大数定律及其应用
概率论大数定律及其应用

概率论基础结课论文题目:独立随机序列的大数事件的定理与应用作者:信计1301班王彩云130350119摘要:概率论历史上第一个极限定理属于伯努利,后人称之为“大数定律”。
概率论中讨论随机变量序列的算术平均值向常数收敛的定律。
概率论与数理统计学的基本定律之一,又称弱大数理论。
大数定律以严格的数学形式表达了随机现象最根本的性质—平均结果的稳定性,它是概率论中一个非常重要的定律,是随机现象统计规律性的具体表现,应用很广泛。
本文介绍了几种常用的大数定律,并分析了它们在理论与实际中的应用。
关键词:弱大数定理伯努利大数定理随机变量数学期望概率引言:“大数定律”本来是一个数学概念,又叫做“平均法则”。
在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律,通俗的说,这个定律就是在试验不变的条件下,重复试验多次,随机事件的频率以概率为稳定值。
比如,我们向上抛一枚硬币,硬币落下时哪一面朝上本身是偶然的,但当我们向上抛的硬币的次数足够多时,达到上万次甚至几十万几百万时之后,我们就会发现,硬币朝上的次数大约占总数的二分之一。
偶然之中包含着必然。
从概率的统计定义中可以看出:一个事件发生的频率具有稳定性,即随着试验次数的增多,事件的频率逐渐稳定在某个常数附近,人们在实践中观察其他的一些随机现象时,也常常会发现大量随机个体的平均效果的稳定性。
这就是说,无论个别随机个体以及它们在试验进行过程中的个别特征如何,大量随机个体的平均效果与每一个体的个别特征无关,而且结果也不再是随机的。
深入考虑后,人们会提出这样的问题:稳定性的确切含义是什么?在什么条件下具有稳定性?这就是我们大数要研究的问题。
概率与统计是研究随机现象的统计规律的学科,而随机现象的统计规律性只有在相同条件下进行大量重复试验或观察才呈现出来。
然而,在大量重复试验或观察中,我们会发现,一个事件发生的频率具有稳定性,它的稳定性会随着试验次数的增多表现得越来越明显。
大数定律及其应用

本科毕业论文( 2013届)题目: 大数定律及其应用学院: 数学与信息科学学院专业: 统计学班级: 09统计姓名:学号:指导老师:完成日期: 2013年4月1日目录§1、引言 (1)§2、大数定律的发展历程 (3)§3、常见的大数定律及中心极限定理 (4)§3.1常见的大数定律 (4)§3.2常见的中心极限定理 (5)§4、大数定律的应用 (6)§4.1大数定律在数学分析中的应用 (6)§4.1.1 在积分方面的应用 (6)§4.1.2 在极限中的应用 (7)§4.2大数定律在生产生活中的应用 (9)§4.2.1 误差方面的应用 (9)§4.2.2 估计数学期望和方差 (7)§4.3大数定律在经济中的应用 (8)§4.3.1 大数定律在保险业中的应用 (8)§4.3.2 大数定律在银行经营管理中的应用 (9)§5、结束语 (10)§6、致谢 (10)参考文献 (11). .大数定律及其应用(温州大学数学与信息科学学院 09统计)摘要:大数定律顾名思义就是指当样本数据量很大的时候,然后某一变量就会呈现出某种规律性,这一呈现出规律性的变量就是我们经常说的平均值,即当样本数据量很大的时候,平均结果将稳定于某一稳定值。
大数定律在概率论中的重要性不言而喻,而且其在数学领域以及经济生活领域也有着非常重要的作用。
本文列举了我们在大学阶段经常遇到的一些大数定律和中心极限定理,通过一些具体的例题,介绍了常见的大数定律和中心极限定理在一些重要领域的应用,具体包括在数学分析中求极限和积分,预测误差,近似计算,以及在保险业和银行经营管理方面的应用,进一步阐明了大数定律与中心极限定理在各分支学科中的重要作用和应用价值。
关键词:大数定律;中心极限定理;经济生活;应用§1、引言大数定律对于很多人来说都很陌生,即使学过概率论的也说不出个所以然。
大数定律在统计学中的应用

大数定律在统计学中的应用
大数定律在统计学中有着广泛的应用。
它揭示了一个重要规律:当试验次数足够多时,随机事件的频率趋近于其概率。
这一原理为统计学提供了坚实的理论基础,使得我们能够对大量数据进行准确分析和预测。
首先,大数定律在抽样调查中发挥着关键作用。
在实践中,我们通常无法对总体中的每个个体进行精确测量,因此需要通过抽样来估计总体的性质。
大数定律确保了样本均值在样本量足够大时趋近于总体均值,因此我们可以通过对大量样本的分析来推断总体的特征。
