小学奥数倒推法练习题
四年级数学奥数培优第十六讲:倒推法示例

第十六讲:倒推法示例爱学教育蔡老师奥数2015·四年级·竞赛集训·秋●竞赛与集训题●1、小华在荷塘里种了一棵莲藕,开始时它只有1片荷叶,以后每天都增加1倍的荷叶。
假如现在它有1024片荷叶,在4周前它有片荷叶。
2、喜羊羊和懒羊羊做游戏,喜羊羊说:你随便想一个数,并记住这个数,但不要说出来。
然后用这个数加上70,减去32,再减去所想的数,再乘以5,再除以2,我就能猜出答案。
小朋友你能猜出最终的答案是多少吗?请说出其中的奥秘。
3、甲乙丙三人手中各有苹果若干个.现在甲把手中苹果的一部分分给乙,使得乙的苹果个数变为原来的2倍,乙在得到苹果之后再将手中的苹果的一部分分给丙,使得丙的苹果个数变为原来的2倍.这样一来,3人手中的苹果就一样多了.如果再分的过程中,每人手中的苹果都是整数个.那么三人手中的苹果总数至少是个。
4、有一类4位数,任意相邻两位数字之和均不大于2,这样的数从小到大排列,倒数第二个是。
5、电脑按照指示进行运算:如果数据是偶数,就将它除以2;如果数据是奇数,就将它加3,这样继续进行了三次得出结果为27,原来的数据可能是〔填出所有可能):。
6、小明在桌上将若干个红球排成一排,然后在每相邻的2个球之间放2个黄球,最后在每相邻的2个球之间再放2个蓝球,这时桌上共有2008个球,那么其中黄球有_____个。
7、老师在黑板上写了三个不同的整数,小明每次先擦掉第一个数,然后在最后写上另两个数的平均数,如此做了7次,这时黑板上三个数的和为159 ,如果老师在黑板上写的三个数之和为2008,且所有写过的数都是整数。
那么开始时老师在黑板上写的第一个数是。
8、有一类多位数,从左数第三位数字开始,每位上的数都等于其左边第2个数减去左边第1个数的差。
如74312,6422。
那么这类数中最大的是。
9、在信息时代信息安全十分重要,往往需要对信息进行加密,若按照"乘3加1取个位"的方式逐渐加密,明码"16"加密之后的密码为"49",若某个四位明码按照上述加密方式,经过两次加密得到的密码是"2445",则明码是。
小学奥数倒推法练习题

小学奥数倒推法练习题
1.食堂买进一批大米,第一天吃了全部的一半少28千克,第二天吃了余下的一半少8千克,最后剩下122千
克;这批大米共有_________千克;
2.过春节了,乐乐得了很多压岁钱,她想给妈妈买个礼物,花了总钱数的一半多100元,第二次给爸爸买礼物,
又花了剩下的一半多50元,这时还剩400元,乐乐原来有__________元压岁钱;
3.一位妇女,人到中年,很不愿意提起自己的年龄,但她又不愿意说谎;一天有人问及她的年龄,她只好实话实
说:“我现在的年龄减去10,除以2,再减去11,再乘2正好是18岁”,那么这位妇人今年_________岁;。
小学三年级奥数倒推法练习

6.【(□+8)×8-8】÷8=8
7.将某数的3倍减5,计算的结果再3倍后减5,这样反复经过4次,最后计算的结果为691,那么原数是多少?
8.小玲问老爷爷今年多大年龄,老爷爷说:“把我的年龄加上17后用4除,再减去15后用10乘,恰好是100岁。”那么,这位老爷爷今年多少岁?
9.李老师拿着一批书送给36位同学,每到一位同学家里,李老师就将所有的书的一半给他,每位同学也都还他一本,最后李老师还剩下2本书,那么李老师原来拿着多少本书?
〔小学三年级奥数倒推法练习〕
1.一个猴子摘得一些桃,第一天吃掉一半少2个,第二天吃掉剩下的一半少1个,第三天吃掉剩下的一半多2个,这时还剩1个,问猴子原有桃多少个?
2.【(□-8)+16】÷7×4=80
3.(□×7÷6+ቤተ መጻሕፍቲ ባይዱ8-8)÷10=14
4.95÷(2×□-3)=5
5.25×66÷(3×□+2)=150
4-奥数练习-倒推法解题

1.某数扩大7倍后,再缩小2倍,加上8减去6,等于51,求某数?
