大数定律及其应用
概率论大数定律及其应用

概率论基础结课论文题目:独立随机序列的大数事件的定理与应用作者:信计1301班王彩云130350119摘要:概率论历史上第一个极限定理属于伯努利,后人称之为“大数定律”。
概率论中讨论随机变量序列的算术平均值向常数收敛的定律。
概率论与数理统计学的基本定律之一,又称弱大数理论。
大数定律以严格的数学形式表达了随机现象最根本的性质—平均结果的稳定性,它是概率论中一个非常重要的定律,是随机现象统计规律性的具体表现,应用很广泛。
本文介绍了几种常用的大数定律,并分析了它们在理论与实际中的应用。
关键词:弱大数定理伯努利大数定理随机变量数学期望概率引言:“大数定律”本来是一个数学概念,又叫做“平均法则”。
在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律,通俗的说,这个定律就是在试验不变的条件下,重复试验多次,随机事件的频率以概率为稳定值。
比如,我们向上抛一枚硬币,硬币落下时哪一面朝上本身是偶然的,但当我们向上抛的硬币的次数足够多时,达到上万次甚至几十万几百万时之后,我们就会发现,硬币朝上的次数大约占总数的二分之一。
偶然之中包含着必然。
从概率的统计定义中可以看出:一个事件发生的频率具有稳定性,即随着试验次数的增多,事件的频率逐渐稳定在某个常数附近,人们在实践中观察其他的一些随机现象时,也常常会发现大量随机个体的平均效果的稳定性。
这就是说,无论个别随机个体以及它们在试验进行过程中的个别特征如何,大量随机个体的平均效果与每一个体的个别特征无关,而且结果也不再是随机的。
深入考虑后,人们会提出这样的问题:稳定性的确切含义是什么?在什么条件下具有稳定性?这就是我们大数要研究的问题。
概率与统计是研究随机现象的统计规律的学科,而随机现象的统计规律性只有在相同条件下进行大量重复试验或观察才呈现出来。
然而,在大量重复试验或观察中,我们会发现,一个事件发生的频率具有稳定性,它的稳定性会随着试验次数的增多表现得越来越明显。
概率论中的大数定律的解读与应用

概率论中的大数定律的解读与应用概率论作为一门重要的数学分支,研究的是随机事件的规律性和不确定性。
在概率论中,大数定律是一条非常重要的定律,它描述了随机事件在重复试验中的长期平均行为。
本文将对大数定律进行解读,并探讨其在实际应用中的意义。
首先,我们来了解一下大数定律的基本概念。
大数定律是指在独立重复试验的条件下,随着试验次数的增加,随机事件的频率将趋于其概率。
换句话说,如果我们进行足够多次的试验,那么事件发生的频率将接近于事件发生的概率。
这个定律的重要性在于它揭示了随机事件的长期规律性,使我们能够对未知的随机事件进行预测和分析。
大数定律有两种主要形式,即辛钦大数定律和伯努利大数定律。
辛钦大数定律又称为弱大数定律,它指出当试验次数趋于无穷大时,随机事件的频率将收敛于其概率。
伯努利大数定律又称为强大数定律,它要求试验序列必须是独立同分布的,并且当试验次数趋于无穷大时,随机事件的频率几乎必定收敛于其概率。
大数定律在实际应用中有着广泛的意义和应用价值。
首先,大数定律提供了一种有效的方法来估计随机事件的概率。
通过进行足够多次的试验,我们可以计算事件发生的频率,并将其作为事件概率的估计值。
这种方法在统计学中被广泛应用,可以用来估计样本的均值、方差等参数。
其次,大数定律在风险管理和金融领域中也有着重要的应用。
在金融市场中,价格的波动和变动往往是随机的,无法准确预测。
然而,通过大数定律,我们可以根据历史数据和试验结果,对未来的价格走势进行一定程度的预测和分析。
这对于投资者和风险管理者来说,具有重要的参考价值。
