霍尔传感器位移特性实验

合集下载

霍尔效应实验报告 (2)

霍尔效应实验报告 (2)

霍尔效应的研究及利用霍尔效应测磁场实验报告指导老师:姓名:学号:实验日期:一、实验目的1、理解霍尔效应的原理,研究霍尔效应的应用;2、掌握DH4501N型三维亥姆霍兹线圈磁场实验仪的用法;3、利用霍尔效应法测量磁场大小,并且研究亥姆霍兹线圈的磁场分布规律;二、实验仪器DH4501N三维亥姆霍兹线圈磁场实验仪(仪器由信号源和测试架两大部分组成)A.仪器面板为三大部分,见下图(1) 。

(1)实验仪面板图1、励磁电流I M输出:前面板右侧,三位半数显电流表,显示输出电流值I M(A),直流恒流输出可调,接到测试架的励磁线圈,提供实验用的励磁电流。

2、霍尔片工作电流I S输出:前面板左侧,三位半数显电流表,显示输出电流值I S(mA),直流恒流输出可调,用于提供霍尔片的工作电流。

以上两组直流恒源只能在规定的负载范围内恒流,与之配套的“测试架”上的负载符合要求。

若要作它用时需注意。

提醒:只有在接通负载时,恒流源才有电流输出,数显表上才有相应显示。

3、V H、Vσ测量输入:前面板中部,三位半数显表显示输入值(mV),用于测量霍尔片的霍尔电压V H及霍尔片长度L方向的电压降Vσ。

使用前将两输入端接线柱短路,用调零旋钮调零。

提醒:I S霍尔片工作电流输出端与V H、Vσ测量输入端,连接测试架时,与测试架上对应的接线端子一一对应连接(红接线柱与红接线柱相连,黑接线柱与黑接线柱相连)。

励磁电流I M输出端连接到测试架线圈时,可以选择接单个线圈与双个线圈。

接双个线圈时,将两线圈串联,即一个线圈的黑接线柱与另一线圈的红接线柱相连。

另外两端子接至实验仪的I M端。

4、二个换向开关分别对励磁电流I M,工作电流I S进行正反向换向控制。

5、一个转换开关对霍尔片的霍尔电压V H与霍尔片长度L方向的电压降Vσ测量进行转换控制。

B. DH4501N三维亥姆霍兹线圈磁场测试架图(2)三维亥姆霍兹线圈磁场实验仪测试架本测试架的特点是三维可靠调节,见图(2)。

传感器实验指导书

传感器实验指导书

目录目录 (1)实验一金属箔式应变片——单臂电桥性能实验 (3)实验二金属箔式应变片——半桥性能实验 (6)实验三金属箔式应变片——全桥性能实验 (8)实验四直流全桥的应用——电子称实验 (10)实验五移相实验 (11)实验六相敏检波实验 (12)实验七交流全桥性能测试实验 (15)实验八交流激励频率对全桥的影响 (17)实验九交流全桥振幅测量实验 (18)实验十扩散硅压阻式压力传感器的压力测量实验 (19)实验十一差动变压器性能实验 (21)实验十二差动变压器零点残余电压补偿实验 (23)实验十三激励频率对差动变压器特性的影响实验 (24)实验十四差动电感式传感器位移特性实验 (25)实验十五电容式传感器的位移特性实验 (27)实验十六电容传感器动态特性实验 (29)实验十七直流激励时霍尔传感器的位移特性实验 (30)实验十八交流激励时霍尔式传感器的位移特性实验 (31)实验十九霍尔测速实验 (32)实验二十磁电式传感器的测速实验 (33)实验二十一压电式传感器振动实验 (34)实验二十二电涡流传感器的位移特性实验 (36)实验二十三被测体材质、面积大小对电涡流传感器的特性影响实验 (38)实验二十四电涡流传感器转速测量实验 (39)实验二十五电涡流传感器测量振动实验 (40)实验二十六光纤传感器位移特性实验 (41)实验二十七光纤传感器的测速实验 (43)实验二十八光电转速传感器的转速测量实验 (44)实验二十九智能调节仪温度控制实验 (45)实验三十集成温度传感器的温度特性实验 (48)实验三十一铂热电阻温度特性测试实验 (50)实验三十二K型热电偶测温实验 (52)实验三十三E型热电偶测温实验 (55)实验三十四PN结温度特性测试实验 (57)实验三十五气敏(酒精)传感器实验 (59)实验三十六气敏(可燃气体)传感器实验 (60)实验三十七湿敏传感器实验 (61)实验三十八F/V转换实验 (62)实验三十九智能调节仪转速控制实验 (63)实验一 金属箔式应变片——单臂电桥性能实验一、实验目的了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

