<2,所以这个不等式组的解集为-1≤x<2,从而得出正确选项.【解答】解:由图示可看出,从-1出发向右画出的折线且表示-1的点是实心圆,表示x≥-1;从2出发向左画出的折线且表示2的点是空心圆,表示x<2,所以这个不等式组的解集为-1≤x <2,即:.选C.【点评】考查了不等式的解集,不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.12.【答题】不等式组的解集在数轴上表示正确的是()A. B.C. D.【答案】B【分析】先求出不等式的解集,然后在数轴上表示出来,结合选项即可得出答案.【解答】解:由题意可得,不等式的解集为:-2<x≤2,在数轴上表示为:.选B.【点评】此题考查了在数轴上表示不等式的解集,属于基础题,注意空心点和实心点在数轴上表示的含义.13.【答题】不等式组的解集在数轴上表示正确的是()A. B. C. D.【答案】A【分析】先解不等式组得到-1<x≤2,然后根据在数轴上表示不等式的解集的方法即可得到正确答案.【解答】解:解不等式①得,x≤2,解不等式②得x>-1,所以不等式组的解集为-1<x≤2.选A.【点评】本题考查了在数轴上表示不等式的解集:在数轴上,一个数的左边部分表示大于这个数,这个数用空心圈上,当含有等于这个数时,用实心圈上.也考查了解一元一次不等式组.14.【答题】下列说法中,错误的是()A. 不等式x<2的正整数解有一个B. -2是不等式2x-1<0的一个解C. 不等式-3x>9的解集是x>-3D. 不等式x<10的整数解有无数个【答案】C【分析】解不等式求得B,C选项的不等式的解集,即可判定C错误,又由不等式解的定义,判定B正确,然后由不等式整数解的知识,即可判定A与D正确,则可求得答案.【解答】解:A、不等式x<2的正整数解只有1,故本选项正确,不符合题意;B、2x-1<0的解集为x<,所以-2是不等式2x-1<0的一个解,故本选项正确,不符合题意;C、不等式-3x>9的解集是x<-3,故本选项错误,符合题意;D、不等式x<10的整数解有无数个,故本选项正确,不符合题意.选C.【点评】此题考查了不等式的解的定义,不等式的解法以及不等式的整数解.此题比较简单,注意不等式两边同时除以同一个负数时,不等号的方向改变.15.【答题】不等式组的整数解为()A. 3,4,5B. 4,5C. 3,4D. 5,6【答案】C【分析】首先解不等式组确定不等式的解集,即可求得不等式组的整数解.【解答】解:,解①得:x≤4,解②得:x≥3,则不等式组的解是:3≤x≤4.则整数解是:3,4.选C.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.【答题】不等式x-5>4x-1的最大整数解是()A. -2B. -1C. 0D. 1【答案】A【分析】先求出不等式的解集,在取值范围内可以找到最大整数解.【解答】解:不等式x-5>4x-1的解集为x<- ;所以其最大整数解是-2.选A.【点评】考查了一元一次不等式的整数解,解答此题要先求出不等式的解集,再确定最大整数解.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.17.【答题】关于x的不等式组只有5个整数解,则a的取值范围是()A. -6<a<-B. -6≤a<-C. -6<a≤-D. -6≤a≤-【答案】C【分析】先解x的不等式组,然后根据整数解的个数确定a的取值范围.【解答】解:不等式组,解得:,∵不等式组只有5个整数解,即解只能是x=15,16,17,18,19,∴a的取值范围是:,解得:-6<a≤-.选C.【点评】本题考查了一元一次不等式组的整数解,难度适中,关键是根据整数解确定关于a的不等式组.18.【答题】若关于x的不等式组有3个整数解,则a的值最大可以是()A. -2B. -1C. 0D. 1【答案】C【分析】先求出不等式组的解集(含字母a),因为不等式组有3个整数解,可逆推出a的值.【解答】解:解不等式组得,所以解集为a≤x<3;又因为不等式组有3个整数解,只能是2,1,0,故a的值最大可以是0.选C.【点评】解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.【答题】不等式组无解,则a的取值范围是()A. a<1B. a≤1C. a>1D. a≥1【答案】B【分析】先求不等式组的解集,再逆向思维,要不等式组无解,x的取值正好在不等式组的解集之外,从而求出a的取值范围.【解答】解:原不等式组可化为,即,故要使不等式组无解,则a≤1.选B.【点评】解答此题的关键是熟知不等式组的解集的求法应遵循:“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则.20.【答题】不等式组的解集是x>1,则m的取值范围是()A. m≥1B. m≤1C. m≥0D. m≤0【答案】D【分析】表示出不等式组中两不等式的解集,根据已知不等式组的解集确定出m的范围即可.【解答】解:不等式整理得:,由不等式组的解集为x>1,得到m+1≤1,解得:m≤0,故选D.【点评】此题考查了不等式的解集,熟练掌握不等式组取解集的方法是解本题的关键.。
初中数学浙教版八年级上册第3章《一元一次不等式》测试卷含答案解析和双向细目表-八上3

浙教版数学八年级上册第3章《一元一次不等式》测试考生须知:●本试卷满分120分,考试时间100分钟。
●必须使用黑色字迹的钢笔或签字笔书写,字迹工整,笔迹清楚。
●请在试卷上各题目的答题区域内作答,选择题答案写在题中的括号内,填空题答案写在题中的横线上,解答题写在题后的空白处。
●保持清洁,不要折叠,不要弄破。
一.选择题:本大题有10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 下列是不等式的是( ) A.2x+yB.3x>11C.2x+3=7D.x 2y 22.若x <0,xy ≥0,则y 的取值范围是( ) A.y >0B.y <0C.y ≥0D.y ≤03.关于x 的不等式12-4x >0的非负整数解共有( )个。
A.2B.3C.4D.54.“x 的3倍与x 的相反数的差不小于1”,用不等式表示为( ) A.3x-x ≥1 B.3x-(-x )≥1 C.3x-x >1D.3x-(-x )>15.不等式125323-+≤+x x 的解集表示在数轴上是( ) A.B. C. D.6.如果关于x 的不等式(a+2020)x-a >2020的解集为x <1,那么a 的取值范围是( ) A .a >-2020B.a <-2020C.a >2020D.a <20207.已知关于x 、y 的方程组⎩⎨⎧=--=+ay x ay x 343,其中-3≤a ≤1,给出下列说法:①当a=1时,方程组的解也是x+y=2-a 方程的解;②当a=-2时,x 、y 的值互为相反数;③若x ≤1,则1≤y ≤4;④⎩⎨⎧-==14y x 是方程组的解.其中说法正确的是( ) A.①②③④B.①②③C.②④D.②③8.小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜。
甲说:“至少12元。
”乙说“至多10元。
”丙说“至多8元.”小明说:“你们三个人都说错了。
3.3 一元一次不等式八年级上册数学浙教版

移项,得 . 移项要变号
合并同类项,得 .
两边都除以 ,得 . 同除以一个负数,不等号的方向要改变
不等式的解表示在数轴上如图所示.
知识点4 一元一次不等式的实际应用 重点
有些实际问题中存在不等关系,用不等式来表示这样的关系,就能把实际问题转化为数学问题,从而通过解不等式解决实际问题.
33
解析: 设该中学购买篮球 个,
根据题意得, ,解得 . 是整数, 的最大值是33.
例题点拨解决此类问题的关键是找到数量关系和不等关系,抓住“至少”“超过”“至多”等关键词来列不等式.
本节知识归纳
中考常考考点
难度
常考题型
考点1:一元一次不等式的解法,主要考查解一元一次不等式并在数轴上表示不等式的解集,以及求一元一次不等式的特殊解.