此外,大数定律还可以用来解释一些看似随机的现象。
例如,赌场中的赌博游戏,尽管每一局都是随机的,但通过进行足够多的试验,我们可以发现赌场总是能够赚取利润。
这是因为赌场利用了大数定律,确保了长期的盈利。
类似地,大数定律也可以解释为什么在大规模的抽奖活动中,中奖者总是符合一定的概率分布。
总之,概率论中的大数定律是一条重要的定律,它揭示了随机事件的长期规律性。
概率论中的大数定律与中心极限定理

概率论中的大数定律与中心极限定理概率论是数学中的重要分支,研究随机现象的规律性。
在概率论中,大数定律和中心极限定理是两个基本定理,它们对于理解和应用概率论具有重要意义。
一、大数定律大数定律是概率论中的一项重要成果,它研究的是随机事件重复进行时,随着试验次数的增加,事件的频率趋于稳定的现象。
大数定律的核心思想是:随机事件的频率会趋于其概率。
大数定律有多种形式,其中最著名的是弱大数定律和强大数定律。
弱大数定律指出,当随机事件重复进行时,事件的频率会接近其概率,但不一定完全相等。
而强大数定律则更加严格,它指出,当随机事件重复进行时,事件的频率几乎必定会趋于其概率。
大数定律的应用非常广泛。
例如,在赌场中,赌徒们常常利用大数定律来制定自己的投注策略。
他们相信,通过多次下注,最终能够获得稳定的胜率。
另外,在统计学中,大数定律也是重要的理论基础。
通过对大量样本的观察,我们可以得出对总体的推断。
二、中心极限定理中心极限定理是概率论中的另一个重要定理,它研究的是随机变量的和的分布趋于正态分布的现象。
中心极限定理的核心思想是:随机变量的和趋于正态分布的程度与随机变量的分布无关,只与样本容量有关。
中心极限定理有多种形式,其中最著名的是中心极限定理的拉普拉斯形式和莫尔根-拉普拉斯形式。
中心极限定理的拉普拉斯形式适用于二项分布和泊松分布,而莫尔根-拉普拉斯形式适用于任意分布。
中心极限定理的应用广泛而深入。
在实际生活中,我们常常遇到一些随机现象,如测量误差、人口统计等。
通过应用中心极限定理,我们可以对这些随机现象进行更准确的分析和预测。
三、大数定律与中心极限定理的关系大数定律和中心极限定理是概率论中两个相互关联的定理。
它们都是研究随机现象的规律性,但侧重点不同。
大数定律研究的是随机事件的频率趋于稳定的现象,它关注的是事件本身的概率。
而中心极限定理研究的是随机变量的和的分布趋于正态分布的现象,它关注的是随机变量的分布。
大数定律和中心极限定理的关系可以从两个方面来理解。
依概率收敛 大数定律 中心极限定理

依概率收敛大数定律中心极限定理依概率收敛、大数定律和中心极限定理是概率论中重要的三个定理,它们在统计学、经济学、物理学等领域有着广泛的应用。
本文将分别介绍这三个定理的定义、原理和应用。
一、依概率收敛1.1 定义依概率收敛是指,对于一组随机变量序列X1,X2,...,Xn,...,如果对于任意给定的正数ε>0,都有:lim P(|Xn-X|≥ε)=0(n→∞)其中,X为常数,则称随机变量序列{Xn}依概率收敛于X。
1.2 原理依概率收敛是弱收敛的一种形式。
它表示当样本容量趋近于无限大时,样本均值与总体均值之间的差距会越来越小,并最终趋于零。
1.3 应用依概率收敛在经济学和金融学中有着广泛的应用。
例如,在股票市场上,当投资者持有股票时,他们通常希望股票价格能够稳定增长。
而依概率收敛则可以帮助投资者预测股票价格的未来趋势,从而制定出更为科学合理的投资策略。
二、大数定律2.1 定义大数定律是指,对于一组独立同分布的随机变量序列X1,X2,...,Xn,...,如果E(Xi)=μ,则对于任意给定的正数ε>0,都有:lim P(|(X1+X2+...+Xn)/n-μ|≥ε)=0(n→∞)其中,μ为总体均值,则称随机变量序列{Xn}满足大数定律。