这使得抽样调查成为一种高效且准确的方法,广泛应用于市场调研、民意调查和质量控制等领域。
其次,大数定律在频率稳定性方面也具有重要应用。
在统计学中,我们常常需要比较不同样本的统计量是否相同。
大数定律告诉我们,当样本量足够大时,样本统计量的概率分布趋近于稳定,因此我们可以比较不同样本的统计量来判断它们是否来自同一总体。
这种比较方法对于检验假设、评估差异和进行统计推断具有重要意义。
此外,大数定律还在中心极限定理中发挥了重要作用。
中心极限定理指出,无论总体分布是什么形状,只要样本量足够大,样本均值的分布就会趋近于正态分布。
这一原理使得我们能够利用正态分布的性质来分析样本均值,从而进行更准确的统计推断和估计。
总之,大数定律作为统计学中的重要原理,在抽样调查、频率稳定性和中心极限定理等方面都有着广泛的应用。
它帮助我们准确分析和预测大量数据,为统计学提供了理论基础和实践指导。
概率与统计中的大数定律与中心极限定理的应用

概率与统计中的大数定律与中心极限定理的应用概率与统计是数学中的一个重要分支,它研究随机现象的规律性,并通过数学模型来描述和分析这些现象。
在概率与统计的理论中,大数定律和中心极限定理是两个基本定理,在实际应用中具有广泛的意义和重要性。
一、大数定律的应用大数定律是概率论中的一个重要定理,它描述了大样本下随机现象的平均值趋于期望值的稳定性。
具体而言,大数定律可以分为弱大数定律和强大数定律两种形式。
在实际应用中,大数定律被广泛运用于统计学、经济学、生物学等领域。
以统计学为例,当我们对一个总体进行抽样调查时,根据大数定律可以知道,样本的平均值会趋于总体的平均值。
通过对样本数据的分析,可以推断和预测总体的特征。
另外,大数定律还可以用于对概率分布进行估计。
例如,在投掷硬币的实验中,我们可以统计投掷n次后正面朝上的频率,根据大数定律可以得到正面出现的概率接近0.5。
二、中心极限定理的应用中心极限定理是概率论中的另一个经典定理,它描述了独立随机变量和的和的分布在一定条件下逼近正态分布。
中心极限定理不仅在理论中有重要意义,而且在实际应用中也有着广泛的应用。
在实际应用中,中心极限定理可以用来估计总体的分布以及参数。
例如,在企业的市场调研中,我们可以通过对一定数量的样本进行调查,根据中心极限定理对总体的特征进行估计。
这对于制定营销策略、定价和产品开发等具有重要意义。
此外,中心极限定理还被广泛应用于信号处理、通信工程、金融学等领域。
以信号处理为例,当我们对信号进行采样和处理时,根据中心极限定理可以知道,经过处理后的信号近似服从正态分布,这对于信号的分析和处理具有指导意义。
总结起来,概率与统计中的大数定律和中心极限定理是两个基本定理,在实际应用中具有重要的意义和价值。
大数定律揭示了大样本下随机现象的规律性,可以用于参数估计和预测;中心极限定理描述了独立随机变量和的和的分布的特性,在总体分布的估计和分析中具有重要作用。
对于从事概率与统计相关工作的人员来说,熟练掌握大数定律和中心极限定理的应用,能够更好地理解和解决实际问题。
概率论大数定律

概率论大数定律一、引言概率论大数定律是概率论中的重要理论之一,它描述了在独立随机变量序列的情况下,随着样本数量的增加,样本均值趋向于总体均值的现象。
本文将对概率论大数定律进行深入探讨,并介绍其应用。
二、大数定律的历史背景大数定律最早可以追溯到17世纪的拉普拉斯和伯努利,他们通过模拟实验观察到了大数定律的现象。
之后,克拉美导数、切比雪夫和伯努利等数学家对大数定律进行了进一步的研究和证明。
三、大数定律的表述大数定律可以分为弱大数定律和强大数定律两种形式。
3.1 弱大数定律弱大数定律又称为大数定律的矛盾形式,它表述了当样本数量趋向于无穷大时,样本均值与总体均值之间的差异趋向于零。
数学表达式如下:P(|X n−μ|<ε)=1limn→∞其中,X n表示样本均值,μ表示总体均值,ε表示一个足够小的正数。
3.2 强大数定律强大数定律表述了当样本数量趋向于无穷大时,样本均值几乎必然等于总体均值。
数学表达式如下:P(limX n=μ)=1n→∞四、大数定律的证明大数定律的证明可以通过数学推导和概率论方法进行。
4.1 切比雪夫不等式的应用切比雪夫不等式是大数定律证明中常用的工具之一。
它将样本均值与总体均值之间的差异与样本数量的关系联系起来,从而得出大数定律的结论。
4.2 独立随机变量序列的性质大数定律的证明需要利用独立随机变量序列的性质。
