初中数学定义、定理汇总

合集下载

初中数学公式定理

初中数学公式定理

初中数学公式定理代数部分的数学公式和定理主要包括四则运算、等式与不等式、多项式、因式分解、分数、方程与方程组以及函数等内容。

下面将详细介绍每个部分的相关公式和定理。

一、四则运算:1.加法交换律:a+b=b+a2.加法结合律:(a+b)+c=a+(b+c)3.加法的逆元:a+(-a)=04.减法的定义:a-b=a+(-b)5.乘法交换律:a×b=b×a6.乘法结合律:(a×b)×c=a×(b×c)7.乘法的逆元:a×(1/a)=18.分配律:a×(b+c)=a×b+a×c二、等式与不等式:1.相等关系的传递性:如果a=b,b=c,那么a=c2.不等关系的传递性:如果a>b,b>c,那么a>c3.加法不等式:a<b,c>0,那么a+c<b+c4.乘法不等式:a>b,c>0,那么a×c>b×c5.绝对值不等式:,a,>b,c>0,那么c>b-,a,或c<,a,-b三、多项式:1. 一次多项式:f(x) = ax + b2. 二次多项式:f(x) = ax^2 + bx + c3. 三次多项式:f(x) = ax^3 + bx^2 + cx + d4.多项式加法法则:f(x)+g(x)=(a+c)x^2+(b+d)x+(e+f)5. 多项式乘法法则:f(x) × g(x) = (ax^2 + bx + c) × (dx + e) = adx^3 + (ae + bd)x^2 + (be + cd)x + ce四、因式分解:1.二次差平方公式:a^2-b^2=(a+b)(a-b)2. 完全平方公式:a^2 + 2ab + b^2 = (a + b)^23. 一元二次方程公式:ax^2 + bx + c = 0,解为 x = (-b ±√(b^2 - 4ac))/2a五、分数:1. 分数的加法:a/b + c/d = (ad + bc)/bd2. 分数的减法:a/b - c/d = (ad - bc)/bd3. 分数的乘法:a/b × c/d = ac/bd4. 分数的除法:(a/b) ÷ (c/d) = (a/b) × (d/c) = ad/bc5.分数的倒数:1/(a/b)=b/a六、方程与方程组:1. 一元一次方程:ax + b = c,解为 x = (c - b)/a2. 一元二次方程:ax^2 + bx + c = 0,解为 x = (-b ± √(b^2 - 4ac))/2a3.一元线性方程组:2x+y=3,x-y=1,解为x=2,y=-14.一元二次方程组:x^2+y^2=25,x+y=7,解为x=3,y=4或x=4,y=3七、函数:1.函数的定义:y=f(x)2.斜率的定义:k=(f(x2)-f(x1))/(x2-x1)3.平行直线斜率相等:f1(x)=f2(x),那么k1=k24.函数的图像与零点:f(x)=0,解为x为函数的零点5.函数的图像与最值:f(x)的图像上的最高点为最大值,最低点为最小值。