(2) “粤菜师傅”工程开展以来,已累计带动33.6万人次创业就业.据报道,经过“粤菜师傅”项目培训的人员工资稳定提升,已知李某去年的年工资收入为9.6万元,预计李某今年的年工资收入不低于12.48万元,则李某的年工资收入增长率至少要达到多少?
(2)设李某的年工资收入增长率为 ,依题意,得 ,解得 .答:李某的年工资收入增长率至少要达到 .
考点2 一元一次不等式的实际应用
典例6 [2021·广州中考] 民生无小事,枝叶总关情,广东在“我为群众办实事”实践活动中推出“粤菜师傅”“广东技工”“南粤家政”三项培训工程,今年计划新增加培训共100万人次.
(1) 若“广东技工”今年计划新增加培训31万人次,“粤菜师傅”今年计划新增加培训人次是“南粤家政”的2倍,求“南粤家政”今年计划新增加的培训人次.
第3章 一元一次不等式
2019年浙教版数学八年级上册 第3章 一元一次不等式

【章节训练】第3章一元一次不等式一、选择题(共25小题)1.(3.1分)已知a>b,则下列不等式一定成立的是()A.a+3>b+3 B.a﹣3<b﹣3 C.﹣a>﹣b D.3a<3b2.(3.1分)若a<b,则()A.a﹣2c>b﹣2c B.a﹣2c≥b﹣2c C.a﹣2c<b﹣2c D.a﹣2c≤b﹣2c 3.(3.1分)不等式组的解集为()A.x>﹣1 B.x<2 C.x<﹣1或x>2 D.﹣1<x<24.(3.1分)不等式的解集在数轴上表示正确的是()A. B. C. D.5.(3.1分)苏州市2018年2月1日的气温是t℃,这天的最高气温是5℃,最低气温是﹣2℃,则当天我市气温t(℃)变化范围是()A.t>5 B.t<2 C.﹣2<t<5 D.﹣2≤t≤56.(3.1分)已知(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,则m的值为()A.4 B.±4 C.3 D.±37.(3.1分)下列不等式中,属于一元一次不等式的是()A.4>1 B.3x﹣2<4 C.<2 D.4x﹣3<2y﹣78.(3.1分)八年级某班级部分同学去植树,若每人平均植树7棵,还剩9棵,若每人平均植树9棵,则有1位同学植树的棵数不到8棵.若设同学人数为x 人,植树的棵数为(7x+9)棵,下列各项能准确的求出同学人数与种植的树木的数量的是()A.7x+9≤8+9(x﹣1)B.7x+9≥9(x﹣1)C.D.9.(3.1分)一个一元一次不等式组的解集在数轴上表示如图所示,则该不等式组的解集为()A.x>﹣2 B.x≤3 C.﹣2≤x<3 D.﹣2<x≤310.(3.1分)在数轴上与原点的距离小于8的点对应的x满足()A.﹣8<x<8 B.x<﹣8或x>8 C.x<8 D.x>811.(3.1分)一元一次不等式2(x﹣1)≥3x﹣3的解在数轴上表示为()A.B.C.D.12.(3.1分)王老师揣着100元现金到新天地文体用品超市购买学生期末考试奖品,他看好了一种笔记本和一种钢笔,每本笔记本5元,每支钢笔7元,王老师计划购买这两种奖品共15份,王老师最少能买()本笔记本.A.5 B.4 C.3 D.213.(3.1分)已知关于x的不等式组的整数解共有5个,则a的取值范围是()A.﹣4<a<﹣3 B.﹣4≤a<﹣3 C.a<﹣3 D.﹣4<a<14.(3.1分)关于x,y的方程组,若2<k<4,则x﹣y的取值范围是()A.﹣1<x﹣y<0 B.0<x﹣y<1 C.﹣3<x﹣y<﹣1 D.﹣1<x﹣y<1 15.(3.1分)如果关于x的不等式x<a+5和2x<4的解相同,那么a的值为()A.3 B.﹣3 C.2 D.﹣216.(3.1分)关于x的不等式组的所有整数解的积为2,则m的取值范围为()A.m>﹣3 B.m<﹣2 C.﹣3≤m<﹣2 D.﹣3<m≤﹣2 17.(3.1分)不等式x﹣1<2的正整数解有()A.1个B.2个C.3个D.4个18.(3.1分)小明拿40元钱购买雪糕和矿泉水,已知每瓶矿泉水2元,每支雪糕1.5元,他买了5瓶矿泉水,x支雪糕,则所列关于x的不等式正确的是()A.2x+1.5×5<40 B.2x+1.5×5≤40 C.2×5+1.5x≥40 D.2×5+1.5x≤40 19.(3.1分)有一本书共有300页,小明要在10天内(包括第10天)把它读完,他前5天共读了100页,从第6天起的后5天中每天要至少读多少页?设从第6天起每天要读x页,根据题意得不等式为()A.5×100+5x>300 B.5×100+5x≥300 C.100+5x>300 D.100+5x≥300 20.(3.1分)运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了两次才停止,那么x的取值范围是()A.x>23 B.23<x≤47 C.11≤x<23 D.x≤4721.(3.1分)不等式2x﹣7<5﹣2x的非负整数解有()A.1个 B.2个 C.3个 D.4个22.(3.1分)若关于x的不等式组有解,且关于x的方程kx=2(x﹣2)﹣(3x+2)有非负整数解,则符合条件的所有整数k的和为()A.﹣5 B.﹣9 C.﹣12 D.﹣1623.(3.1分)某种商品的进价为80元,出售时标价为120元,后来由于该商品积压,商店准备打折出售,但要保证利润率不低于5%,则至多可打()A.六折B.七折C.八折D.九折24.(3.1分)如果不等式组有解,那么m的取值范围是()A.m>5 B.m≥5 C.m<5 D.m≤825.(3.1分)八年级某班级部分同学去植树,若每人平均植树7棵,还剩9棵,若每人平均植树9棵,则有1名同学植树的棵数不到8棵.若设同学人数为x 人,下列各项能准确的求出同学人数与种植的树木的数量的是()A.7x+9﹣9(x﹣1)>0 B.7x+9﹣9(x﹣1)<8C.D.二、填空题(共5小题)(除非特别说明,请填准确值)26.(3.1分)若(m﹣2)x|3﹣m|+2≤7是关于x的一元一次不等式,则m=.27.(3.1分)若不等式(a﹣3)x>1的解集为x<,则a的取值范围是.28.(3.1分)已知x≥2的最小值是a,x≤﹣6的最大值是b,则a+b=.29.(3.1分)已知x﹣y=3,且x>1,y<0,若m=x+y,则m的取值范围是.30.(3.1分)如图,小雨把不等式3x+1>2(x﹣1)的解集表示在数轴上,则阴影部分盖住的数字是.三、解答题(共2小题)(选答题,不自动判卷)31.(3.1分)利用数轴确定不等式组的解集.32.(3.9分)(1)①如果a﹣b<0,那么a b;②如果a﹣b=0,那么a b;③如果a﹣b>0,那么a b;(2)由(1)你能归纳出比较a与b大小的方法吗?请用文字语言叙述出来.(3)用(1)的方法你能否比较3x2﹣3x+7与4x2﹣3x+7的大小?如果能,请写出比较过程.【章节训练】第3章一元一次不等式参考答案与试题解析一、选择题(共25小题)1.(3.1分)已知a>b,则下列不等式一定成立的是()A.a+3>b+3 B.a﹣3<b﹣3 C.﹣a>﹣b D.3a<3b【分析】直接利用不等式的性质对各选项进行判断.【解答】解:若a>b,则a+3>b+3,a﹣3>b﹣3,﹣a<﹣b,3a>3b.故选:A.【点评】本题考查了不等式的基本性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.2.(3.1分)若a<b,则()A.a﹣2c>b﹣2c B.a﹣2c≥b﹣2c C.a﹣2c<b﹣2c D.a﹣2c≤b﹣2c 【分析】根据不等式的性质即可求出答案.