独立性保证了样本观测之间的相互独立性,使得样本均值可以准确地逼近总体均值。
4.3 极限定理的应用极限定理是大数定律证明的另一个重要工具。
通过使用中心极限定理和大数定律的关系,可以推导出大数定律的结论。
五、大数定律的应用大数定律在概率论和统计学中有着广泛的应用,它能够帮助我们理解和解释实验结果的规律性。
5.1 抽样理论大数定律为抽样理论提供了坚实的理论基础。
它告诉我们,通过抽取足够数量的样本,可以准确地估计总体的特征。
5.2 统计推断大数定律在统计推断中扮演着重要的角色。
通过大数定律,我们可以通过样本均值来推断总体均值,从而做出关于总体的统计推断。
概率论大数定律及其应用

概率论基础结课论文题目:独立随机序列的大数事件的定理与应用作者:信计1301班王彩云 130350119摘要:概率论历史上第一个极限定理属于伯努利,后人称之为“大数定律”。
概率论中讨论随机变量序列的算术平均值向常数收敛的定律。
概率论与数理统计学的基本定律之一,又称弱大数理论。
大数定律以严格的数学形式表达了随机现象最根本的性质—平均结果的稳定性,它是概率论中一个非常重要的定律,是随机现象统计规律性的具体表现,应用很广泛。
本文介绍了几种常用的大数定律,并分析了它们在理论与实际中的应用。
关键词:弱大数定理伯努利大数定理随机变量数学期望概率引言:“大数定律”本来是一个数学概念,又叫做“平均法则”。
在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律,通俗的说,这个定律就是在试验不变的条件下,重复试验多次,随机事件的频率以概率为稳定值。
比如,我们向上抛一枚硬币,硬币落下时哪一面朝上本身是偶然的,但当我们向上抛的硬币的次数足够多时,达到上万次甚至几十万几百万时之后,我们就会发现,硬币朝上的次数大约占总数的二分之一。
偶然之中包含着必然。
从概率的统计定义中可以看出:一个事件发生的频率具有稳定性,即随着试验次数的增多,事件的频率逐渐稳定在某个常数附近,人们在实践中观察其他的一些随机现象时,也常常会发现大量随机个体的平均效果的稳定性。
这就是说,无论个别随机个体以及它们在试验进行过程中的个别特征如何,大量随机个体的平均效果与每一个体的个别特征无关,而且结果也不再是随机的。
深入考虑后,人们会提出这样的问题:稳定性的确切含义是什么?在什么条件下具有稳定性?这就是我们大数要研究的问题。
概率与统计是研究随机现象的统计规律的学科,而随机现象的统计规律性只有在相同条件下进行大量重复试验或观察才呈现出来。
然而,在大量重复试验或观察中,我们会发现,一个事件发生的频率具有稳定性,它的稳定性会随着试验次数的增多表现得越来越明显。
随机过程中的大数定律理论

随机过程中的大数定律理论随机过程是概率论与数理统计中的一个重要分支,它研究的是随机变量随时间的变化规律。
大数定律是随机过程中的一个重要理论,它描述了在一定条件下,随机过程的平均值会趋于一个确定的常数。
本文将介绍随机过程中的大数定律理论,以及它的应用。
1. 引言随机过程是一种对随机事件随时间的演化进行建模和分析的数学工具。
在随机过程中,我们可以用一个参数来表示时间,通常用 t 表示。
随机过程可以被视为是一种随机变量的集合,其中每一个时间点 t 对应一个随机变量 X(t)。
2. 大数定律大数定律是指在一定条件下,随机过程的平均值会收敛到一个确定的常数。
简单来说,就是随机过程的长期平均值与其理论期望值是相等的。
2.1 依概率收敛的大数定律依概率收敛的大数定律是最早被提出的大数定律之一,它描述了随机过程的平均值在概率意义下会收敛到真值。
具体而言,对于一个随机过程的平均值序列 {X_bar(t)},当 t 趋于无穷大时,它以概率1收敛于随机变量的理论平均值 E[X(t)]。
2.2 强收敛的大数定律强收敛的大数定律是比较强的大数定律,它描述了随机过程的平均值在几乎必然意义下会收敛到真值。
具体而言,对于一个随机过程的平均值序列 {X_bar(t)},当 t 趋于无穷大时,它以几乎必然的方式收敛于随机变量的理论平均值 E[X(t)]。
3. 应用大数定律在实际问题中有着广泛的应用。
以下是一些常见的应用领域:3.1 金融领域在金融领域,大数定律可以用来描述股票价格的平均回报率。
根据大数定律,当投资期限趋于无穷大时,投资组合的平均收益率会趋近于资产的预期收益率。
3.2 通信领域在通信领域,大数定律可以用来描述数据传输过程中的平均传输速率。