2.一根电线一半一半地剪去,剪了4次,剩下的正好是2米。
这根电线原来长
多少米?
3.小明、小军和小华共制作科技模型36件。
如果小明给小军6件,小军给小
华4件,他们三人制作的科技模型的件数正好相等。
问他们原来各制作多少件?
4.瓶内装有酒精,倒进500克以后又倒出一半,又倒进500克,这时瓶内有酒
精1200克。
问瓶内原有酒精多少克?
5.幸福小学暑假毕业学生86人,开学招进新生148人,同时又转入学生7人,
转出3人,这时全校共有学生654人,问暑假前幸福小学有多少学生?
6.一条幼虫长成成虫,每天长大一倍,40天长到40厘米,问第36天长多少厘米?
7.某人去银行取款,第一次取了存款的一半多5元,第二次取了余下的一半多
10元,最后剩下125元,求他原来有多少元?
8. 池塘的水面上生长着浮萍,浮萍所占面积每天增加一倍,经过15天把池溏占满了,求它几天占池塘的4
1?
9.。
小学奥数--倒推法练习题(学生版)

小学奥数专项练习题-----(倒推法)A组1、一个数加上1,乘以8,减去8,结果还是8,这个数是。
2、某次数学考试中,小强的分数如果减去6,再除以10,然后加上6再乘以8,正好是120分。
那么小强这次考试的成绩是。
3、甲乙丙三个数,从甲数中取出20加到乙数,然后从乙数中取18加到丙数,最后从丙数中取出25加到甲数,这时三个数都恰好是160。
那么甲数原来是。
4、三堆苹果各有若干个。
先从第一堆中拿出与第二堆个数相同的苹果放入第二堆,再从第二堆中拿出与第三堆个数相同的苹果放入第三堆,最后再从第三堆中拿出与这时第一堆个数相同的苹果放入第一堆。
这时三堆苹果都正好是16个。
原来第一堆苹果有个。
5、三个盒子里的珠宝数不等,第一次从甲盒里拿出一些珠宝放入乙丙两盒内,使乙丙两盒里的珠宝数各增加一倍;第二次从乙盒里拿出一些珠宝放入甲丙两盒内,使甲丙两盒里的珠宝数各增加一倍;第三次从丙盒里拿出一些珠宝放入甲乙两盒内,使甲乙两盒里的珠宝数各增加一倍。
这时三个盒里都是48颗珠宝。
最初甲盒子里有颗珠宝。
6、甲乙丙三人各有铜板若干枚,开始甲把自己的铜板拿出一部分给了乙丙,使乙丙的铜板数各增加一倍,后来乙把自己的铜板拿出一部分给了甲丙,使甲丙的铜板数各增加一倍,最后丙也把自己的铜板拿出一部分给了甲乙,使甲乙的铜板数各增加一倍。
这时三人的铜板数都是8枚。
原来最少的人有枚铜板。
7、现有排成一列的七个数,从第三个数起,每个数都是它前面两个数的乘积。
如果最后两个数分别是16、64,那么第一个数是。
8、池塘水面渐渐被长出的睡莲所覆盖了,睡莲长得很快,每天覆盖的面积增加一倍,30天可覆盖整个池塘。
那么覆盖半个池塘需要天。
9、一种水生植物覆盖某湖面的面积每天增大一倍,18天覆盖整个湖面,那么经过16天覆盖整个湖面的。
10、一种微生物,每小时可增加一倍,现在一批这样的微生物,10小时可增加到100万个。
那么增加到25万个需要小时。
11、某人去银行取款,第一取出存款总数的一半还多5元,第二次取了余下的一半还多5元,这时他银行中的存款还剩下130元。
小学数学五年级奥数——倒推法解题

1 3、有甲、乙两桶油,从甲桶中倒出 3 1 给乙桶后,又从乙桶中倒出 给甲桶, 5 这时两桶油各有24千克,原来甲、乙 两个桶中各有多少千克油?