初中数学-教材上的定义、公理、定理及推论

初中数学-教材上的定义、公理、定理及推论

教材上的定义、公理(基本事实)、定理及推论1、直线、射线、线段定义;点动成线,线动成面,面动成体2、两点确定一条直线,两点之间线段最短3、两条直线有3种关系:重合、平行、相交4、过直线外一点,有且只有一条直线与已知直线平行5、同一平面,过一点有且只有一条直线与已知直线垂直6、垂线段最短7、两直线平行的判定定理1同一平面内,不想交的两直线平行2同位角相等,两直线平行3内错角相等,两直线平行4同旁内角互补,两直线平行5两直线与第三条直线平行,则这两直线平行6两直线与第三条直线垂直,则这两直线平行8、同角、等角、余角、补角、互补、互余定义9、邻补角定义和性质10、外角定义和性质11、对顶角相等12、角平分线定义、性质、判定1定义:从一个角的顶点引一条射线,把这个角分成两个相同的角,这条射线叫做角平分线2性质:角平分线上的点到角两边的距离相等3判定:角内部到角两边距离相等的点在这个角的平分线上13、垂直平分线(中垂线)定义、性质、判定1定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线2性质:垂直平分线上的点到线段两端点的距离相等3判定:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上14、三角形任意两边之和大于第三边,即最短的两条边之后大于第三边;如果三角形三条边a、b、c,则有|a-b|<c<a+b15、N边形内角和:(n-2)180,N边形外角和:360°,N边形对角线总数:n(n--3)/216、直角三角形中,30°所对的直角边是斜边的一半;直角三角形中,如果直角边是斜边的一半,那么其所对的角为30°17、三角形的中位线定理:三角形的中位线平行于第三边,且等于第三边的一半18、勾股定理:直角三角形中,两条直角边的平方和等于斜边平方19、勾股定理逆定理:三角形中如果两条边的平方和等于另一边的平方则该三角形为直角三角形20、三角形“四心”1三条中线的交点是重心2三边垂直平分线的交点是外心3三条内角平分线的交点为内心4三角形三条高线的交点为垂心。