2.2 原理大数定律是概率论中最基本也是最重要的一条定理。
它表明当样本容量越来越大时,样本均值会越来越接近总体均值。
换句话说,当样本容量充分大时,样本均值就可以代表总体均值。
2.3 应用大数定律在统计学中有着广泛的应用。
例如,在进行人口普查或调查时,如果样本容量太小,则无法准确地反映总体情况。
而通过应用大数定律可以帮助我们确定一个合适的样本容量范围,并保证调查结果的准确性和可靠性。
三、中心极限定理3.1 定义中心极限定理是指,对于一组独立同分布的随机变量序列X1,X2,...,Xn,...,如果E(Xi)=μ,Var(Xi)=σ²,则随机变量序列:Zn=(X1+X2+...+Xn-μn)/σ√n近似服从标准正态分布,则称随机变量序列{Xn}满足中心极限定理。
概率论大数定律及其应用

概率论基础结课论文题目:独立随机序列的大数事件的定理与应用作者:信计1301班王彩云 130350119摘要:概率论历史上第一个极限定理属于伯努利,后人称之为“大数定律”。
概率论中讨论随机变量序列的算术平均值向常数收敛的定律。
概率论与数理统计学的基本定律之一,又称弱大数理论。
大数定律以严格的数学形式表达了随机现象最根本的性质—平均结果的稳定性,它是概率论中一个非常重要的定律,是随机现象统计规律性的具体表现,应用很广泛。
本文介绍了几种常用的大数定律,并分析了它们在理论与实际中的应用。
关键词:弱大数定理伯努利大数定理随机变量数学期望概率引言:“大数定律”本来是一个数学概念,又叫做“平均法则”。
在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律,通俗的说,这个定律就是在试验不变的条件下,重复试验多次,随机事件的频率以概率为稳定值。
比如,我们向上抛一枚硬币,硬币落下时哪一面朝上本身是偶然的,但当我们向上抛的硬币的次数足够多时,达到上万次甚至几十万几百万时之后,我们就会发现,硬币朝上的次数大约占总数的二分之一。
偶然之中包含着必然。
从概率的统计定义中可以看出:一个事件发生的频率具有稳定性,即随着试验次数的增多,事件的频率逐渐稳定在某个常数附近,人们在实践中观察其他的一些随机现象时,也常常会发现大量随机个体的平均效果的稳定性。
这就是说,无论个别随机个体以及它们在试验进行过程中的个别特征如何,大量随机个体的平均效果与每一个体的个别特征无关,而且结果也不再是随机的。
深入考虑后,人们会提出这样的问题:稳定性的确切含义是什么?在什么条件下具有稳定性?这就是我们大数要研究的问题。
概率与统计是研究随机现象的统计规律的学科,而随机现象的统计规律性只有在相同条件下进行大量重复试验或观察才呈现出来。
然而,在大量重复试验或观察中,我们会发现,一个事件发生的频率具有稳定性,它的稳定性会随着试验次数的增多表现得越来越明显。
概率论大数定律及其应用

概率论基础结课论文题目:独立随机序列的大数事件的定理与应用作者:信计1301班王彩云130350119摘要:概率论历史上第一个极限定理属于伯努利,后人称之为“大数定律”。
概率论中讨论随机变量序列的算术平均值向常数收敛的定律。
概率论与数理统计学的基本定律之一,又称弱大数理论。
大数定律以严格的数学形式表达了随机现象最根本的性质—平均结果的稳定性,它是概率论中一个非常重要的定律,是随机现象统计规律性的具体表现,应用很广泛。
本文介绍了几种常用的大数定律,并分析了它们在理论与实际中的应用。