【解答】解:不等式两边同时加或减去同一个整式,不等号方向不变.故选:C.【点评】本题考查不等式的性质,解题的关键是正确理解不等式的性质,本题属于基础题型.3.(3.1分)不等式组的解集为()A.x>﹣1 B.x<2 C.x<﹣1或x>2 D.﹣1<x<2【分析】先求出不等式的解集,再求出不等式组的解集即可.【解答】解:,∵解不等式①得:x<2,解不等式②得:x>﹣1,∴不等式组的解集为﹣1<x<2,【点评】本题考查了解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键.4.(3.1分)不等式的解集在数轴上表示正确的是()A. B. C. D.【分析】利用不等式组取解集的方法计算即可.【解答】解:不等式的解集在数轴上表示正确的是,故选:C.【点评】此题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.(3.1分)苏州市2018年2月1日的气温是t℃,这天的最高气温是5℃,最低气温是﹣2℃,则当天我市气温t(℃)变化范围是()A.t>5 B.t<2 C.﹣2<t<5 D.﹣2≤t≤5【分析】根据不等式的定义进行选择即可.【解答】解:∵这天的最高气温是5℃,最低气温是﹣2℃,∴当天我市气温t(℃)变化范围是﹣2≤t≤5,故选:D.【点评】本题考查了不等式的定义,掌握不等式的定义是解题的关键.6.(3.1分)已知(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,则m的值为()A.4 B.±4 C.3 D.±3【分析】根据一元一次不等式的定义,|m|﹣3=1,m+4≠0,分别进行求解即可.【解答】解:根据题意|m|﹣3=1,m+4≠0解得|m|=4,m≠﹣4所以m=4.【点评】本题考查一元一次不等式的定义中的未知数的最高次数为1次,本题还要注意未知数的系数不能是0.7.(3.1分)下列不等式中,属于一元一次不等式的是()A.4>1 B.3x﹣2<4 C.<2 D.4x﹣3<2y﹣7【分析】根据一元一次不等式的定义,未知数的次数是1,可得答案.【解答】解:A、是不等式,故A错误;B、是一元一次不等式,故B正确;C、是分式不等式,故C错误;D、是二元一次不等式,故D错误;故选:B.【点评】本题主要是对一元一次不等式定义的“未知数的最高次数为1次”这一条件的考查.8.(3.1分)八年级某班级部分同学去植树,若每人平均植树7棵,还剩9棵,若每人平均植树9棵,则有1位同学植树的棵数不到8棵.若设同学人数为x 人,植树的棵数为(7x+9)棵,下列各项能准确的求出同学人数与种植的树木的数量的是()A.7x+9≤8+9(x﹣1)B.7x+9≥9(x﹣1)C.D.【分析】不到8棵意思是植树棵树在0棵和8棵之间,包括0棵,不包括8棵,关系式为:植树的总棵树≥(x﹣1)位同学植树的棵树,植树的总棵树<8+(x ﹣1)位同学植树的棵树,把相关数值代入即可.【解答】解:(x﹣1)位同学植树棵树为9×(x﹣1),∵有1位同学植树的棵数不到8棵.植树的棵数为(7x+9)棵,∴可列方程组为:.故选:C.【点评】本题考查了列一元一次不等式组,得到植树总棵树和预计植树棵树之间的关系式是解决本题的关键;理解“有1位同学植树的棵数不到8棵”是解决本题9.(3.1分)一个一元一次不等式组的解集在数轴上表示如图所示,则该不等式组的解集为()A.x>﹣2 B.x≤3 C.﹣2≤x<3 D.﹣2<x≤3【分析】根据图可直接求出不等式的解集.【解答】解:由图可知:﹣2<x≤3.故选:D.【点评】本题考查了在数轴上表示不等式的解集,解题的关键是定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点.10.(3.1分)在数轴上与原点的距离小于8的点对应的x满足()A.﹣8<x<8 B.x<﹣8或x>8 C.x<8 D.x>8【分析】根据到原点的距离小于8,即绝对值小于8.显然是介于﹣8和8之间.【解答】解:依题意得:|x|<8∴﹣8<x<8故选:A.【点评】本题考查的是数轴的对称性,在数轴上以原点为中心,两边关于原点对称.11.(3.1分)一元一次不等式2(x﹣1)≥3x﹣3的解在数轴上表示为()A.B.C.D.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:2(x﹣1)≥3x﹣3,2x﹣2≥3x﹣3,2x﹣3x≥﹣3+2,﹣x≥﹣1,x≤1,在数轴上表示为:,故选:B.【点评】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能根据不等式的性质求出不等式的解集是解此题的关键.12.(3.1分)王老师揣着100元现金到新天地文体用品超市购买学生期末考试奖品,他看好了一种笔记本和一种钢笔,每本笔记本5元,每支钢笔7元,王老师计划购买这两种奖品共15份,王老师最少能买()本笔记本.A.5 B.4 C.3 D.2【分析】设王老师购买x本笔记本,则购买(15﹣x)支钢笔,根据总价=单价×数量结合总价不超过100元,即可得出关于x的一元一次不等式,解之取其中最小的整数即可得出结论.【解答】解:设王老师购买x本笔记本,则购买(15﹣x)支钢笔,根据题意得:5x+7(15﹣x)≤100,解得:x≥,∴x为整数,∴x的最小值为3.故选:C.【点评】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.13.(3.1分)已知关于x的不等式组的整数解共有5个,则a的取值范围是()A.﹣4<a<﹣3 B.﹣4≤a<﹣3 C.a<﹣3 D.﹣4<a<【分析】求出不等式组的解集,根据不等式组的解集和已知不等式组的整数解有5个即可得出a的取值范围是﹣4≤a<﹣3.【解答】解:解不等式x﹣a>0,得:x>a,解不等式3﹣2x>0,得:x<1.5,∵不等式组的整数解有5个,∴﹣4≤a<﹣3.故选:B.【点评】本题考查了解一元一次不等式,解一元一次不等式组,一元一次不等式组的整数解等知识点,关键是能根据不等式组的解集和已知得出a的取值范围.14.(3.1分)关于x,y的方程组,若2<k<4,则x﹣y的取值范围是()A.﹣1<x﹣y<0 B.0<x﹣y<1 C.﹣3<x﹣y<﹣1 D.﹣1<x﹣y<1【分析】解关于x和y的二元一次方程组,得到关于k的x和y的值,列出x﹣y 关于k的表达式,根据2<k<4,即可得到答案.【解答】解:,解得:,x﹣y=,∵2<k<4,∴0<x﹣y<1,故选:B.【点评】本题考查解一元一次不等式组,掌握解二元一次方程组,得到x和y关于k的表达式是解题的关键.15.(3.1分)如果关于x的不等式x<a+5和2x<4的解相同,那么a的值为()A.3 B.﹣3 C.2 D.﹣2【分析】先求出第二个不等式的解集,再根据两个不等式的解相同,列出方程求解即可.【解答】解:不等式2x<4的解集是x<2.∵两不等式的解集相同,∴a+5=2,解得a=﹣3.故选:B.【点评】本题考查了解一元一次不等式的能力.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.16.(3.1分)关于x的不等式组的所有整数解的积为2,则m的取值范围为()A.m>﹣3 B.m<﹣2 C.﹣3≤m<﹣2 D.﹣3<m≤﹣2【分析】由x≤﹣且不等式组的所有整数解的积为2知整数解为﹣1、﹣2这2个,据此可得答案.