初中数学全部定义定理公式

初中数学全部定义定理公式

初中数学全部定义定理公式初中数学全部定义定理公式1 过两点有且只有一条直线过两点有且只有一条直线2 两点之间线段最短两点之间线段最短3 同角或等角的补角相等同角或等角的补角相等4 同角或等角的余角相等同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理平行公理 经过直线外一点,有且只有一条直线与这条直线平行经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行同位角相等,两直线平行10 内错角相等,两直线平行内错角相等,两直线平行11 同旁内角互补,两直线平行同旁内角互补,两直线平行12两直线平行,同位角相等两直线平行,同位角相等13 两直线平行,内错角相等两直线平行,内错角相等14 两直线平行,同旁内角互补两直线平行,同旁内角互补 15 定理定理 三角形两边的和大于第三边三角形两边的和大于第三边16 推论推论 三角形两边的差小于第三边三角形两边的差小于第三边17 三角形内角和定理三角形内角和定理 三角形三个内角的和等于180180°°18 推论1 直角三角形的两个锐角互余直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等全等三角形的对应边、对应角相等22边角边公理边角边公理(SAS) (SAS) 有两边和它们的夹角对应相等的两个三角形全等有两边和它们的夹角对应相等的两个三角形全等23 角边角公理角边角公理( ASA)( ASA)有两角和它们的夹边对应相等的两个三角形全等有两角和它们的夹边对应相等的两个三角形全等有两角和它们的夹边对应相等的两个三角形全等 24 推论推论(AAS) (AAS) 有两角和其中一角的对边对应相等的两个三角形全等有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理边边边公理(SSS) (SSS) 有三边对应相等的两个三角形全等有三边对应相等的两个三角形全等26 斜边、直角边公理斜边、直角边公理(HL) (HL) 有斜边和一条直角边对应相等的两个直角三角形全等有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的性质定理 等腰三角形的两个底角相等等腰三角形的两个底角相等 ( (即等边对等角)即等边对等角)即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于6060°°34 等腰三角形的判定定理等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)角对等边)35 推论1 三个角都相等的三角形是等边三角形三个角都相等的三角形是等边三角形36 推论推论 2 2 有一个角等于有一个角等于6060°的等腰三角形是等边三角形°的等腰三角形是等边三角形°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于3030°那么它所对的直角边等于斜边的一半°那么它所对的直角边等于斜边的一半°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半直角三角形斜边上的中线等于斜边上的一半39 定理定理 线段垂直平分线上的点和这条线段两个端点的距离相等线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形关于某条直线对称的两个图形是全等形43 定理定理 2 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称线对称46勾股定理勾股定理直角三角形两直角边a 、b 的平方和、等于斜边c 的平方,即a^2+b^2=c^2 47勾股定理的逆定理勾股定理的逆定理如果三角形的三边长a 、b 、c 有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形是直角三角形48定理定理 四边形的内角和等于360360°°49四边形的外角和等于360360°°50多边形内角和定理多边形内角和定理 n n 边形的内角的和等于(边形的内角的和等于(n-2n-2n-2)×)×)×180180180°°51推论推论 任意多边的外角和等于360360°° 52平行四边形性质定理1 平行四边形的对角相等平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等平行四边形的对边相等54推论推论 夹在两条平行线间的平行线段相等夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积菱形面积==对角线乘积的一半,即S=S=((a ×b )÷)÷2 267菱形判定定理1 四边都相等的四边形是菱形四边都相等的四边形是菱形 68菱形判定定理2 对角线互相垂直的平行四边形是菱形对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,正方形的两条对角线相等,并且互相垂直平分,并且互相垂直平分,并且互相垂直平分,每条对角线平分一组对每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73逆定理逆定理 如果两个图形的对应点连线都经过某一点,并且被这一如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形性质定理 等腰梯形在同一底上的两个角相等等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等等腰梯形的两条对角线相等76等腰梯形判定定理等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形在同一底上的两个角相等的梯形是等腰梯形 77对角线相等的梯形是等腰梯形对角线相等的梯形是等腰梯形78平行线等分线段定理平行线等分线段定理 如果一组平行线在一条直线上截得的线段如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第经过三角形一边的中点与另一边平行的直线,必平分第三边三边 81 三角形中位线定理三角形中位线定理 三角形的中位线平行于第三边,并且等于它三角形的中位线平行于第三边,并且等于它的一半的一半82 梯形中位线定理梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的梯形的中位线平行于两底,并且等于两底和的一半一半 L= L=(a+b a+b)÷)÷)÷2 S=L 2 S=L×h 83 (1)比例的基本性质比例的基本性质比例的基本性质 如果a:b=c:d,a:b=c:d,那么那么ad=bc如果ad=bc,ad=bc,那么那么a:b=c:d84 (2)合比性质合比性质合比性质 如果a /b=c b=c//d,d,那么那么那么(a (a (a±±b)b)//b=(c b=(c±±d)d)//d85 (3)等比性质等比性质等比性质 如果a /b=c b=c//d=d=……=m =m//n(b+d+n(b+d+……+n +n≠≠0),0),那么那么那么(a+c+(a+c+……+m)+m)//(b+d+(b+d+……+n)=a +n)=a//b86 平行线分线段成比例定理平行线分线段成比例定理 三条平行线截两条直线,所得的对应三条平行线截两条直线,所得的对应线段成比例线段成比例 87 推论推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例,所得的对应线段成比例 88 定理定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例边对应成比例90 定理定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(两角对应相等,两三角形相似(ASA ASA ASA))92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(两边对应成比例且夹角相等,两三角形相似(SAS SAS SAS))94 判定定理3 三边对应成比例,两三角形相似(三边对应成比例,两三角形相似(SSS SSS SSS))95 定理定理 如果一个直角三角形的斜边和一条直角边与另一个直角三如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比相似三角形周长的比等于相似比 98 性质定理3 相似三角形面积的比等于相似比的平方相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值于它的余角的正切值101圆是定点的距离等于定长的点的集合圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆径的圆 106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线离相等的一条直线109定理定理 不在同一直线上的三点确定一个圆。