关键词:弱大数定理伯努利大数定理随机变量数学期望概率引言:“大数定律”本来是一个数学概念,又叫做“平均法则”。
在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律,通俗的说,这个定律就是在试验不变的条件下,重复试验多次,随机事件的频率以概率为稳定值。
比如,我们向上抛一枚硬币,硬币落下时哪一面朝上本身是偶然的,但当我们向上抛的硬币的次数足够多时,达到上万次甚至几十万几百万时之后,我们就会发现,硬币朝上的次数大约占总数的二分之一。
偶然之中包含着必然。
从概率的统计定义中可以看出:一个事件发生的频率具有稳定性,即随着试验次数的增多,事件的频率逐渐稳定在某个常数附近,人们在实践中观察其他的一些随机现象时,也常常会发现大量随机个体的平均效果的稳定性。
这就是说,无论个别随机个体以及它们在试验进行过程中的个别特征如何,大量随机个体的平均效果与每一个体的个别特征无关,而且结果也不再是随机的。
深入考虑后,人们会提出这样的问题:稳定性的确切含义是什么?在什么条件下具有稳定性?这就是我们大数要研究的问题。
概率与统计是研究随机现象的统计规律的学科,而随机现象的统计规律性只有在相同条件下进行大量重复试验或观察才呈现出来。
然而,在大量重复试验或观察中,我们会发现,一个事件发生的频率具有稳定性,它的稳定性会随着试验次数的增多表现得越来越明显。
大数定律及其应用

大数定律及其应用
摘要:大数定律顾名思义就是指当样本数据量很大的时候,然后某一变量就会呈现出某种规律性这一呈现出规律性的变量就是我们经常说的平均值,即当样本数据量很大的时候,平均结果将稳定于某一稳定值。
大数定律在概率论中的重要性不言而喻。
本文介绍了几种常见大数定律:马尔科夫大数定律,切比雪夫大数定律,泊松大数定律,伯努利大数定律和辛欣大数定律及它们的比较与关系。
关键词:大数定律数据量应用
引言:大数定律(law of large numbers),是一种描述当试验次数很大时所呈现的概率性质的定律。
但是注意到,大数定律并不是经验规律,而是在一些附加条件上经严格证明了的定理,它是一种自然规律因而通常不叫定理而是大数“定律”。
而我们说的大数定理通常是经数学家证明并以数学家名字命名的大数定理,如伯努利大数定理。
正文:几种常见的大数定律
1.马尔科夫大数定律。
大数定律与中心极限定理的实际应用

大数定律与中心极限定理的实际应用1. 引言在今天的讨论中,我们将深入探讨大数定律与中心极限定理在实际应用中的重要性和影响。
这两个概念是统计学中非常重要的原理,它们不仅对于理论研究有着重要意义,更在现实世界中的各种领域有着广泛的应用。
通过本文的探讨,我们将了解这两个概念的实际意义,并且深入探讨它们在现实中的具体应用。
2. 大数定律的实际应用大数定律是统计学中最重要的定律之一,它表明在独立随机变量的大量观察中,其平均值趋近于总体期望。
这个理论在实际应用中有着广泛的运用,尤其在金融领域。
举个例子,假设我们在股市中观察某只股票的收益率,根据大数定律,随着观察次数的增加,这只股票的平均收益率将会趋近于其总体收益率。
这种理论在风险管理和投资决策中起着至关重要的作用,投资者可以通过大数定律来对市场的波动进行合理的估计,并做出相应的投资策略。
3. 中心极限定理的实际应用中心极限定理是统计学中另一个非常重要的原理,它表明在独立同分布的随机变量加和后,当样本容量足够大时,其分布将接近于正态分布。
这个理论在实际应用中有着广泛的运用,尤其在质量控制和生产过程中。
在工厂生产线上对产品的重量进行抽样检测,根据中心极限定理,这些样本的平均重量将会呈现出接近正态分布的特性,生产线的稳定性和产品质量就可以通过这个理论进行合理的评估和控制。