【解答】解:由x≤﹣且不等式组的所有整数解的积为2知整数解为﹣1、﹣2这2个,所以﹣3≤m<﹣2,故选:C.【点评】本题考查了一元一次的整数解,结合不等式的解集及整数解的积得出具体的整数解是解题的关键.17.(3.1分)不等式x﹣1<2的正整数解有()A.1个 B.2个 C.3个 D.4个【分析】根据解一元一次不等式基本步骤:移项、合并同类项可得不等式的解集,继而可得其正整数解.【解答】解:移项,得:x<2+1,合并同类项,得:x<3,所以不等式的正整数解为1、2,故选:B.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.18.(3.1分)小明拿40元钱购买雪糕和矿泉水,已知每瓶矿泉水2元,每支雪糕1.5元,他买了5瓶矿泉水,x支雪糕,则所列关于x的不等式正确的是()A.2x+1.5×5<40 B.2x+1.5×5≤40 C.2×5+1.5x≥40 D.2×5+1.5x≤40【分析】根据“矿泉水的单价×矿泉水的数量+雪糕的单价×雪糕的数量≤40元钱”可得不等式.【解答】解:根据题意,可列不等式2×5+1.5x≤40,故选:D.【点评】本题主要考查根据实际问题列一元一次不等式,根据题意找到题目蕴含的不等关系是解题的关键.19.(3.1分)有一本书共有300页,小明要在10天内(包括第10天)把它读完,他前5天共读了100页,从第6天起的后5天中每天要至少读多少页?设从第6天起每天要读x页,根据题意得不等式为()A.5×100+5x>300 B.5×100+5x≥300 C.100+5x>300 D.100+5x≥300【分析】设从第6天起每天要读x页,根据前5天共读的页数+从第6天起每天要读的页数×5≥300可得不等式求解.【解答】解:依题意有100+5x≥300.故选:D.【点评】此题主要考查了由实际问题抽象出一元一次不等式,关键是正确理解题意,找出题目中的不等关系,选准不等号.20.(3.1分)运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了两次才停止,那么x的取值范围是()A.x>23 B.23<x≤47 C.11≤x<23 D.x≤47【分析】根据运行程序,第一次运算结果小于等于95,第二次运算结果大于95列出不等式组,然后求解即可.【解答】解:由题意得,,解不等式①得,x≤47,解不等式②得,x>23,∴23<x≤47,故选:B.【点评】本题考查了一元一次不等式组的应用,读懂题目信息,理解运行程序并列出不等式组是解题的关键.21.(3.1分)不等式2x﹣7<5﹣2x的非负整数解有()A.1个 B.2个 C.3个 D.4个【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.【解答】解:不等式的解集是x<3,则不等式2x﹣7<5﹣2x的非负整数解有0,1,2.故选:C.【点评】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.22.(3.1分)若关于x的不等式组有解,且关于x的方程kx=2(x﹣2)﹣(3x+2)有非负整数解,则符合条件的所有整数k的和为()A.﹣5 B.﹣9 C.﹣12 D.﹣16【分析】先根据不等式组有解得k的取值,利用方程有非负整数解,将k的取值代入,找出符合条件的k值,并相加.【解答】解:,解①得:x≥1+4k,解②得:x≤6+5k,∴不等式组的解集为:1+4k≤x≤6+5k,1+4k≤6+5k,k≥﹣5,解关于x的方程kx=2(x﹣2)﹣(3x+2)得,x=﹣,因为关于x的方程kx=2(x﹣2)﹣(3x+2)有非负整数解,当k=﹣4时,x=2,当k=﹣3时,x=3,当k=﹣2时,x=6,∴﹣4﹣3﹣2=﹣9;故选:B.【点评】本题考查了解一元一次不等式组、方程的解,有难度,熟练掌握不等式组的解法是解题的关键.23.(3.1分)某种商品的进价为80元,出售时标价为120元,后来由于该商品积压,商店准备打折出售,但要保证利润率不低于5%,则至多可打()A.六折B.七折C.八折D.九折【分析】设打x折,利用销售价减进价等于利润得到120•﹣80≥80×5%,然后解不等式求出x的范围,从而得到x的最小值即可.【解答】解:设打x折,根据题意得120•﹣80≥80×5%,解得x≥7.所以最低可打七折.故选:B.【点评】本题考查了一元一次不等式的应用:由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.注意打x折时,标价要乘0.1x为销售价.24.(3.1分)如果不等式组有解,那么m的取值范围是()A.m>5 B.m≥5 C.m<5 D.m≤8【分析】依据小大大小中间找,可确定出m的取值范围.【解答】解:∵不等式组有解,∴m<5.故选:C.【点评】本题主要考查的是不等式的解集,依据口诀列出不等式是解题的关键.25.(3.1分)八年级某班级部分同学去植树,若每人平均植树7棵,还剩9棵,若每人平均植树9棵,则有1名同学植树的棵数不到8棵.若设同学人数为x 人,下列各项能准确的求出同学人数与种植的树木的数量的是()A.7x+9﹣9(x﹣1)>0 B.7x+9﹣9(x﹣1)<8C.D.【分析】不到8棵意思是植树棵树在0棵和8棵之间,包括0棵,不包括8棵,关系式为:植树的总棵树≥(x﹣1)位同学植树的棵树,植树的总棵树<8+(x ﹣1)位同学植树的棵树,把相关数值代入即可.【解答】解:(x﹣1)位同学植树棵树为9×(x﹣1),∵有1位同学植树的棵数不到8棵.植树的棵数为(7x+9)棵,∴可列不等式组为:,即.故选:C.【点评】本题考查了列一元一次不等式组,得到植树总棵树和预计植树棵树之间的关系式是解决本题的关键;理解“有1位同学植树的棵数不到8棵”是解决本题的突破点.二、填空题(共5小题)(除非特别说明,请填准确值)26.(3.1分)若(m﹣2)x|3﹣m|+2≤7是关于x的一元一次不等式,则m=4.【分析】根据一元一次不等式的定义即可求出答案.【解答】解:由一元一次不等式的定义可知:解得:m=4故答案为:4【点评】本题考查一元一次不等式的定义,解题的关键是正确理解一元一次不等式的定义,本题属于基础题型.27.(3.1分)若不等式(a﹣3)x>1的解集为x<,则a的取值范围是a <3.【分析】根据不等式的性质可得a﹣3<0,由此求出a的取值范围.【解答】解:∵(a﹣3)x>1的解集为x<,∴不等式两边同时除以(a﹣3)时不等号的方向改变,∴a﹣3<0,∴a<3.故答案为:a<3.【点评】本题考查了不等式的性质:在不等式的两边同时乘以或除以同一个负数不等号的方向改变.本题解不等号时方向改变,所以a﹣3小于0.28.(3.1分)已知x≥2的最小值是a,x≤﹣6的最大值是b,则a+b=﹣4.【分析】解答此题要理解“≥”“≤”的意义,判断出a和b的最值即可解答.【解答】解:因为x≥2的最小值是a,a=2;x≤﹣6的最大值是b,则b=﹣6;则a+b=2﹣6=﹣4,所以a+b=﹣4.故答案为:﹣4.【点评】解答此题要明确,x≥2时,x可以等于2;x≤﹣6时,x可以等于﹣6.29.(3.1分)已知x﹣y=3,且x>1,y<0,若m=x+y,则m的取值范围是﹣1<m<3.【分析】分别求得x、y的取值范围,然后再来求x+y的取值范围.【解答】解:∵x﹣y=3,∴x=y+3而x>1,∴y+3>1,y>﹣2又y<0,∴﹣2<y<0①再由x﹣y=3得y=x﹣3又注意到y<0∴x﹣3<0,x<3∵x>1∴1<x<3 ②①+②得:﹣2+1<x+y<3+0∴x+y的取值范围是﹣1<x+y<3,故答案为:﹣1<m<3.