(完整版)初中数学常用公式和定理大全

(完整版)初中数学常用公式和定理大全

初中数学常用公式定理1、整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373…,,.无限不环循小数叫做无理数.如:π,-,0.1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数.2、绝对值:a≥0丨a丨=a;a≤0丨a丨=-a.如:丨-丨=;丨3.14-π丨=π-3.14.3、一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.4、把一个数写成±a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法.如:-40700=-4.07×105,0.000043=4.3×10-5.5、乘法公式(反过来就是因式分解的公式):①(a+b)(a-b)=a2-b2.②(a±b)2=a2±2ab+b2.③(a+b)(a2-ab+b2)=a3+b3.④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab,(a-b)2=(a+b)2-4ab.6、幂的运算性质:①a m×a n=a m+n.②a m÷a n=a m-n.③(a m)n=a mn.④(ab)n=a n b n.⑤()n=n.⑥a-n=1na,特别:()-n=()n.⑦a0=1(a≠0).如:a3×a2=a5,a6÷a2=a4,(a3)2=a6,(3a3)3=27a9,(-3)-1=-,5-2==,()-2=()2=,(-3.14)º=1,(-)0=1.7、二次根式:①()2=a(a≥0),②=丨a丨,③=×,④=(a>0,b≥0).如:①(3)2=45.②=6.③a<0时,=-a.④的平方根=4的平方根=±2.(平方根、立方根、算术平方根的概念)8、一元二次方程:对于方程:ax2+bx+c=0:①求根公式是x=242b b aca-±-,其中△=b2-4ac叫做根的判别式.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根.②若方程有两个实数根x1和x2,并且二次三项式ax2+bx+c可分解为a(x-x1)(x-x2).③以a和b为根的一元二次方程是x2-(a+b)x+ab=0.9、一次函数y=kx+b(k≠0)的图象是一条直线(b是直线与y轴的交点的纵坐标即一次函数在y轴上的截距).当k>0时,y随x的增大而增大(直线从左向右上升);当k<0时,y随x的增大而减小(直线从左向右下降).特别:当b=0时,y=kx(k≠0)又叫做正比例函数(y与x成正比例),图象必过原点.10、反比例函数y=(k≠0)的图象叫做双曲线.当k>0时,双曲线在一、三象限(在每一象限内,从左向右降);当k<0时,双曲线在二、四象限(在每一象限内,从左向右上升).因此,它的增减性与一次函数相反.11、统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数. (2)公式:设有n 个数x 1,x 2,…,x n ,那么: ①平均数为:12......nx x x xn;②极差:用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,即:极差=最大值-最小值; ③方差:数据1x 、2x ……, n x 的方差为2s ,则2s =222121.....nx xx xx xn标准差:方差的算术平方根.数据1x 、2x ……, n x 的标准差s ,则s =222121.....nx xx xx xn一组数据的方差越大,这组数据的波动越大,越不稳定。