4. 个人观点和理解对于大数定律与中心极限定理的实际应用,我个人深有体会。
作为一名统计学研究者,我对这两个概念的重要性有着深刻的认识。
在我自己的研究过程中,我经常会利用这两个概念来分析数据,并且在实际应用中取得了非常好的效果。
在我看来,大数定律与中心极限定理不仅是理论工具,更是现实世界中解决问题的重要指导,它们的应用将为各行各业带来更加严谨有效的决策和管理方式。
5. 总结通过本文的探讨,我们了解了大数定律与中心极限定理的实际应用,深入探讨了它们在金融和生产领域的重要性,并且共享了个人对于这两个概念的观点和理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本科毕业论文( 2013届)题目: 大数定律及其应用学院: 数学与信息科学学院专业: 统计学班级: 09统计姓名:学号:指导老师:完成日期: 2013年4月1日目录§1、引言 (1)§2、大数定律的发展历程 (3)§3、常见的大数定律及中心极限定理 (4)§3.1常见的大数定律 (4)§3.2常见的中心极限定理 (5)§4、大数定律的应用 (6)§4.1大数定律在数学分析中的应用 (6)§4.1.1 在积分方面的应用 (6)§4.1.2 在极限中的应用 (7)§4.2大数定律在生产生活中的应用 (9)§4.2.1 误差方面的应用 (9)§4.2.2 估计数学期望和方差 (7)§4.3大数定律在经济中的应用 (8)§4.3.1 大数定律在保险业中的应用 (8)§4.3.2 大数定律在银行经营管理中的应用 (9)§5、结束语 (10)§6、致谢 (10)参考文献 (11). .大数定律及其应用(温州大学数学与信息科学学院 09统计)摘要:大数定律顾名思义就是指当样本数据量很大的时候,然后某一变量就会呈现出某种规律性,这一呈现出规律性的变量就是我们经常说的平均值,即当样本数据量很大的时候,平均结果将稳定于某一稳定值。
大数定律在概率论中的重要性不言而喻,而且其在数学领域以及经济生活领域也有着非常重要的作用。
本文列举了我们在大学阶段经常遇到的一些大数定律和中心极限定理,通过一些具体的例题,介绍了常见的大数定律和中心极限定理在一些重要领域的应用,具体包括在数学分析中求极限和积分,预测误差,近似计算,以及在保险业和银行经营管理方面的应用,进一步阐明了大数定律与中心极限定理在各分支学科中的重要作用和应用价值。
关键词:大数定律;中心极限定理;经济生活;应用§1、引言大数定律对于很多人来说都很陌生,即使学过概率论的也说不出个所以然。
记得刚学大数定律的时候,觉得这个定理好难理解,书本反复翻了几次还是不懂。
感觉这定理没什么作用,理论性这么强,没什么应用价值。
直到后来学了中心极限定理,介绍了其大量应用,例如在保险业中的应用,可以说保险业离不开中心极限定理。
这才知道自己错了,原来大数定律也有着非常重要的作用,因为中心极限定理正是基于大数定律的基础上而发展出来的定理,没有大数定律作为基础是不会有中心极限定理的。
大数定律与中心极限定理是概率论中具有标志性的两类定理,其作用恰如一颗纽带,很好地承接了概率论与数理统计。
大数定律所要阐明的是大量随机现象平均结果的稳定性,即当样本量很大的情况下,样本的平均值可以近似看作总体平均值。
因为在实际生活中,当我们要考查某一变量,总体数据统计起来往往难度过大甚至不可能,这时我们就需要用到大数定律。
我们先统计总体的一个样本量,这个样本量要足够大,一般根据总体而定,然后考查这个样本数据的特征,最后样本数据的结果可以近似看作是总体的结果。