【点评】本题考查了一元一次不等式组的应用,解答本题的关键是仔细阅读材料,理解解题过程,难度一般.30.(3.1分)如图,小雨把不等式3x+1>2(x﹣1)的解集表示在数轴上,则阴影部分盖住的数字是﹣3.【分析】根据去括号、移项、合并同类项,可得不等式的解集,根据不等式解集的表示方法,可得答案.【解答】解:去括号,得3x+1>2x﹣2,移项、合并同类项,得x>﹣3,故答案为:﹣3.【点评】本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来>或≥,向右画;<或≤,向左画,注意在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.三、解答题(共2小题)(选答题,不自动判卷)31.(3.1分)利用数轴确定不等式组的解集.【分析】先分别求出各不等式的解集,在数轴上表示出来,即可得出不等式组的解集.【解答】解:由①得x≥﹣2由②得x<1在数轴上表示不等式①、②的解集所以,不等式组的解集是﹣2≤x<1【点评】本题考查了解一元一次不等式组:先分别解几个不等式,然后把它们的解集的公共部分作为原不等式的解集;按照“同大取大,同小取小,大于小的小于大的取中间,大于小的小于大的为空集”.也考查了利用数轴表示不等式的解集.32.(3.9分)(1)①如果a﹣b<0,那么a<b;②如果a﹣b=0,那么a= b;③如果a﹣b>0,那么a>b;(2)由(1)你能归纳出比较a与b大小的方法吗?请用文字语言叙述出来.(3)用(1)的方法你能否比较3x2﹣3x+7与4x2﹣3x+7的大小?如果能,请写出比较过程.【分析】根据不等式的基本性质(1)即可解答.【解答】解:(1)①<②=③>(2)比较a,b两数的大小,如果a与b的差大于0,则a大于b;a与b的差等于0,则a等于b;如果a与b的差小于0,则a小于b.(3)(3x2﹣3x+7)﹣(4x2﹣3x+7)=﹣x2≤0,∴3x2﹣3x+7≤4x2﹣3x+7.【点评】解答此题的关键是熟知不等式的基本性质:基本性质1:不等式两边同时加或减去同一个数或式子,不等号方向不变.。
浙教版数学八年级上册《第3章 一元一次不等式》全章教案

浙教版数学八年级上册《第3章一元一次不等式》全章教案一. 教材分析《浙教版数学八年级上册》第3章《一元一次不等式》是学生在学习了有理数、整式乘法等基础知识后的进一步拓展。
本章主要通过引入一元一次不等式,让学生掌握不等式的概念、性质和运算方法,培养学生解决实际问题的能力。
本章内容在初中数学中占据重要地位,为后续学习一元二次不等式、不等式组等知识打下基础。
二. 学情分析八年级的学生已经具备了一定的数学基础,对整式、有理数等概念有一定的了解。
但部分学生在解决实际问题时,还不能很好地将数学知识运用其中。
因此,在教学过程中,要注重培养学生运用数学知识解决实际问题的能力,激发学生的学习兴趣。
三. 教学目标1.理解一元一次不等式的概念,掌握一元一次不等式的性质。
2.学会解一元一次不等式,并能运用一元一次不等式解决实际问题。
3.培养学生的逻辑思维能力和解决实际问题的能力。
四. 教学重难点1.一元一次不等式的概念和性质。
2.一元一次不等式的解法。
3.运用一元一次不等式解决实际问题。
五. 教学方法采用问题驱动法、案例教学法、合作学习法等,引导学生主动探究、合作交流,培养学生的数学素养。
六. 教学准备1.教材、教案、PPT等教学资料。
2.练习题、测试题等。
3.教学工具(如黑板、粉笔等)。
七. 教学过程1.导入(5分钟)利用生活实例引入不等式概念,如:“小明有5个苹果,小华有3个苹果,谁的数量多?”引导学生思考,引出不等式的概念。
2.呈现(10分钟)讲解一元一次不等式的定义、性质和表示方法。
通过PPT展示一元一次不等式的图像,让学生直观理解不等式的性质。
3.操练(10分钟)让学生独立完成练习题,如解以下不等式:2x + 3 > 7。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)讲解练习题的解题思路,分析解题过程中容易出现的问题。
让学生互相讨论,加深对一元一次不等式的理解。
5.拓展(10分钟)引导学生运用一元一次不等式解决实际问题,如:“一个数的平方大于另一个数,求这个数的范围。
浙教版数学八年级上册3.3《一元一次不等式》教案(1)

浙教版数学八年级上册3.3《一元一次不等式》教案(1)一. 教材分析《一元一次不等式》是浙教版数学八年级上册第三章第三节的内容。
本节内容是在学生已经掌握了不等式的概念和性质的基础上进行教学的。
通过本节课的学习,使学生掌握一元一次不等式的定义、解法及其应用,培养学生解决实际问题的能力。
二. 学情分析学生在七年级时已经学习了不等式的基本概念和性质,对不等式有了一定的认识。
但他们对一元一次不等式的定义、解法和应用还不够了解。
因此,在教学过程中,教师需要引导学生从实际问题中抽象出一元一次不等式,并通过实例让学生掌握一元一次不等式的解法和应用。
三. 教学目标1.知识与技能:使学生掌握一元一次不等式的定义、解法及其应用。
2.过程与方法:通过实际问题引导学生从数学的角度进行分析,提高学生解决实际问题的能力。
3.情感态度与价值观:培养学生对数学的兴趣,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:一元一次不等式的定义、解法及其应用。
2.难点:一元一次不等式的解法。
五. 教学方法采用情境教学法、问题教学法和小组合作学习法。
通过实际问题引入一元一次不等式,引导学生主动探索、发现问题,并通过小组合作学习,共同解决问题。
六. 教学准备1.准备一些实际问题,用于导入和巩固知识点。
2.准备PPT,用于呈现知识点和示例。
3.准备练习题,用于课后巩固和拓展。
七. 教学过程1.导入(5分钟)通过展示一些实际问题,让学生思考如何用数学的方法来解决这些问题。
例如,小明有2个苹果,小红有3个苹果,问小明和小红谁苹果多?引导学生发现这个问题可以用不等式来表示和解决。
2.呈现(10分钟)通过PPT呈现一元一次不等式的定义、解法及其应用。
讲解一元一次不等式的定义,例如:ax > b(a、b为实数,a≠0)。
讲解一元一次不等式的解法,例如:将不等式两边同除以a,得到x > b/a。
同时,展示一些实例,让学生理解一元一次不等式的应用。
第3章 一元一次不等式 浙教版数学八年级上册培优试卷(含答案)