传感器与检测技术综合实验 有数据及答案

传感器与检测技术综合实验 有数据及答案

实验报告本课程名称:传感器与检测技术综合实验指导教师:班级:姓名:学号:2013~2014学年第一学期广东石油化工学院计算机与电子信息学院实验目录实验一金属箔式应变片――单臂电桥性能实验实验二金属箔式应变片――半桥性能实验实验三金属箔式应变片――全桥性能实验实验四金属箔式应变片单臂、半桥、全桥性能比较实验实验五直流激励时线性霍尔传感器的位移特性实验实验六霍尔转速传感器测电机转速实验实验七磁电式转速传感器的测电机转速实验实验八电涡流传感器的位移特性实验实验九光纤传感器的位移特性实验实验十光电转速传感器的转速测量实验实验一金属箔式应变片――单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=ΔL/L为电阻丝长度相对变化。

金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化。

电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。

对单臂电桥输出电压U o1= EKε/4。

三、需用器件与单元:主机箱(±4V、±15V、电压表)、应变式传感器实验模板、1位数显万用表(自备)。

托盘、砝码、42图1 应变片单臂电桥性能实验安装、接线示意图四、实验步骤:应变传感器实验模板说明:实验模板中的R1、R2、R3、R4为应变片,没有文字标记的5个电阻符号下面是空的,其中4个组成电桥模型是为实验者组成电桥方便而设,图中的粗黑曲线表示连接线。

1、根据图1〔应变式传感器(电子秤传感器)已装于应变传感器模板上。

传感器中4片应变片和加热电阻已连接在实验模板左上方的R1、R2、R3、R4和加热器上。

传感器左下角应变片为R1;右下角为R2;右上角为R3;左上角为R4。

传感器实验报告

传感器实验报告

实验一 金属箔式应变片——全桥性能实验一、实验目的了解全桥测量电路的优点二、基本原理全桥测量电路中,将受力方向相同的两应变片接入电桥对边,相反的应变片接入电桥邻边。

当应变片初始阻值R1=R2=R3=R4、其变化值1234R R R R ∆=∆=∆=∆时,其桥路输出电压3o U EK ε=。

其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差都得到了改善。

三、实验器材主机箱、应变传感器实验模板、托盘、砝码、万用表、导线等。

四、实验步骤1.根据接线示意图安装接线。

2.放大器输出调零。

3.电桥调零。

4.应变片全桥实验数据记录如下表所示: 重量(g ) 0 20 40 60 80 100 120 140 电压(mv )20.140.160.480.8100.8121.1141.2实验曲线如下所示:分析:从图中可见,数据点基本在拟合曲线上,线性性比半桥进一步提高。

5.计算灵敏度S=U/W ,非线性误差δ。

U=141.2mv , W=140g ; 所以 S=141.2/140=1.0086 mv/g;m∆=0.1786g,y F S=140g,δ=⨯=0.1786/140100%06.利用虚拟仪器进行测量测量数据如下表所示:重量(g)0 20 40 60 80 100 120 140电压(mv)-1.1 19.6 40.4 61.1 81.7 102.4 122.0 142.0 实验曲线如下所示:五、思考题1.测量中,当两组对边电阻值R相同时,即R1=R3,R2=R4,而R1≠R2时,是否可以组成全桥:(1)可以;(2)不可以。