例如:我们要考查某一地区居民的月平均消费水平,如果要去统计这一地区所有居民月消费额工作量就会太大,有了大数定律,我们只要抽取足够数量的居民,统计他们的月消费额,最后这一样本量的平均值就可以近似看作这一地区居民平均消费额。
这种思想恰恰是概率论中最为重要的思想,而这种思想在数学领域也有着相当重要的作用。
对于中心极限定理我们要更为熟悉,它比大数定律论述更为详细具体。
中心极限定理主要论述的是其他分布和正态分布之间的某种内在关系,一般对于某一总体,不管其服从什么分布,泊松分布也好,二项分布也好,只要考查的样本数据量足够大,那么样本的均值就近似服从正态分布。
§2、大数定律的发展历程对于大数定律,不少人可能有所耳闻,但是对于大数定律的发展历史,可能就很少有人清楚了。
我们都知道,大数定律研究的是随机现象统计规律性的一类定理,当我们大量重复某一相同的实验的时候,其最后的实验结果可能会稳定在某一数值附近。
就像抛硬币一样,当我们不断地抛,抛个上千次,甚至上万次,我们会发现,正面或者反面向上的次数都会接近一半。
除了抛硬币,现实中还有许许多多这样的例子,像掷骰子,最著名的实验就是泊松抛针实验。
这些实验都像我们传达了一个共同的信息,那就是大量重复实验最终的结果都会比较稳定。
那稳定性到底是什么?怎样去用数学语言把它表达出来?这其中会不会有某种规律性?是必然的还是偶然的?这一系列问题其实就是大数定律要研究的问题。
很早的时候,人们其实就发现了这一规律性现象,也有不少的数学家对这一现象进行了研究,这其中就包括伯努利(后来人们为了纪念他,都认为他是第一个研究这一问题的人,其实在他之前也早有数学家研究过)。
伯努利在1713年提出了一个极限定理,当时这个定理还没有名称,后来人们称这个定理为伯努利大数定律。
因此概率论历史上第一个有关大数定律的极限定理是属于伯努利的,它是概率论和数理统计学的基本定律,属于弱大数定律的范畴。
我们知道,当大量重复某一实验时,最后的频率无限接近事件概率。
而伯努利成功地通过数学语言将现实生活中这种现象表达出来,赋予其确切的数学含义。
他让人们对于这一类问题有了新的认识,有了更深刻的理解,为后来的人们研究大数定律问题指明了方向,起到了引领作用,其为大数定律的发展奠定了基础。
除了伯努利之外,还有许许多多的数学家为大数定律的发展做出了重要的贡献,有的甚至花了毕生的心血,像德莫佛—拉普拉斯,李雅普诺夫,林德伯格,费勒,切比雪夫,辛钦等等。
这些人对于大数定律乃至概率论的进步所起的作用都是不可估量的。
1733年,德莫佛—拉普拉斯经过推理证明,得出了二项分布的极限分布是正态分布的结论,后来他又在原来的基础上做了改进,证明了不止二项分布满足这个条件,其他任何分布都是可以的,为中心极限定理的发展做出了伟大的贡献。
在这之后大数定律的发展出现了停滞。
直到20世纪,李雅普诺夫又在拉普拉斯定理的基础上做了自己的创新,他得出了特征函数法,将大数定律的研究延伸到函数层面,这对中心极限定理的发展有着重要的意义。
到1920年,数学家们开始探讨中心极限定理在什么条件下普遍成立,这才有了后来发表的林德伯格条件和费勒条件,这些成果对中心极限定理的发展都功不可没。
经过几百年的发展,大数定律体系已经很完善了,也出现了更多更广泛的大数定律,例如切比雪夫大数定律,辛钦大数定律,泊松大数定律,马尔科夫大数定律等等。
正是这些数学家们的不断研究,大数定律才得以如此迅速发展,才得以完善。
§3、常见的大数定律及中心极限定理§3.1常见的大数定律大数定律形式有很多种,我们仅介绍几种最常用的大数定律。
定理1(伯努利大数定律)在n 重伯努利实验中,假设某一事件总共出现的次数为n μ,并且每次试验中该事件发生的概率是p ,其中0<p<1,那么对于0ε∀>,都有说明:这个定理以严谨的数学公式说明了我们刚才谈到的现实中经常出现的现象,即当大量重复某一实验时,最后实验的频率无限接近实验的概率。