根据大数定律,当数据传输次数趋于无穷大时,平均传输速率会趋近于理论传输速率。
3.3 物理学领域在物理学领域,大数定律可以用来描述粒子运动中的平均能量。
根据大数定律,当粒子数目趋于无穷大时,平均能量会趋近于理论能量。
概率论大数定律及其应用

概率论基础结课论文题目:独立随机序列的大数事件的定理与应用作者:信计1301班王彩云130350119摘要:概率论历史上第一个极限定理属于伯努利,后人称之为“大数定律”。
概率论中讨论随机变量序列的算术平均值向常数收敛的定律。
概率论与数理统计学的基本定律之一,又称弱大数理论。
大数定律以严格的数学形式表达了随机现象最根本的性质—平均结果的稳定性,它是概率论中一个非常重要的定律,是随机现象统计规律性的具体表现,应用很广泛。
本文介绍了几种常用的大数定律,并分析了它们在理论与实际中的应用。
关键词:弱大数定理伯努利大数定理随机变量数学期望概率引言:“大数定律”本来是一个数学概念,又叫做“平均法则”。
在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律,通俗的说,这个定律就是在试验不变的条件下,重复试验多次,随机事件的频率以概率为稳定值。
比如,我们向上抛一枚硬币,硬币落下时哪一面朝上本身是偶然的,但当我们向上抛的硬币的次数足够多时,达到上万次甚至几十万几百万时之后,我们就会发现,硬币朝上的次数大约占总数的二分之一。
偶然之中包含着必然。
从概率的统计定义中可以看出:一个事件发生的频率具有稳定性,即随着试验次数的增多,事件的频率逐渐稳定在某个常数附近,人们在实践中观察其他的一些随机现象时,也常常会发现大量随机个体的平均效果的稳定性。
这就是说,无论个别随机个体以及它们在试验进行过程中的个别特征如何,大量随机个体的平均效果与每一个体的个别特征无关,而且结果也不再是随机的。
深入考虑后,人们会提出这样的问题:稳定性的确切含义是什么?在什么条件下具有稳定性?这就是我们大数要研究的问题。
概率与统计是研究随机现象的统计规律的学科,而随机现象的统计规律性只有在相同条件下进行大量重复试验或观察才呈现出来。
然而,在大量重复试验或观察中,我们会发现,一个事件发生的频率具有稳定性,它的稳定性会随着试验次数的增多表现得越来越明显。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学号:20100401179信阳师范学院华锐学院本科毕业论文系数学与计算机科学专业数学与应用数学年级2010级姓名潘方方论文题目全概率公式在实际问题中的应用指导教师任园园职称讲师2014年5月6日目录摘要 (1)关键词 (1)Abstract (1)Key Words (1)前言 (1)1.全概率公式 (2)1.1全概率公式 (2)1.2 Bayes公式 (2)1.3全概率公式的内涵剖析 (3)2.全概率公式在实际中的应用 (3)2.1在摸彩模型下的应用 (3)2.2在医疗领域中的应用 (4)2.3在敏感问题调查中的应用 (5)2.4在抽检次品类型问题中的应用 (5)2.5在商品销售问题中的应用 (6)2.6 在系统可靠性问题中的应用 (7)2.7在生物研究中的应用 (8)3.小结 (9)参考文献 (11)致谢词 (12)全概率公式在实际问题中的应用学生姓名:潘方方学号:20100401179数学与计算机科学系数学与应用数学专业指导教师:任园园职称:讲师摘要:在概率论中,概率计算是一个重要的问题.而全概率公式是概率计算中应用较多的公式之一.本文介绍了全概率公式的定义及内涵,并给出了它在摸彩模型、医疗领域、敏感问题调查、抽检次品、商品销售、系统可靠性、生物研究等问题中的应用.关键词:概率计算;全概率公式;应用Abstract:In probability theory, probability calculation is an important question. The total probability formula is one of the more formula used in the calculation of probability. In this article, we describe the definition and connotation of the total probability formula and give its