浙教版八年级上册第三章一元一次不等式培优一、选择题1.若a>b,则下列各式一定成立的是( )A.a+1<b+1B.―a>―b C.a―2<b―2D.a3>b32.如图,天平右盘中每个砝码的质量都是1g,物体A的质量为m(g),则m的取值范围在数轴上可表示为( )A.B.C.D.3.不等式组x+1>02x≤2的解集在数轴上用阴影表示正确的是( )A.B.C.D.4.实数a,b,c在数轴上的对应点的位置如图所示,下列结论正确的是( )A.a>c>b B.c―a>b―a C.a c2<b c2D.a+b>05.在数学活动课中,小俞同学将某商场促销活动的信息列出不等式为0.7×(2x―100)<1000(其中x为某一商品的定价,单位:元),那么该商场促销活动的信息是( )A.买两件该商品可减100元,再打3折,最后不到1000元B.买两件该商品可打3折,再减100元,最后不到1000元C.买两件该商品可减100元,再打7折,最后不到1000元D.买两件该商品可打7折,再减100元,最后不到1000元6.如图所示,运行程序规定:从“输入一个值x”到“结果是否>79”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是( )A.x>9B.x≤19C.9<x≤19D.9≤x≤197.若关于x 的不等式组4―(x ―2)≥33x ―a >2x有且只有4个整数解,则a 的取值范围是( )A .―1≤a <0B .―1<a ≤0C .0<a ≤1D .0≤a <18.若x 为实数,则[x ]表示不大于x 的最大整数,例如[1,6]=1,[π]=3,[―2,82]=―3等.[x ]+1是大于x 的最小整数,则方程6x ―3[x ]+9=0的解是( )A .x =―83B .x =―196C .x =―72或x =―3D .x =―83或x =―1969.已知三个实数a ,b ,c 满足a ―2b ―c =0,a +2b ―c <0,则( )A .b <0,b 2+ac ≤0B .b <0,b 2+ac ≥0C .b >0,b 2+ac ≤0D .b >0,b 2+ac ≥010. 已知关于x 的分式方程mx(x ―2)(x ―6)+2x ―2=3x ―6无解,且关于y 的不等式组m ―y >4y ―4≤3(y +4)有且只有三个偶数解,则所有符合条件的整数m 的乘积为( )A .1B .2C .4D .8二、填空题11.若(m ―1)x >(m ―1)的解集是x <1,则m 的取值范围是 ;12.一罐饮料净重300g ,罐上标注有“蛋白质含量≥0.5%”,其中蛋白质的含量至少为 g .13.若关于x 的不等式组x <1x ≤a 的解集是x <1,则a 的值可以是 (写出一个即可).14.关于x 的方程k ―2x =3(k ―2)的解为非负数,且关于x 的不等式x ―2(x ―1)≤32k +x 3≥x 有解,求符合条件的所有整数k 的值的积为 .15.若关于x 的不等式组―6<x <2x ―m <m无解,那么m 的取值范围是 16.对非负实数x“四舍五入”到个位的值记为<x >,即:当n 为非负整数时,如n ﹣12≤x <n+12,则<x >=n .如:<0.48>=0,<3.5>=4.如果<x >=97x ,则x = .三、解答题17.课堂上,老师设计了“接力游戏”,规则:一列同学每人只完成解不等式的一步变形,即前一个同学完成一步,后一个同学接着前一个同学的步骤进行下一步变形,直至解出不等式的解集.请根据下面的“接力游戏”回答问题.接力游戏老师:3x +12―1>5x ―43甲同学:3(3x +1)―6>2(5x ―4)乙同学:9x+3―6>10x―8丙同学:9x―10x>―8―3+6丁同学:―x>―5戊同学:x>5任务一:①在“接力游戏”中,乙同学是根据______进行变形的.A.等式的基本性质B.不等式的基本性质C.乘法对加法的分配律②在“接力游戏”中,出现错误的是______同学,这一步错误的原因是______.任务二:在“接力游戏”中该不等式的正确解集是______.任务三:除纠正上述错误外,请你根据平时的学习经验,针对解不等式时还需要注意的事项给同学们提一条建议.18.解不等式1―x3―x<3―x+24.并把解集表示在数轴上.19.解不等式组:5x―6≤2(x+2) x4―1<x―3320.如图,点A,B均在数轴上,点B在点A的右侧,点A对应的数字是―4,点B对应的数字是m.(1)若AB=2,求m的值;(2)将AB线段三等分,这两个等分点所对应数字从左到右依次是a1,a2,若a2>0,求m的取值范围.21.如图所示的是某大院窗格的一部分,其中“O”代表窗格上所贴的剪纸,设第x个窗格上所贴“O”的个数为y.(1)填写下表.x12345xy581117(用含x的式子表示)(2)若第x个窗格上所贴的“O”的个数大于50,求x的取值范围.22.如图,在平面直角坐标系xOy中,已知A(1,a),B(b,3),E(3―a,0),其中a,b满足|a―5|+b―4=0.平移线AB段得到线段CD,使得C,D两点分别落在y轴和x轴上.(1)①点A的坐标是____________;点B的坐标是____________;②求三角形OCD的面积.(2)将点E向下移动1个单位长度得到点F,连接FC,FD,Q(m,0)是x轴负半轴上一点.若三角形QCD 的面积不小于三角形FCD的面积,求m的取值范围.23.如图,在平面直角坐标系中,三角形ABC的三个顶点的坐标分别为A(a,0),B(0,b),C(2,4),且2a+b+10+|3a―2b+8|=0.(1)求a,b的值;,求t的取值范围;(2)点D(t,0)为x轴上一点,且S三角形ABD≤13S三角形ABC(3)平移三角形ABC到三角形EFG(其中点A,B,C的对应点分别为点E,F,G),设E(m,n),F (p,q),且满足5m―n=43p―q=4,请直接写出点G的坐标.答案解析部分1.【答案】D 2.【答案】A 3.【答案】C 4.【答案】C 5.【答案】C 6.【答案】C 7.【答案】A 8.【答案】C 9.【答案】B 10.【答案】B 11.【答案】m <112.【答案】1.513.【答案】2(答案不唯一)14.【答案】015.【答案】m ≤―316.【答案】0或79或149.17.【答案】任务一:①C ;②戊;不等式的两边同时乘以―1,不等号的方向没有改变任务二:x <5任务三:去括号时,括号前面是“―”,去括号后,括号的每一项都要变号,或移项要变号18.【答案】x >―219.【答案】0<x ≤10320.【答案】(1)―2(2)m >221.【答案】(1)14,3x +2(2)x >16.22.【答案】(1)①A (1,5),B (4,3),②3(2)m ≤―7223.【答案】(1)a 的值为―4,b 的值为―2(2)―10≤t ≤2(3)G(8,10)。
【期末优化训练】浙教版2022-2023学年八上数学第3章 一元一次不等式 测试卷2(解析版)

【期末优化训练】浙教版2022-2023学年八上数学第3章 一元一次不等式 测试卷2(解析版)一、选择题(本大题有10小题,每小题3分,共30分) 下面每小题给出的四个选项中,只有一个是正确的.1.三个非零实数a 、b 、c ,满足a >b >c ,且a+b+c=0,则下列不等式一定正确的是( ) A .ac <bc B .bc >c 2 C .ab >b 2 D .a 2<b 2 【答案】A【解析】∵a >b >c ,且a+b+c=0, ∴a >0,c <0, ∴ac <bc , 故选:A .2.已知点P (3﹣a ,a ﹣5)在第三象限,则整数a 的值是( ) A .4 B .3,4 C .4,5 D .3,4,5 【答案】A【解析】∵点P (3﹣a ,a ﹣5)在第三象限, ∴{3−a <0a −5<0, 解得:3<a <5, ∵a 为整数, ∴a=4. 故选:A .3.某商店甲商品的单价为8元,乙商品的单价为2元.已知购买乙商品的件数比购买甲商品的件数的2倍少4件,如果购买甲、乙两种商品的总件数不少于32,且购买甲、乙两种商品的总费用不超过148元.设购买甲商品x 件,依题意可列不等式组得( )A .{x +(2x −4)>328x +2(2x −4)>148B .{x +(2x −4)>328x +2(2x −4)≥148C .{x +(2x −4)>328x +2(2x −4)≤148D .