所以,在现实生活和工作中,当试验次数相当大时,就可以灵活地运用这个定理。
定理2(切比雪夫大数定律) 假设12,,n ξξξ⋅⋅⋅⋅⋅⋅是一列随机变量,并且两两互不相关,它们的方差有界,即存在常数0C >,使得,1,2,3i D C i ξ≤=⋅⋅⋅,那么对于任意的0ε>,都有在上述的定理中,因为用到切比雪夫不等式,而切比雪夫不等式对方差有这方面要求,其实方差这个条件并不是必要的。
例如独立同分布时的辛钦大数定律。
定理3(辛钦大数定律) 假设12,,n ξξξ⋅⋅⋅⋅⋅⋅是独立同分布的随机变量序列,并且数学期望()1,2i E a i ξ==⋅⋅⋅,且a 是有限的,则对于任意的0ε>,有 上式也可表示为11lim n p i n i a n ξ→∞==∑或()11n p i i a n n ξ=−−→→∞∑,并且称11n i i n ξ=∑依概率收敛于。
定理4(泊松大数定律)假设12,,n ξξξ⋅⋅⋅⋅⋅⋅是一组随机变量序列,且两两相互独立,并且有 ()1n n P p ξ==,()0n n P q ξ==,其中p , q 满足条件:1n n p q +=,那么我们称12,,n ξξξ⋅⋅⋅⋅⋅⋅服从泊松大数定律。
其实从某种程度上来讲,泊松大数定律可以认为是伯努利大数定律的延伸与普及,我们知道伯努利大数定律以严谨的数学公式说明了现实中经常出现的现象,即当大量重复某一实验时,最后实验的频率无限接近实验的概率。
但泊松大数定律说明的是,独立进行的随机试验的频率依旧具有其平稳性,即使实验条件发生变化。
这就是泊松大数定律比伯努利大数定律更为宽泛的地方。
定理5(马尔科夫大数定律)对于随机变量序列12,,n ξξξ⋅⋅⋅⋅⋅⋅,若有则有1111lim 1n ni i n i i P E n n ξξε→∞==⎛⎫-<= ⎪⎝⎭∑∑. §3.2常见的中心极限定理定理 6(列维——林德伯格中心极限定理)假设随机变量12,,ξξ是一系列独立同分布的随机变量,其数学期望k E aξ=和方差22(0),1,2,k D k ξσσ=>=,则对任意实数x ,都有 我们又称定理6为独立同分布的中心极限定理,从这个定理可以看出正态分布在概率论中的特殊地位,不管k ξ呈何种分布,但只要n →∞,则有随机变量或者我们可以说,当n →∞时,对于一系列随机变量k ξ,只要满足独立同分布,则1nk k ξ=∑ 近似地服从正态分布2(,)N n n μσ。
定理 7 (拉普拉斯中心极限定理)假设随机变量X n服从二项分布(,)B n p ,那么对于任意的有界区间[,]a b ,恒有表达式成立,这就说明正态分布是二项分布的极限分布。
一般地,如果(,)X B n p ,则这个公式给出了当n 较大时,关于二项分布的概率计算方法。
定理 8 (林德伯格定理) 假设12,,ξξ是一系列随机变量序列,且相互独立,而且还符合林德伯格的前提假设,则对任何存在的x ,都有这个定理证明了以下结论:大量微小而且独立的随机因素引起并积累而成的变量,必将是一个正态随机变量。
由林德伯格条件可看到定理并不要求各个加项“同分布”,因而它比前面的列维——林德伯格中心极限定理更全面,事实上列维——林德伯格中心极限定理可以由该定理推出。
说明:中心极限定理讨论的问题是独立随机变量和的分布的极限问题,通常在一定条件下,这些分布弱收敛于退化分布,我们称这就是大数定律。
而中心极限定理要证明的问题是,随机变量和的分布与正态分布之间的关系,在其服从正态分布的基础上再来探讨需满足的条件。