application in the lucky model, the medical field, sensitive issues survey, sampling defective, merchandise sales, system reliability, biological research and so on.Key Words:Probability calculation; The total probability formula; Applications前言概率论的基本概念是学习概率论的基础,其中心任务是阐明概率的意义和概率统计的重要法则.乘法公式、全概率公式和Bayes公式等反映了解决问题的正确思路,同时也体现了互不相容、独立和条件概率等重要概念的应用.而全概率公式作为概率论中的一个重要公式,它的基本思想就是把一个复杂的事件分解为若干个互不相容的简单事件,再通过分别计算这些简单事件的概率,最后利用概率的可加性得到最终结果.它为我们计算复杂事件的概率提供了一条简单有效的途径.全概率公式的提出,不仅推动了概率学的发展,也在学科和实际应用中起着重要的作用.随着概率论的不断发展,全概率公式也越来越广泛地应用于各个领域,成为实际生活中不可缺少的基本理论.本文首先介绍了全概率公式的定义及内涵,其次给出了全概率公式在摸彩模型、医疗领域、敏感问题调查、抽检次品、商品销售、系统可靠性、生物研究等问题中的应用,灵活使用全概率公式会给我们的解题带来很大的便利,是我们解决复杂问题的有效工具.1.全概率公式1.1全概率公式定义1.1.1 设n B B B ,,,21 为样本空间Ω的一个分割,即12,,,n B B B 互不相容,且1ni i B ==Ω ,如果()n i B P i ,,2,1,0 =>,则对任一事件A 有()()()i ni i B A P B P A P ∑==1.证明 因为()11n ni i i i A A A B AB ==⎛⎫=Ω== ⎪⎝⎭ 且12,,,n AB AB AB 互不相容,所以由可加性得()()()11n ni i i i P A P AB P AB ==⎛⎫== ⎪⎝⎭∑ ,再将()()(),1,2,,i i i P AB P B P A B i n == ,代入上式即可得到()()()i ni i B A P B P A P ∑==1.如果事件12,,,n B B B 互不相容,且1ni i B ==Ω ,则称12,,,n B B B 是完备事件组.这时()()()i ni i B A P B P A P ∑==1对任何事件A 成立.B 和B 总构成完备事件组,所以()()()()()P A P B P A B P B P A B =+.这是一个最常用的公式. 1.2 Bayes 公式定义1.2.1 设12,,,n B B B 是样本空间Ω的一个分割,即12,,,n B B B 互不相容,且1ni i B ==Ω ,如果()0P A >,()0i P B >,1,2,,i n = ,则()()()()i i i P B P A B P B A P A =.若将它与全概率公式结合起来, 就是Bayes 公式的以下的常用形式()()()()()1i i i njjj P B P A B P B A P B P A B ==∑,1,2,,i n = .一般求解概率问题都是在试验之前进行的,其结论也称为“先验概率”,而实际应用中人们往往想要得知在“结果”发生的情况下,“原因”发生的可能性大小,也就是“后验概率”.而事实上Bayes 公式就是计算后验概率的公式.利用Bayes 公式可求得后验概率并以此对先验概率进行修正.这种方法在经济分析、药物临床检验、投资等各种领域有很大的实用价值. 1.3全概率公式的内涵剖析从公式()()()i ni i B A P B P A P ∑==1中可以悟出:“全”部概率()P A 被分解成许多部分之和.它的理论和实际意义在于:在比较复杂的情况下直接算()P A 不易,但A 总是伴随着某个i B 出现,适当去构造这一组i B 往往可以简化计算.这一公式也可以从另一个角度去理解,把i B 看成导致事件A 发生的一种可能途径.对不同途径,A 发生的概率即条件概率()P A B 可能各不相同,而采取哪个途径却是随机的.