1 1、小华拿出自己的画片的 5 给小强, 1 小强再从自己现有的画片中拿出 4 给 小华,这时两人各有画片12张,原来 两人各有画片多少张? 2、甲、乙两人各有人民币若干元,甲 1 1 拿出 5 给乙后,乙又拿出 4 给甲,这 时他们各有90元,他们原来各有多少 元?
1、一本文艺书,小明第一天看了全 1 3 书的 ,第二天看了余下的 , 3 5 还剩下48页,这本书共有多少页?
3 1、 某班少先队员参加劳动,其中 7 的人 5 打扫礼堂,剩下队员中的 打扫操场, 8 还剩12人打扫教室,这个班共有多少名少
先队员? 2、 一辆汽车从甲地出发,第一天走了全程 2 3 的 ,第二天走了余下的 3 ,第三天 8 走了250千米到达乙地。甲、乙两地间的 路程是多少千米?
4、甲、乙、丙三人共有人民币168元, 第一次甲拿出与乙相同的钱数给乙; 第二次乙拿出与丙相同的钱数给丙; 第三次丙拿出与这时甲相同的钱数给 甲。这样,甲、乙、丙三人的钱数相 等,原来甲比乙多多少元钱?
1、 甲、乙、丙三个班共有学生144人, 先从甲班调出与乙班相同的人数给乙 班,再从乙班调出与丙班相同的人数 到丙班。再从丙班调出与这时甲班相 同的人数给甲班,这样,甲、乙、丙 三个班人数相等。原来甲班比乙班多 多少人?
2、筑路队修一段路,第一天修了全 1 长的 又100米,第二天修了余下 5 的 2 ,还剩500米,这段公路全 7 长多少米?
2 1、 一堆煤,上午运走 ,下午运的比余 1 7 下的 还多6吨,最后剩下14吨还没有运 3
走,这堆煤原有多少吨?
小学四年级奥数第5课《倒推法的妙用》试题附答案

小学四年级上册数学奥数知识点讲解第5课《倒推法的妙用》试题附答案第五讲倒推法的妙用在分析应用题的过程中,倒推法是一种常用的思考方法.这种方法是从所叙述应用题或文字题的结果出发,利用己知条件一步一步倒着分析、推理,直到解决问题. 例1一次数学考试后,李军问于昆数学考试得多少分.于昆说:“用我得的分数减去8加上10,再除以7,最后乘以4,得56.”小朋友,你知道于昆得多少分吗?例2马小虎做一道整数减法题时,把减数个位上的1看成7,把减数十位上的7看成1,结果得出差是I11问正确答案应是几?例3树林中的三棵树上共落着48只鸟.如果从第一棵树上飞走8只落到第二棵树±;从第二棵树上飞走6只落到第三棵树上,这时三棵树上鸟的只数相等.问:原来每棵树上各落多少只鸟?例4篮子里有一些梨.小刚取走总数的一半多一个.小明取走余下的一半多1个.小军取走了小明取走后剩下一半多一个.这时篮子里还剩梨1个.问:篮子里原有梨多少个?例5甲乙两个油桶各装了15千克油.售货员卖了14千克.后来,售货员从剩下较多油的甲桶倒一部分给乙桶使乙桶油增加一倍;然后从乙桶倒一部分给甲桶,使甲桶油也增加一倍,这时甲桶油恰好是乙桶油的3倍.问:售货员从两个桶里各卖了多少千克油?例6菜站原有冬贮大白菜若干千克.第一天卖出原有大白菜的一半.第二天运进200千克.第三天卖出现有白菜的一半又30千克,结果剩余白菜的3倍是1800千克.求原有冬贮大白菜多少干克?第五讲倒推法的妙用在分析应用题的过程中,倒推法是一种常用的思考方法.这种方法是从所叙述应用题或文字题的结果出发,利用已知条件一步一步倒着分析、推理,直到解决问题.例1一次数学考试后,李军问于昆数学考试得多少分.于昆说:“用我得的分数减去8加上10,再除以7,最后乘以4,得56.”小朋友,你知道于昆得多少分吗?分析这道题如果顺推思考,比较麻烦,很难理出头绪来.如果用倒推法进行分析,就像剥卷心菜一样层层深入,直到解决问题.如果把于昆的叙述过程编成一道文字题:一个数减去8,加上10,再除以7,乘以4,结果是56.求这个数是多少?把一个数用口来表示,根据题目己知条件可得到这样的等式:{[(□-8)+101+7}×4=56.如何求出口中的数呢?我们可以从结果56出发倒推回去.