{x +(2x −4)≥328x +2(2x −4)≤148【答案】D【解析】设购买甲商品x 件,则购买乙商品: (2x −4) 件,依题意得: {x +(2x −4)≥328x +2(2x −4)≤148; 故答案为:D.4.某校在一次外出郊游中,把学生编为9个组,若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,那么每组预定的学生人数为( ) A .24人 B .23人 C .22人 D .不能确定 【答案】C【解析】设每组预定的学生数为x 人,由题意得,{9(x +1)>2009(x −1)<190解得2129<x <2219∵x 是正整数∴x =22故答案为:C.5.不等式3(x -2)≤x +4的非负整数解有( )个A .4B .5C .6D .无数 【答案】C【解析】 3(x -2)≤x +4 去括号得3x -6≤x+4, 移项得3x -x≤4+6, 合并同类项得2x≤10, 系数化为1得x≤5,∴该不等式的非负整数解为:5、4、3、2、1、0,共6个. 故答案为:C.6.登山前,登山者要将矿泉水分装在旅行包内带上山.若每人2瓶,则剩余3瓶,若每人带3瓶,则有一人所带矿泉水不足2瓶,登山人数及矿泉水的瓶数是( ) A .5、13 B .3、5 C .5、15 D .无法确定 【答案】A【解析】设登山的有x 人,4<x <6. 2×5+3=13. 故选A .7.若关于x 的不等式mx ﹣n >0的解集是x < 15,则关于x 的不等式(m+n )x >n ﹣m 的解集是( )A .x <﹣ 23B .x >﹣ 23C .x < 23D .x > 23【答案】A【解析】∵mx ﹣n >0 , ∴mx>n ,∵x < 15,∴m<0,n m =15,∴m=5n ,n<0,(m+n )x >n ﹣m ,∴x<n−m m+n =n−5n 5n+n =-23. 故答案为:A.8.若不等式组 {x ≤m2x +1>3无解,则m 的取值范围为( )A .m ≤0B .m ≤1C .m <0D .m <1 【答案】B【解析】解不等式2x +1>3,得:x >1, ∵不等式组无解, ∴m ≤1,故答案为:B .9.如果关于x 的方程 x+12x−6+ax 6−x =1 有正整数解,且关于y 的不等式组 {3y−105<1a −y ≤1至少有两个偶数解,则满足条件的整数a 有( )个. A .0 B .1 C .2 D .3 【答案】C【解析】解方程x+12x−6+ax 6−x =1 得,x= 18a, ∵x -6≠0, ∴x≠6, ∴18a≠6,∴a≠3, ∵x+12x−6+ax 6−x=1 有正整数解, ∴整数a=1,2,6,9,18,解不等式组得 {y <5y ≥a −1, ∴不等式组的解集为: a −1≤y <5 ,∵关于y 的不等式组 {3y−105<1a −y ≤1至少有两个偶数解, ∴a -1≤2, ∴a≤3,∴满足条件的整数a 有两个1,2. 故答案为:C.10.定义新运算“⊕”如下:当a >b 时,a⊕b =ab+b ;当a <b 时,a⊕b =ab ﹣b ,若3⊕(x+2)>0,则x 的取值范围是( ) A .﹣1<x <1或x <﹣2 B .x <﹣2或1<x <2 C .﹣2<x <1或x >1 D .x <﹣2或x >2 【答案】C【解析】 3⊕(x+2)>0 ,当3>x+2即x <1时, 3(x+2)+(x+2)>0, 解之:x >-2,∴x 的取值范围是-2<x <1; 当3<x+2即x >1时 3(x+2)-(x+2)>0, 解之:x >-2,∴x 的取值范围为x >1;∴x 的取值范围是﹣2<x <1或x >1. 故答案为:C二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.已知关于 x 的不等式组 {5−3x ≥−1,a −2x <0无解,则 a 的取值范围是 .【答案】a≥4【解析】 {5−3x ≥−1①a −2x <0②由①得:x≤2,由②得:x >a2 ∵不等式组无解, ∴a2≥2 解之:a≥4.故答案为:a≥4.12.一张试卷共25道题,做对一道题得4分,做错或不做倒扣1分,做完试卷得分不少于70分,则她至少做对了 道题. 【答案】19【解析】设她做对 x 道题,根据题意得: 4x −1×(25−x)⩾70 , 解得 x ⩾19 .∴ 她至少做对19道题. 故答案为:19.13.一次中学生宪法知识竞赛中共有20道题,每一题答对得5分,答错或不答都扣3分.若小丽答了所有的题,要想获得优胜奖(75分及以上),则她至少要答对 道题. 【答案】17【解析】设至少答对x 道题,则失分为(20-x )道, 则5x -3(20-x )≥75, 解得x≥1678,∵x 为正整数, ∴x=17.故答案为:17.14.邮政部门规定:信函重100克以内(包括100克)每20克贴邮票0.8元,不足20克重以20克计算;超过100克,先贴邮票4元,超过100克部分每100克加贴邮票2元,不足100克重以100克计算.八(9)班有11位同学参加项目化学习知识竞赛,若每份答卷重12克,每个信封重4克,将这11份答卷分装在两个信封中寄出,所贴邮票的总金额最少是 元. 【答案】5.6【解析】11份答卷以及两个信封总计:12×11+2×4=140(克), 由题意知,把它分成两个小于或等于100克的信封比较省钱, 设其中一个信封装x 份答卷,则另一个信封装(11−x )份答卷,由题意得: {12x +4≤10012(11−x)+4≤100 , 解得:3≤x≤8, ∴共有三种情况:①一个信封装3份答卷,另一个信封装8份答卷,装3份答卷的信封重量为12×3+4=40(克),装8份答卷的信封重量为140-40=100(克),此时所贴邮票的总金额为:0.8×2+0.8×5=5.6(元);②一个信封装4份答卷,另一个信封装7份答卷,装4份答卷的信封重量为12×4+4=52(克),装7份答卷的信封重量为140-52=88(克),此时所贴邮票的总金额为:0.8×3+0.8×5=6.4(元);③一个信封装5份答卷,另一个信封装6份答卷,装5份答卷的信封重量为12×5+4=64(克),装6份答卷的信封重量为140-64=76(克),此时所贴邮票的总金额为:0.8×4+0.8×4=6.4(元); ∴所贴邮票的总金额最少是5.6元, 故答案为:5.6.15.自主创业的小李经营一家工厂、生产甲、乙两种产品.根据生产规定,每件甲产品需分别在一台 A 设备上加工 3 小时,一台 B 设备上加工 4 小时,每件可获得利润 300 元;每件乙产品需分别在一台 B 设备上加工4小时,一台 C 设备上加工 5 小时,每件可获得利润 400 元.已知 A 设备、 B 设备、 C 设备各只有一台,且每天最多能加工的时间分别是 10,16,15 小时,要使每天的利润不低于 1400 元,每天可生产甲产品 件,乙产品 件.(写出一种满足条件的生产方案即可)【答案】1或2;3或2【解析】设生产甲产品x 件,生产乙产品y 件,由题意可得: {3x ≤104x +4y ≤165y ≤15300x +400y ≥1400, 且x ,y 为正整数,∴x =1,y =3或x =2,y =2, 故答案为:1或2;3或2.16.如图,∠BOC =θ (0°<θ<90°),现用若干根等长的小棒从点A 开始向右依次摆放,使小棒的两端恰好分别落在射线OB 、OC 上,其中AA 1为第1根小棒,且OA =AA 1. 