直观上可理解为:在这种机制下,A 的综合概率()P A 应在最小的()i P A B 和最大的()i P A B 之间,它也不一定是所有()P A B 的算术平均,因为各途径被使用的机会()i P B 各不相同,正确的答案如所预期,应是各个()i P A B ,1,2,,i n = ,以()i P B ,1,2,,i n = 为权的加权平均值.一个形象的例子如下:某中学有若干个毕业班,各班升学率不同.其总升学率是各班升学率的加权平均,其权与各班学生数成比例.2.全概率公式在实际中的应用2.1在摸彩模型下的应用例1 设在n 张彩票中有一张奖券,求第二人摸到奖券的概率是多少?解 设i A 表示事件“第i 人摸到奖券”,1,2,,i n = .现在目的是求()2P A .因为1A 是否发生直接关系到2A 发生的概率,即()()212110,1P A A P A A n ==-. 而1A 与1A 是两个概率大于0的事件:()()1111,n P A P A n n-==. 于是由全概率公式得()()()()()2121121111101n P A P A P A A P A P A A n n n n -=+=⋅+⋅=-.这表明:摸到奖券的机会与先后次序无关.因后者可能处于“不利状况”(前者已摸到奖券),但也可能处于“有利状况”(前者没有摸到奖券,从而增加后者摸到奖券的机会),两种状况用全概率公式综合(加权平均)所得结果(机会均等)即全面又合情理. 用类似的方法可得()()()341n P A P A P A n====. 如果设n 张彩票中有()k n ≤张奖券,则()()()12n k P A P A P A n====. 这说明购买彩票时,不论先买后买,中奖机会是均等的. 2.2在医疗领域中的应用例2 假设有1,2,3,4四个地区爆发了某种传染病,通过对患病人口分布和地理环境调研后发现四个地区感染此病的概率分别为1111,,,6543,现从这四个地区中随机找到一个人,那么此人患病的概率是多少?解 令{}{}A B i ==此人患病,此人来自地区,1,2,3,4i =,由题意可知()()()()123414P B P B P B P B ====,()()()()12341111,,,6543P A B P A B P A B P A B ====.因此由全概率公式得()()()41i i i P A P B P A B ==∑11111111194645444380=⨯+⨯+⨯+⨯=.所以此人患病的概率为1980. 2.3在敏感问题调查中的应用例3 在调查家庭暴力(或婚外恋、服用兴奋剂、吸毒等敏感问题)所占家庭的比例p 时,被调查者往往不愿回答真相,这就使得调查结果失真.为得到实际的p 同时又不侵犯个人隐私,调查人员在袋中放入比例是0p 的红球和比例是001q p =-的白球.被调查者在袋中任取一球窥视后放回,并承诺取到红球就讲真话,取到白球就讲假话.被调查者只需在匿名调查表中选“是”(有家庭暴力)或“否”,然后将表放入投票箱.没人知道被调查者是否讲真话和回答的是什么.如果每个家庭回答“是”的概率是1p ,求p .解 对任选的一个家庭,用B 表示回答“是”,用A 表示取到红球.利用全概率公式得到()()()()()1p P B P B A P A P B A P A ==+ ()001pp p q =+- ()000q p q p =+-. 于是只要00p q ≠,则1000p q p p q -=-. 实际问题中,1p 是未知的,需要经过调查得到.假定调查了n 个家庭,其中有k 个家庭回答“是”,则可以用1ˆkpn=估计1p ,于是可用1000ˆˆp q pp q -=-估计p .其中00p q -越大,得到的结论越可靠.但是00p q -越大,调查方案越不易被调查者接受.2.4在抽检次品类型问题中的应用例4 要验收一批乐器共100件,从中随机取出3件测试,且3件乐器的测试是互相独立的.如果3件中任意一件音乐不纯,则拒绝接受这批乐器.设一件音色不纯的乐器经测试被查出来的概率为0.95,而一件音色纯的乐器经测试被认为不纯的概率为0.01,如果这100件乐器中有4件音色不纯,求这批乐器被接受的概率. 解 设事件i A 为“3件乐器中有i 件音色不纯”()0,1,2,3i =,事件B 为“这批乐器被接受”.0123,,,A A A A 构成完备事件组,要考察B 出现的概率,需要考虑各个i A ()0,1,2,3i =出现的情况下B 的条件概率.由全概率公式,得()()()30i i i P B P A P B A ==∑.