因为56是乘以4后得到的,而乘以4之前是56+4=14.14是除以7后得到的,除以7之前是14X7=98.98是加10后得到的,加10以前是98-10=88.88是减8以后得到的,减8以前是88+8=96.这样倒推使问题得解.解:{[(口-8)+10]+7}×4=56[(□-8)+10)+7=56+4答:于昆这次数学考试成绩是96分.通过以上例题说明,用倒推法解题时要注意:①从结果出发,逐步向前一步一步推理.②在向前推理的过程中,每一步运算都是原来运算的逆运算.③列式时注意运算顺序,正确使用括号.例2马小虎做一道整数减法题时,把减数个位上的1看成7,把减数十位上的7看成1,结果得出差是II1问正确答案应是几?分析马小虎错把减数个位上1看成7,使差减少7—1=6,而把十位上的7看成1,使差增加70—10=60.因此这道题归结为某数减6,加60得111,求某数是几的问题.解:I11-(70—10)+(7—1)=57答:正确的答案是57.例3树林中的三棵树上共落着48只鸟.如果从第一棵树上飞走8只落到第二棵树上;从第二棵树上飞走6只落到第三棵树上,这时三棵树上鸟的只数相等.问:原来每棵树上各落多少只鸟?分析倒推时以“三棵树上鸟的只数相等”入手分析,可得出现在每棵树上鸟的只数48+3=16(只).第三棵树上现有的鸟16只是从第二棵树上飞来的6只后得到的,所以第三棵树上原落鸟16—6=10(只).同理,第二棵树上原有鸟16+6—8=14(只).第一棵树上原落鸟16+8=24(只),使问题得解.解:①现在三棵树上各有鸟多少只?48+3=16(只)②第一棵树上原有鸟只数.16+8=24(只)③第二棵树上原有鸟只数.16+6—8=14(只)④第三棵树上原有鸟只数.16—6=10(只)答:第一、二、三棵树上原来各落鸟24只、14只和10只.例4篮子里有一些梨.小刚取走总数的一半多一个.小明取走余下的一半多1个.小军取走了小明取走后剩下一半多一个.这时篮子里还剩梨1个.问:篮子里原有梨多少个?分析依题意,画图进行分析.篮子里梨的一半多1劭的二半''J ----------------- --多I个再余一半* --- √多1个乘Ih个篮子里原有梨多少个?解:列综合算式:{[(1+1)×2+U×2+1}×2=22(个)答:篮子里原有梨22个.例5甲乙两个油桶各装了15千克油.售货员卖了14千克.后来,售货员从剩下较多油的甲桶倒一部分给乙桶使乙桶油增加一倍;然后从乙桶倒一部分给甲桶,使甲桶油也增加一倍,这时甲桶油恰好是乙桶油的3倍.问:售货员从两个桶里各卖了多少千克油?分析解题关键是求出甲、乙两个油桶最后各有油多少千克.已知“甲、乙两个油桶各装油15千克.售货员卖了14千克”,可以求出甲、乙两个油桶共剩油15×2-14=16(千克).又已知“甲、乙两个油桶所剩油”及“这时甲桶油恰是乙桶油的3倍',就可以求出甲、乙两个油桶最后有油多少千克.求出甲、乙两个油桶最后各有油的千克数后,再用倒推法并画图求甲桶住乙桶倒油前甲、乙两桶各有油多少千克,从而求出从两个油桶各卖出多少千克.解:①甲乙两桶油共剩多少千克?15×2-14=16(千克)②乙桶油剩多少千克?16+(3+1)=4(千克)③甲桶油剩多少千克?4×3=12(千克)用倒推法画图如下:甲桶油乙桶油④从甲桶卖出油多少千克?15T1=4(千克)⑤从乙桶卖出油多少千克?15—5=10(千克)答:从甲桶卖出油4千克,从乙桶卖出油10千克.例6菜站原有冬贮大白菜若干千克.第一天卖出原有大白菜的一半.第二天运进200千克.第三天卖出现有白菜的一半又30千克,结果剩余白菜的3倍是1800千克.求原有冬贮大白菜多少千克?分析解题时用倒推法进行分析.根据题目的已知条件画线段图(见下图),使数量关系清晰的展现出来.