若恰好能摆放4根小棒,则θ 的取值范围是 .【答案】18≤θ<22.5【解析】∵OA=AA 1,⊕BOC=θ, ∴⊕BOC=⊕OA 1A=θ, ∵AA 1=A 1A 2,∴⊕A 1AA 2=⊕A 1A 2A=⊕BOC+⊕OA 1A=2θ, ∵∵A 2A 3=A 1A 2,∴⊕A 2A 1A 3=⊕A 1A 3A 2=⊕BOC+⊕A 1A 2A=θ+2θ=3θ, 同理可知⊕A 3A 2A 4=⊕A 3A 4A 2=4θ; ∵恰好能摆放4根小棒, ∴4θ<90°且5θ≥90° 解之:18≤θ<22.5. 故答案为:18≤θ<22.5三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.解不等式组 {2x−13−5x−12≤23x −1<2(x +1) ,并写出所有整数解.(不画数轴)【答案】解: {2x−13−5x−12≤2①3x −1<2(x +1)②, 解不等式①得: x ≥−1 , 解不等式②得: x <3 ,∴不等式组的解集为: −1≤x <3 , ∴不等式组的整数解为:-1,0,1,2. 18.已知一次函数y =(2m+1)x+m ﹣3.(1)若这个函数的图象与y 轴交于负半轴,求m 的取值范围. (2)若这个函数的图象不经过第四象限,求m 的取值范围. 【答案】(1)解:由已知得,m ﹣3<0且2m+1≠0, 解得m <3且m≠﹣ 12.m 的取值范围是m <3且m≠﹣ 12;(2)解:若图象经过第一、三象限, 得2m+1>0且m ﹣3=0, 解得m =3;若图象经过第一、二、三象限,则 {2m +1>0m −3>0,解得m >3.故m 的取值范围是m≥3.19.为了更好地保护环境,污水处理公司决定购买10台甲、乙两种型号的污水处理设备,经调查,购买一台甲型设备比购买一台乙型设备多2万元,购买2台甲型设备比购买3台乙型设备少6万元. (1)求甲、乙两种型号设备每台各多少万元?(2)已知甲型设备每月处理污水240吨,乙型设备每月处理污水200吨,该地每月需要处理的污水不低于2040吨.若污水处理公司购买污水处理设备的资金不超过105万元,请你为污水处理公司设计一种最省钱的购买方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.3 一元一次不等式(二)
A 组
1.在解不等式x +23>2x -15
的过程中,出现错误的一步是(D ) 去分母,得5(x +2)>3(2x -1).①
去括号,得5x +10>6x -3.②
移项,得5x -6x >-3-10.③
∴x >13.④
A .①
B .②
C .③
D .④
2.将不等式x -12-x -24
>1去分母后,得(D ) A .2(x -1)-x -2>1 B .2(x -1)-x +2>1
C .2(x -1)-x -2>4
D .2(x -1)-x +2>4
3.不等式x +12>2x +23
-1的正整数解的个数是(D ) A . 1 B . 2
C . 3
D . 4
4.(1)不等式3x +134>x 3
+2的解是__x>-3__. (2)不等式x -72+1<3x -22
的负整数解是__x =-1__. (3)已知x =3是方程x -a 2=x +1的解,则不等式⎝ ⎛⎭⎪⎫2-a 5y<13
的解是__y<19__. 5.解不等式:x +12
≥3(x-1)-4. 【解】 去分母,得x +1≥6(x-1)-8.
去括号,得x +1≥6x-6-8.
移项,得x -6x≥-6-8-1.
合并同类项,得-5x≥-15.
两边都除以-5,得x≤3.
6.(1)解不等式2(2x-1)>3x-1,并把解在数轴上表示出来.
【解】 去括号,得4x -2>3x -1,解得x>1.在数轴上表示如解图①所示.
(第6题解①)
(2)解不等式1+x 3
<x -1.并把解在数轴上表示出来. 【解】 去分母,得1+x<3x -3,解得x>2.
在数轴上表示如解图②所示.
(第6题解②)
7.不等式13
(x -m)>3-m 的解为x>1,求m 的值. 【解】 ∵13
(x -m)>3-m , ∴x -m>9-3m ,
解得x>9-2m .
又∵不等式13
(x -m)>3-m 的解为x>1, ∴9-2m =1,
解得m =4.
8.解不等式x 3<1-x -36
,并求出它的非负整数解. 【解】 去分母,得2x<6-(x -3).
去括号,得2x<6-x +3,
移项,得x +2x<6+3.
合并同类项,得3x<9.
两边都除以3,得x<3.
∴非负整数解为0,1,2.
9.若关于x 的方程x -x -m 2=2-x 2
的解是非负数,求m 的取值范围. 【解】 ∵x-x -m 2=2-x 2
, ∴2x -(x -m)=2-x ,解得x =2-m 2
. ∵方程的解为非负数,∴x≥0,
∴2-m 2
≥0, ∴m ≤2.
B 组
10.若关于x 的分式方程k -1x +1
=2的解为负数,则k 的取值范围为k<3且k≠1. 【解】 去分母,得k -1=2x +2,解得x =k -32
. 由分式方程的解为负数,得
k -32<0,且x +1≠0,即k -32≠-1, 解得k<3且k≠1.
11.先阅读材料,再解答问题.
我们把||a bc d 称为二阶行列式,其运算法则为||a bc d =ad -bc .如:||2 34 5=2×5-3×4=-2.
解不等式||2 3-x1 x >0.
【解】 由题意,得2x -(3-x)>0.
去括号,得2x -3+x >0.
移项、合并同类项,得3x >3.
两边都除以3,得x >1.
12.已知2(k -3)<10-k 3,求关于x 的不等式k (x -5)4
>x -k 的解. 【解】 2(k -3)<10-k 3
. 化简,得6k -18<10-k ,解得k<4.
k(x-5)
>x-k.4
化简,得kx -5k>4x -4k ,
∴(k -4)x>k .
∵k<4,∴k -4<0,
∴x<k k -4
. 13.若关于x 的分式方程m -1x -1
=2的解为正数,求m 的取值范围. 【解】 解关于x 的分式方程m -1x -1
=2, 得x =m +12
. ∵x>0,∴m +12
>0,∴m>-1. 又∵x-1≠0,即x≠1,∴m +12
≠1,∴m ≠1. ∴m 的取值范围为m>-1且m≠1.
14.如果关于x 的不等式(a +1)x<2的自然数解有且只有一个,试求a 的取值范围.
【解】 ∵自然数解只有1个,
∴原不等式的解不可能是x 大于某一个数,
∴a +1>0,∴不等式的解为x<2a +1
. 易知这个自然数解必为x =0,∴2a +1
≤1. ∵a +1>0,∴2≤a +1,∴a ≥1,
∴a 的取值范围是a≥1.
数学乐园
15.已知a 1,a 2,a 3,a 4,a 5,a 6,a 7是彼此互不相等的正整数,它们的和为159,求其中最小数a 1的最大值.导学号:91354020
【解】 不妨设a 1<a 2<a 3<a 4<a 5<a 6<a 7.
∵a 1,a 2,a 3,a 4,a 5,a 6,a 7是彼此互不相等的正整数,
∴a 1+1≤a 2,a 1+2≤a 3,a 1+3≤a 4,a 1+4≤a 5,a 1+5≤a 6,a 1+6≤a 7,
将上面各式相加,得6a1+21≤159-a1,
即7a 1+21≤159,
解得a 1≤1387
. ∴a 1的最大值为19.
感谢您的支持,我们会努力把内容做得更好!。