初中数学定义、定理及性质全集

初中数学定义、定理及性质全集

1、直线的性质:两点确定一条直线。

2、两点的所有连线中,线段最短。

(即两点之间,线段最短。

)3、余角定义:如果两个角的和等于90̊,就说这两个角互为余角。

性质:等角的余角相等。

【补角定义、性质略】4、垂线的性质(1):过一点有且只有一条直线与已知直线垂直。

(2):垂线段最短。

5、平行公理(1):经过直线外一点,有且只有一条直线与这条直线平行。

(2):如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

6、平行线的判定:(1)同位角相等,两直线平行。

(2)内错角相等,两直线平行。

(3)同旁内角互补,两直线平行。

7、平行线的性质:(1)两直线平行,同位角相等。

(2)、(3)略。

8、几个距离:(1)两点之间的距离。

(2)点到直线的距离。

(3)两条平行线的距离。

9、几种图形变换:平移、旋转、轴对称。

10、三角形三边关系定理:三角形两边的和大于第三边。

11、三角形的内角和定理:三角形的内角和等于180º。

多边形的内角和等于(n-2)・180°;多边形的外角和等于360º;12、三角形的外角定理:(1)三角形的一个外角等于与它不相邻的两个内角的和。

(2)三角形的一个外角大于与它不相邻的任何一个内角。

13、全等三角形的性质:全等三角形的对应边相等、对应角相等。

全等三角形的判定:SSS 、SAS 、ASA 、AAS 、HL(Rt∆专用)。

14、角平分线的性质:角平分线上的点到角的两边的距离相等。

角平分线的判定:到角的两边距离相等的点在角的平分线上。

15、线段垂直平分线的性质:线段垂直平分线上的点到这条线段两个端点的距离相等。

判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

16、等腰三角形的性质:(1)等边对等角。

(2)等腰三角形顶角的平分线、底边上的中线、底边上的高相互重合。

判定:等角对等边。

17、等边三角形的性质:等边三角形的三个内角都相等,并且每个都等于60°;判定:(1)三个角都相等的三角形是等边三角形。

初中数学全部定义定理公式

初中数学全部定义定理公式

初中数学全部定义定理公式
一、定义
1、数:由数字表示的量或标志符号,用来代替实物,并用来计算、比较和研究事物的结果或关系。

2、集合:按照其中一种特征组织起来的一系列元素的有序统一体。

3、元素:又称成员,是组成集合的基本和最小单位。

4、空集:没有任何元素的集合称为空集,表示为∅。

5、并集:两个集合的所有元素的结合体。

表示为A∪B,即A和B的“或”集合。

6、交集:两个集合的公共部分,表示为A∩B,即A和B的“且”集合。

7、补集:指一个集合中不属于另一个集合中的元素与另一个集合相对应的集合,表示为A-B。

8、差集:指两个集合A和B中不同时属于两个集合的元素的集合,表示为A\B。

9、概率:是指在一定条件下,随机事件发生的可能性的大小指标。

10、函数:在其中一变量与另一变量之间关系的函数用等号表示,叫做函数。

二、公式
1、交集的公式:A∩B={x,x∈A且x∈B}
2、并集的公式:A∪B={x,x∈A或x∈B}
3、差集的公式:A\B={x,x∈A且x∉B}
4、补集的公式:A-B={x,x∈A且x∉B}
5、阶乘的公式:n!=1×2×3×4×…×n
6、数列求和的公式:Sn=a1+a2+a3+…+an
7、有理数的乘法的公式:(m/n)×(r/s) = (mr)/(ns)
8、有理数的除法的公式:(m/n)÷(r/s) = (ms)/(nr)。

初中数学必背公式大全初中数学重要公式定律汇总

初中数学必背公式大全初中数学重要公式定律汇总

初中数学必背公式大全初中数学重要公式定律汇总
一、几何公式
1、三角形面积公式
△ABC的面积S=1/2ab sin C
其中a、b为△ABC的两边,C为两边夹角
2、四边形面积公式
正方形面积公式:S=a2
长方形面积公式:S=ab
其中a、b分别为正方形或长方形的边长
3、圆的面积公式
S=πr2
其中r为圆的半径
4、梯形面积公式
S=(a+b)h/2
其中a、b分别为梯形的上下底,h为梯形的高
5、椭圆面积公式
S=πab
其中a、b分别为椭圆的长轴短轴
6、圆柱体体积公式
V=πr2h
其中r为圆柱体的底面半径,h为圆柱体的高
7、圆锥体体积公式
V=1/3πr2h
其中r为圆锥体的底面半径,h为圆锥体的高
8、球的表面积公式
S=4πr2
其中r为球的半径
9、球的体积公式
V=4/3πr3
其中r为球的半径
10、圆柱和圆锥的体积比公式
V1:V2=r2:2r
其中V1为圆柱体体积,V2为圆锥体体积,r为两个体积半径相同
二、三角函数
1、正弦定理
a/sinA=b/sinB=c/sinC=(2S)/R
其中a、b、c分别为△ABC的三边,A、B、C分别为两边夹角,S为△ABC的面积,R为三角形的外接圆半径
2、余弦定理
a2=b2+c2-2bc cosA
其中a、b、c分别为△ABC的三边,A为两边夹角3、正切关系
tanA= a/b
cotA= b/a
其中a、b分别为△ABC的两边,A为两边夹角4、正弦定理的应用
1)角的大小。