原有冬贮来若干千克簟禹劈第二天运金OO千克有白菜一半第二天一一半3⅛⅛第三天曼出的~1 3,1800千克解:①剩余的白菜是多少千克?1800÷3=600(千克)②第二天运进200千克后的一半是多少千克?600+30=630(千克)③第二天运进200千克后有白菜多少千克?630×2=1260(千克)④原来的一半是多少千克?1260—200=1060(千克)⑤原有贮存多少千克?1060×2=2120(千克)答:菜站原来贮存大白菜2120千克.综合算式:[(1800+3+30)×2—2001×2=2120(千克)答:菜站原有冬贮大白菜2120千克.习题五1.某数除以4,乘以5,再除以6,结果是615,求某数.2.生产一批零件共560个,师徒二人合作用4天做完.已知师傅每天生产零件的个数是徒弟的3倍.师徒二人每天各生产零件多少个?3.有转26块,兄弟二人争着挑.弟弟抢在前,刚刚摆好移,哥哥赶到了.哥哥看弟弟挑的太多,就抢过一半.弟弟不肯,又从哥哥那儿抢走一半.哥哥不服,弟弟只好给哥哥5块.这时哥哥比弟弟多2块.问:最初弟弟准备挑几块砖?4.阿凡提去赶集,他用钱的一半买肉,再用余下钱的一半买鱼,又用剩下钱买菜.别人问他带多少钱,他说:“买菜的钱是1、2、3;3、2、1;1、2、3、4、5、6、7的和;加7加8,加8加7、加9加10加11。
小学奥数之用倒推法解应用题

小学奥数之用倒推法解应用题例1.___在做一道加法题时,把个位上的8误看成了9,把十位上的8误看成了3,结果和为243.问正确的答案应该是多少?解答:___把个位上的8看成9,使得和增加了1;把十位上的8看成3,使和减少了50.因此,我们可以将这道题转化为求某个数加1,减去50等于243,即:x+1-50=243x+1=293x=292例2.___有若干本书,如果他的书本数加上3,再减去4,然后除以5,再乘以6等于12本。
问___有多少本书?解答:我们可以列出以下四个式子:小明的本数+3=和(1)和-4=差(2)差÷5=商(3)商×6=12(4)根据所给式子,倒推可得___的书本数为:商=12÷6=2差=2×5=10和=10+4=14小明的书本数=14-3=11例3.___、___、___各有若干个球,___给___和___各与其现有球数相同的球,然后___和___分别按照___和自己手中的球数添球,最后三人手中各有24个球。
原来三人各有几个球?解答:以第三次添球开始倒推。
因为第三次后各人都有24个球,所以在第三次(___)添球前,___手中有24÷2=12个球,___手中也有12个球,而___的球应该是24+12+12=48个。
第二次添球后,三人手中分别有12、12、48个球,同样地,我们倒推得到第二次添球前:___手中球数是6个,___手中球数是24个,___手中的球数是6+24+12=42个。
因此,原来三人有的球数分别是:___12个,___21个,___39个。
例4.仓库里原本有若干吨煤。
第一天上午运出原有煤的一半,下午运出5吨;第二天上午运出剩下煤的一半,下午运出5吨;第三天上午又运出剩下煤的一半,下午再运出5吨。
这时仓库还剩有24吨煤。
仓库里原有煤多少吨?解答:仓库里最后剩下的煤加上第三天下午运出的5吨,等于第三天上午运出的煤,所以第三天在未运输之前,总共有煤:(24+5)×2=58吨。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学奥数倒推法练习题
1.食堂买进一批大米,第一天吃了全部的一半少28千克,第二天吃了余下的一半少8千克,最后剩下122
千克。
这批大米共有_________千克。
2.过春节了,乐乐得了很多压岁钱,她想给妈妈买个礼物,花了总钱数的一半多100元,第二次给爸爸买
礼物,又花了剩下的一半多50元,这时还剩400元,乐乐原来有__________元压岁钱。
3.一位妇女,人到中年,很不愿意提起自己的年龄,但她又不愿意说谎。
一天有人问及她的年龄,她只好
“我现在的年龄减去10,除以2,再减去11,再乘2正好是18岁”,那么这位妇人今年_________实话实说:
岁。