答:(2)不可以。

2.某工程技术人员在进行材料拉力测试时在棒材上贴了两组应变片,能否及如何利用四组应变片组成电桥,是否需要外加电阻。

答:能够利用它们组成电桥。

对于左边一副图,可以任意选取两个电阻接入电桥的对边,则输出为两倍的横向应变,如果已知泊松比则可知纵向应变。

对于右边的一幅图,可以选取R3、R4接入电桥对边,则输出为两倍的纵向应变。

实验报告移相

实验报告移相

实验四移相实验一、实验目的了解移相电路的原理和应用。

二、实验仪器移相器、信号源、示波器(自备)三、实验原理由运算放大器构成的移相器原理图如下图所示:图4-1 移相器原理图通过调节Rw,改变RC充放电时间常数,从而改变信号的相位。

四、实验步骤1.将“信号源”的U S100幅值调节为6V,频率调节电位器逆时针旋到底,将U S100与“移相器”输入端相连接。

2.打开“直流电源”开关,“移相器”的输入端与输出端分别接示波器的两个通道,调整示波器,观察两路波形。

3.调节“移相器”的相位调节电位器,观察两路波形的相位差。

4.实验结束后,关闭实验台电源,整理好实验设备。

五、实验报告根据实验现象,对照移相器原理图分析其工作原理。

(1)当两波形的相位差最大时:(2)当两波形的相位差最小时:六、注意事项实验过程中正弦信号通过移相器后波形局部有失真,这并非仪器故障。

实验五相敏检波实验一、实验目的了解相敏检波电路的原理和应用。

二、实验仪器移相器、相敏检波器、低通滤波器、信号源、示波器(自备)、电压温度频率表三、实验原理开关相敏检波器原理图如图5-1所示,示意图如图5-2所示:图5-1 检波器原理图图5-2 检波器示意图图5-1中Ui为输入信号端,AC为交流参考电压输入端,Uo为检波信号输出端,DC为直流参考电压输入端。

当AC、DC端输入控制电压信号时,通过差动电路的作用使、处于开或关的状态,从而把Ui端输入的正弦信号转换成全波整流信号。

输入端信号与AC参考输入端信号频率相同,相位不同时,检波输出的波形也不相同。

当两者相位相同时,输出为正半周的全波信号,反之,输出为负半周的全波信号。

四、实验步骤1.打开“直流电源”开关,将“信号源”U S1 00输出调节为1kHz,Vp-p=8V的正弦信号(用示波器检测),然后接到“相敏检波器”输入端Ui。

2.将直流稳压电源的波段开关打到“±4V”处,然后将“U+”“GND1”接“相敏检波器”的“DC”“GND”。

FD-HY-I霍尔位置传感器法杨氏模量测定仪

FD-HY-I霍尔位置传感器法杨氏模量测定仪

仪器使用说明TEACHER'S GUIDEFD-HY-I 霍尔位置传感器法杨氏模量测定仪中国.上海复旦天欣科教仪器有限公司Shanghai Fudan Tianxin Scientific_Education Instruments Co.,Ltd.霍尔位置传感器法杨氏模量测定仪一、概述 固体材料杨氏模量的测量是综合大学和工科院校物理实验中必做的实验之一。

该实 验可以学习和掌握基本长度和微小位移量测量的方法和手段,提高学生的实验技能。

随 着科学技术的发展,微小位移量的测量技术愈来愈先进,为了推动教学仪器和教学内容 的现代化,上海复旦天欣科教仪器有限公司与复旦大学基础物理实验教学中心合作,研 制并生产了杨氏模量实验仪。