由题设知,事件i A 的概率()()349631000,1,2,3i i i C C P A i C -==.事件{}i B A 的含义是:在3件乐器中有i 件音色不纯的情况下这批乐器被接受.这意味着:i 件音色不纯的乐器都查不出来,而()3i -件音色纯的乐器也都不能被误认为不纯,又因为3件乐器的测试是相互独立的,所以()()()()3310.9510.010.050.99iiii i P B A --=-⨯-=⨯ ()0,1,2,3i =,代入上式,得()()()333496301000.050.990.8629i ii ii C C P B C --==⨯⨯=∑.2.5在商品销售问题中的应用例5 假设某段时间内来百货公司的顾客数服从参数为λ的Poisson 分布,而在百货公司里每个顾客购买电视机的概率为p ,且顾客之间是否购买电视机的事件互相独立,试求这段时间内百货公司售出k 台电视机的概率.解 设k A 表示出售电视机k 台,i B 表示来到百货公司的顾客数为i 人,则(),0,1,2,!ii P B e i i λλ-== ,()()0,0,1,2,,1,1,,1,.i kk i k k ii k P A B C P p i k k -=-⎧⎪=⎨-=+⎪⎩所以,由全概率公式得()()()0k i k i i P A P B P A B +∞==∑()1!ii kk kii kC p p e i λλ+∞--==-∑()()!1!!!ii k ki k i p p e k i k i λλ+∞--==--∑()()()1!!i kki kp p e k i k λλλ-+∞-=-⎡⎤⎣⎦=-∑()()0,1,2,!kpp e k k λλ-== .说明百货公司所售出的电视机数仍服从Poisson 分布,参数为p λ. 2.6 在系统可靠性问题中的应用例6 元件能正常工作的概率称为该元件的可靠性,由多个元件构成的系统能正常工作的概率称为该系统的可靠性.设如图所示(见图1)系统中各元件正常工作的概率均为p ()01p <<,且各元件正常工作与否相互独立,求下列各系统正常工作的概率.图1:由元件组成的工作系统解 (1)设系统KL 正常工作的概率为KL p ,因为要是系统KL 正常工作,两条串联线路必须至少有一条正常工作,而第一条串联线路正常工作的概率为n p ,不正常工作的概率为1n p -,两条串联线路都不正常工作的概率为()21n p -,因为KLp等于不是两条串联线路都不正常工作的概率,即()()2112n n n KL p p p p =--=-.(2)类似(1),设系统MN 正常工作的概率为MN p ,则()()2112nnn MNp p p p ⎡⎤=--=-⎣⎦. 显然,当1n >时,有MN KL p p >.(3)设系统RS 正常工作的概率为RS p ,以,,,,A B C D E 表示相应元件正常工作,并设事件W 为“系统RS 正常工作”.方法一 因,,,AD ACE BE BCD 4条线路至少有一条正常工作,系统RS 就正常工作,再由加法公式得()RS p P AD ACE BE BCD =()()()()()P AD P ACE P BE P BCD P ACDE =+++-- ()()()()P ADBE P ADBC P ACEB P ACEBD ---- ()()()P BECD P ADCEB P ABCED +++()2P ABCDE 23452252p p p p =+-+. 方法二 由全概率公式和(1)、(2),得()()()()()RS p P W P C P W C P C P W C ==+()()()2222212p p p p p p =⋅-+-⋅-23452252p p p p =+-+.从上面的解题步骤我们可以看出,如果使用通常的解答方法的话,在遇到样本空间庞大,数据复杂的事件时是十分费时费力的.而用全概率公式的话就是非常简洁明了.2.7在生物研究中的应用例7 某实验室在器皿中繁殖成k 个细菌的概率为,0,0,1,2,!kk p e k k λλλ-=>= ,并设所繁殖成的每个细菌为甲类菌或乙类菌的概率相等.求下列事件的概率: (1)器皿中所繁殖的全部是甲类菌; (2)已知全是甲类菌,求恰好有2个甲类菌; (3)求所繁殖的细菌中有i 个甲类菌.解 以事件A 表示“繁殖的细菌全是甲类菌”,k B 表示“繁殖了k 个细菌”,0,1,2,k = ,i A 表示“所繁殖的细菌中有i 个甲类菌”,0,1,2,i = .