初中数学全部定义定理公式

初中数学全部定义定理公式

初中数学全部定义定理公式
一、基本定义
1.集合:在数学中,集合是一组具有特定特征的数据的集合,以大括
号括起来表示。

2.平方根:正数的平方根指的是一个数的平方,等于原来的数。

3.负数的平方根指的是一个负数的平方,等于原来的数。

4.有理数:有理数是一种可以用十进制分数来表示的数,如:1/2、
3/4、5/6等。

5.实数:实数是指所有可以用实际数字表示的数,如整数、有理数、
虚数等。

7.直线:直线是一种带有方向的无限长的线段,由两点确定。

8.空集:空集也叫做空集合,是一种没有任何元素的集合,用符号Ø
表示。

二、平面几何定理及公式
1.正方形的面积公式:面积=a2,其中a为正方形的边长。

2.长方形的面积公式:面积=a*b,其中a和b分别为长方形的长和宽。

3.三角形的面积公式:面积=1/2*a*h,其中a为三角形的底边长,h
为三角形的高。

4.圆形的面积公式:面积=πr2,其中r为圆的半径。

5.梯形的面积公式:面积=1/2*(a+b)*h,其中a和b分别为梯形的上底和下底,h为梯形的高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学定义、定理超级大全
1.1有理数 1.1.1有理数的定义:整数和分数的统称。 1.1.2有理数的分类: (1)分为整数和分数。而整数分为正整数、零和负整数 ;分数分为正分数和负分数。 (2)分为正有理数、零和负有理数。而正有理数分为正整数和正分数;负有理数分为负整数和负分 数。 1.1.3数轴 1.1.3.1数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。 1.1.3.2数轴的三要素:①原点②正方向③单位长度 1.1.3.3每个有理数都能用数轴上的点表示 1.1.4相反数 1.1.4.1相反数的定义:只有符号不同的两个数就做互为相反数(注:0的相反数为0 1.1.4.2相反数的意义:离原点距离相等的两个点所表示的两个数互为相反数 1.1.4.3相反数的判别 (1)若 ,则 、 互为相反数 (2)若两个数的绝对值相等,且符号相反,则这两个数互为相反数。 1.1.5倒数 1.1.5.1倒数的定义:若两个数的乘积等于1,则这两个数互为倒数。(若ab=1 ,则 a、b互为倒数) 注:零没有倒数。 1.1.6绝对值 1.1.6.1绝对值的定义:在数轴上,表示一个数到原点的距离(a的绝对值记作∣a∣) 1.1.6.2绝对值的性质:∣a∣≥0 1.1.7有理数大小的比较 1.1.7.1正数大于0,负数小于0 1.1.7.2正数大于负数 1.1.7.3两个正数,绝对值大的这个数就大,绝对值小的这个数就小;两个负数,绝对值大的这个数 就小,绝对值小的这个数就大。 1.1.7.4作差法:两个有理数相减。若大于0,则被减数大;若等于0,则两个数相等;若小于0,则 减数大。 1.1.7.5作商法:两个有理数相除(除数或分母不为0)。若大于1,则被除数大;若等于1,则两个 数相等;若小于1,则除数大。 1.1.8有理数的加法 1.1.8.1运算法则:①符号相同的两个数相加,取相同的符号,并把绝对值相加②绝对值不相等的异 号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值(互为相反数的两个 数相加等于0)③任何有理数加0仍等于这个数。 1.1.8.2加法交换律在有理数加法中仍然适用,即: a+b=b+a 1.1.8.3加法结合律在有理数加法中仍然适用,即: a+(b+c)=(a+b)+c 1.1.9有理数的减法 1.1.9.1运算法则:减去一个数等于加上这个数的相反数 1.1.9.2有理数减法—转化→有理数加法 1.1.10有理数的乘法 1.1.10.1运算法则:①两个数相乘,同号得正,异号得负,并把绝对值相乘(口诀:正正得正,负 负得正,正负的负,负正的负)②任何有理数乘0仍等于0③多个不等于0的有理数相乘时,积的符号 由负因式的个数决定:当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。 1.1.10.2乘法交换律在有理数乘法中仍然适用,即 1.1.10.3乘法结合律在有理数乘法中仍然适用,即