该仪器是在弯曲法测量固体材料杨氏模量的基础上,加装 霍尔位置传感器而成的。

通过霍尔位置传感器的输出电压与位移量线性关系的定标和微 小位移量的测量,有利于联系科研和生产实际,使学生了解和掌握微小位移的非电量电 测新方法。

本仪器对经典实验装置和方法进行了改进,不仅保留了原有实验的教学内容,还增 加了霍尔位置传感器的结构、原理、特性及使用方法的了解,将先进科技成果应用到教 学实验中,扩大了学生的知识面,所以本仪器也是经典实验教学现代化的一个范例。

该 实验仪自推出市场以来,经复旦大学和全国几十所高校实验教学使用,一致反映效果很 好。

弯曲法测金属杨氏模量实验仪的特点是待测金属薄板只须受较小的力 F ,便可产生 较大的形变 ∆Z ,而且本仪器体积小、重量轻、测量结果准确度高,本仪器杨氏模量实际 测量误差小于 3%。

二、实验原理 (1) 霍尔位置传感器 在垂直于磁场方向通以电流 I , 则与这二者 霍尔元件置于磁感应强度为 B 的磁场中, 相垂直的方向上将产生霍尔电势差 U H :UH = K ⋅ I ⋅ B(1)(1)式中 K 为元件的霍尔灵敏度。

如果保持霍尔元件的电流 I 不变,而使其在一个均匀 梯度的磁场中移动时,则输出的霍尔电势差变化量为:-1-dB ⋅ ∆Z dZ dB 为常数时, ∆U H 与 ∆Z 成正比。

传感器实验报告

传感器实验报告

重庆邮电大学传感器实验报告姓名:李振洲学号:2012216478班级:5121201实验一 金属箔式应变片——单臂电桥性能实验一、实验目的了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

二、实验仪器双杆式悬臂梁应变传感器、电压温度频率表、直流稳压电源(±4V )、差动放大器、电压放大器、万用表(自备) 三、实验原理电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为ε⋅=∆k RR(1-1) 式中RR∆为电阻丝电阻相对变化; k 为应变系数;ll∆=ε为电阻丝长度相对变化。

金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件。

如图1-1所示,将四个金属箔应变片(R1、R2、R3、R4)分别贴在双杆式悬臂梁弹性体的上下两侧,弹性体受到压力发生形变,应变片随悬臂梁形变被拉伸或被压缩。

图1-1 双杆式悬臂梁称重传感器结构图通过这些应变片转换悬臂梁被测部位受力状态变化,可将应变片串联或并联组成电桥。

如图1-2信号调理电路所示,R5=R6=R7=R 为固定电阻,与应变片一起构成一个单臂电桥,其输出电压RR R R E U ∆⋅+∆⋅=211/40 (1-2)E 为电桥电源电压;式1-2表明单臂电桥输出为非线性,非线性误差为L=%10021⋅∆⋅-RR。

图1-2 单臂电桥面板接线图四、实验内容与步骤1.悬臂梁上的各应变片已分别接到面板左上方的R1、R2、R3、R4上,可用万用表测量判别,R1=R2=R3=R4=350Ω。

2.按图1-2接好“差动放大器”和“电压放大器”部分,将“差动放大器”的输入端短接并与地相连,“电压放大器”输出端接电压温度频率表(选择U ),开启直流电源开关。

将“差动放大器”的增益调节电位器与“电压放大器”的增益调节电位器调至中间位置(顺时针旋转到底后逆时针旋转5圈),调节调零电位器使电压温度频率表显示为零。

关闭“直流电源”开关。

霍尔传感器

霍尔传感器

霍尔传感器霍尔传感器是根据霍尔效应制作的一种磁场传感器。

霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。

后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。

霍尔效应是研究半导体材料性能的基本方法。

通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子迁移率等重要参数。

霍尔效应在半导体薄片两端通以控制电流I,并在薄片的垂直方向施加磁感应强度为B的匀强磁场,则在垂直于电流和磁场的方向上,将产生电势差为H的霍尔电压U霍尔元件根据霍尔效应,人们用半导体材料制成的元件叫霍尔元件。