(1)由全概率公式得()()()12111(1)!2kkk k k k P A P B P A B e e e k λλλλ∞∞--==⎛⎫===- ⎪⎝⎭∑∑.(2)()()()()222222112212!2(1)8(1)e P B P A B P B A P A e e e λλλλλλ--⎛⎫⎪⎝⎭===--. (3)由题意得()()11,!222ik ikk i i k i k k k e i P B P A B C C k λλ--⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由全概率公式得()()()i k i k k iP A P B P A B ∞==∑1!2kkikk ie C k λλ∞-=⎛⎫= ⎪⎝⎭∑()!!!!2kk ik e k i k i λλ∞-=⎛⎫= ⎪-⎝⎭∑()12!2!k ii k i e i k i λλλ-∞-=⎛⎫ ⎪⎛⎫⎝⎭= ⎪-⎝⎭∑ 122!ie i λλ⎛⎫ ⎪⎝⎭= ()1,2,i = .3.小结本文对全概率公式的定义、内涵及在部分领域的应用做了简单的阐述,仅此就可以看到全概率公式在实际应用中的重要性.事实上这是由全概率公式的思想方法决定的.全概率公式的精髓之处就在于将事件分割,化繁为简、化难为易.因此我们在解答实际问题时只要遇到事件构成复杂、数据量庞大的问题时就可以考虑使用全概率公式及其推广,即使有的问题不能够使用全概率公式,我们也可以利用其思想对问题进行分析研究并求解.全概率公式在以后的科学技术领域、工农业生产及国民经济各部门中会有更加广泛的应用.如保险业务;气象、地震报告;产品的抽样检验;研发新产品中的寻求最佳生产方案;在可靠性工程中进行器件和装置使用可靠性程度和平均寿命的估算等.我们要在熟练掌握基本理论和基本方法的前提下,理论联系实际,不断提高自己分析问题和解决问题的能力.参考文献:[1] 林正炎,苏中根.概率论.[M].杭州:浙江大学出版社,2001.8.[2] 茆诗松,程依明,濮晓龙.概率论与数理统计教程.[M].北京:高等教育出版社,2011.2(2012.5重印).[3] 顾晓青.全概率公式的应用.[J].沧州师范专科学校学报,2000.6,第16卷,第3期.[4] 陈希孺.概率论与数理统计.[M].合肥:中国科学技术大学出版社,1992.5(2007.8重印).[5] 王明慈,沈恒范.概率论与数理统计.[M].北京:高等教育出版社,1999(2002重印).[6] 马晓丽,张亮.全概率公式的推广及其在保险中的应用.[J].高等数学研究,2010.6,第13卷,第1期.[7] 符方健.全概率公式及其应用技巧.[J].高等数学研究,2011.3,第14卷第2期.[8] 马元生.概率统计简明教程.[M].北京:科学出版社,2007.[9] 郭跃华.概率论与数理统计.[M].上海:科学出版社,2011.01第一版.[10] 金圣才.概率论与数理统计.[M].北京:中国石化出版社, 2005第一版.[11] 陈家鼎,郑忠国.概率与统计.[M].北京:北京大学出版社,2007.8.[12] 何书元.概率论.[M].北京:北京大学出版社,2006.1.致谢词光阴似箭,四年的大学生生活即将结束.回顾在学校度过的每个日日夜夜,感受颇多.报到第一天的情景、四年时间里发生的点点滴滴仿佛就在昨天,对于即将奔向他乡走上工作岗位的我来说,才发现自己原来是那么的不舍.在本文的写作过程中,要特别感谢我的指导老师任园园老师的指导和督促.从选题到开题报告,从写作提纲到写作定稿,倾注了任老师大量的心血.可以说,没有任老师的帮助就没有今天的这篇论文.您积极进取的工作态度、宽广的胸怀与见识、曾经教给我的许多为人处事的道理以及在面对困难时所表现出的勇气都是我一生宝贵的财富,我将带着这些财富踏上我的新的征程.在此,谨向任老师表示我最诚挚的敬意和感谢.其次,感谢我的室友们,感谢她们在我论文写作期间对我论文提出的所有建议;四年来,我们朝夕相处,共同进步,感谢她们给予我的所有关心和帮助.同窗之谊,我将终生难忘!感谢我们10级3班的同学们,感谢他们陪伴着我一起走过的风风雨雨,希望大家都能有个好的前程.最后需要特别感谢的是我的父母.父母的养育之恩无以为报,他们是我十多年求学路上的坚强后盾,在我面临人生选择的迷茫之际,为我排忧解难,他们对我无私的爱与照顾是我不断前进的动力.。