它具有对磁场敏感、结构简单、体积小、频率响应宽、输出电压变化大和使用寿命长等优点,因此,在测量、自动化、计算机和信息技术等领域得到广泛的应用。

霍尔传感器的分类霍尔传感器分为线性型霍尔传感器和开关型霍尔传感器两种。

(1)线性型霍尔传感器由霍尔元件、线性放大器和射极跟随器组成,它输出模拟量。

(2)开关型霍尔传感器由稳压器、霍尔元件、差分放大器,斯密特触发器和输出级组成,它输出数字量。

按照霍尔器件的功能可将它们分为: 霍尔线性器件和霍尔开关器件。

前者输出模拟量,后者输出数字量。

按被检测的对象的性质可将它们的应用分为:直接应用和间接应用。

前者是直接检测出受检测对象本身的磁场或磁特性,后者是检测受检对象上人为设置的磁场,用这个磁场来作被检测的信息的载体,通过它,将许多非电、非磁的物理量例如力、力矩、压力、应力、位置、位移、速度、加速度、角度、角速度、转数、转速以及工作状态发生变化的时间等,转变成电量来进行检测和控制。

用单片机测量电磁场1.硬件设计硬件电路应包括:单片机接口电路、设定值输入(工作点磁感应强度设定值)、检测信号输入、控制输出和显示等部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验14 直流激励时霍尔传感器位移特性实验
141270046 自动化杨蕾生
一、实验目的:
了解直流激励时霍尔式传感器的特性。

二、基本原理:
根据霍尔效应,霍尔电势U H=K H IB,当霍尔元件处在梯度磁场中运动时,它的电势会发生变化,利用这一性质可以进行位移测量。

三、需用器件与单元:
主机箱、霍尔传感器实验模板、霍尔传感器、测微头、数显单元。

四、实验步骤:
1、霍尔传感器和测微头的安装、使用参阅实验九。

按图14示意图接线(实验模板的输出V o1接主机箱电压表Vin),将主机箱上的电压表量程(显示选择)开关打到2V档。

2、检查接线无误后,开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rw1使数显表指示为零。

3、以某个方向调节测微头2mm位移,记录电压表读数作为实验起始点;再反方向调节测微头每增加0.2mm记下一个读数,将读数填入表14。

作出V-X曲线,计算不同线性范围时的灵敏度和非线性误差。

五、实验注意事项:
1、对传感器要轻拿轻放,绝不可掉到地上。

2、不要将霍尔传感器的激励电压错接成±15V,否则将可能烧毁霍尔元件。

六、思考题:
本实验中霍尔元件位移的线性度实际上反映的是什么量的变化?
答:本人认为应该是实际的输入、输出与拟合的理想的直线的偏离程度的变化,当X不同的时候,实际的输出值与根据拟合直线得到的数值的偏离值是不相同的。

七、实验报告要求:
1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。

实验数据如下:
表9-2
(1)由上图可知灵敏度为S=ΔV/ΔX=-0.9354V/mm
(2)由上图可得非线性误差:
当x=1mm时,
Y=-0.9354×1+1.849=0.9136
Δm =Y-0.89=0.0236V
yFS=1.88V
δf =Δm /yFS×100%=1.256%
当x=3mm时:
Y=-0.9354×3+1.849=-0.9572V
Δm =Y-(-0.94)=-0.0172V
yFS=1.88V
δf =Δm /yFS×100%=0.915%
2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进
行补偿。

答:(1)零位误差。

零位误差由不等位电势所造成,产生不等位电势的主要原因是:两个霍尔电极没有安装在同一等位面上;材料不均匀造成电阻分布不均匀;控制电极接触不良,造成电流分布不均匀。

补偿方法是加一不等位电势补偿电路。

(2)温度误差。

因为半导体对温度很敏感,因而其霍尔系数、电阻率、霍尔电势的输入、输出电阻等均随温度有明显的变化,导致了霍尔元件产生温度误差。

补偿方法是采用恒流源供电和输入回路并联电阻。

相关文档
最新文档