1.1.10.4乘法分配律在有理数乘法中仍然适用,即 1.1.11有理数的除法 1.1.11.1运算法则:除以一个数等于乘上这个数的倒数(除数不能为0,否则无意义) 1.1.11.2有理数除法—转化→有理数乘法 1.1.12有理数的乘方 1.1.12.1有理数乘方的意义:求相同因数积的运算叫做乘方 1.1.12.2有理数乘方的表示方法: 个相同因数 相乘表示为 ,其中 称为底数, 称为指数,而乘方 的结果叫做幂,读作“ 的 次方”或“ 的 次幂”(当 =2时,读作 的平方,简称 方) 1.1.12.3运算规律:①正数于0(0次幂除外)④任何数的零次幂都等于1(0次幂除外) 1.1.13有理数的混合运算 1.1.13.1运算顺序:①先算乘方(即:三级运算),再算乘除(即:二级运算),最后算加减(即: 一级运算)②如果是同级运算,则按从左到右的运算顺序计算③如果有括号,先算小括号,再算中 括号,最后算大括号。 1.1.14科学记数法 1.1.14.1科学记数法的定义:把一个大于10的有理数记成 的形式(其中1≤ ≤10)叫做科学记数法。 1.1.15近似数 1.1.15.1近似数的定义:接近准确数而不等于准确数的数叫做这个准确数的近似数或近似值。 1.1.15.2求近似值的方法:①四舍五入法②收尾法(进一法)③去尾法。 1.1.15.3有效数字的定义:一个近似数精确到哪一位,从左起第一个不是0的数字起,到这一位数字 上的所有数字(包括其中的0)叫做这个近似值的有效数字。 1.2 实数 1.2.1平方根 1.2.1.1平方根的定义:如果一个数的平方等于 ,这个数就叫做 的平方根(或二次方根),即 , 我们就说 是 的平方根。 1.2.1.2平方根的表示方法:如果 ( >0),则 的平方根 记作 ,“ ”读作“正负根号 ”,其中 读 作“二次根号”,2叫做根指数, 叫做被开方数。 1.2.1.3平方根的性质:一个正数的平方根有两个,这两个平方根互为相反数;0的平方根只有一个, 就是0;负数没有平方根。 1.2.1.4开平方的定义:求一个数的平方根的运算就叫做开平方(开平方和平方互为逆运算)。 1.2.2算术平方根 1.2.2.1算术平方根的定义:正数 有两个平方根,其中正数a的正的平方根叫做 的算术平方根,记 作 ,读作“根号 ”。 1.2.2.2算术平方根的性质:①具有双重非负性,即: ≥0, ≥0② =a( ≥0)③ =∣ ∣,当 ≥0 时, =∣ ∣= ;当 ≤0时, =∣ ∣=1.2.3立方根 1.2.3.1立方根的定义:如果一个数的立方等于 ,这个数就叫做 的立方根(或叫做 的三次方根) 1.2.3.2立方根的表示方法:如果 ,则x叫做a的立方根,记作 ,其中 叫做被开方数,3叫做根指数。 1.2.3.3立方根的性质:①正数有一个立方根,仍为正数,负数有一个立方根,仍为负数,0的立方 根仍为0。② 1.2.3.4开立方的定义:求一个数的立方根的运算叫做开立方(它与立方互为逆运算) 1.2.4无理数 1.2.4.1无理数的定义:无限不循环小数叫做无理数。 1.2.4.2判断无理数的注意事项:①带根号的数不一定是无理数,如 是有理数,而不是无理数;② 无理数不一定是开方开不尽的数,如圆周率 1.2.5实数 1.2.5.1实数的定义:有理数和无理数的统称 1.2.5.2实数的性质:①实数与数轴上的点一一对应②实数a的相反数是-a,实数 的倒数是 ( ≠0) ③∣ ∣≥0,∣ ∣=∣- ∣④有理数范围内的运算律、幂的运算法则、乘法公式,在实数范围内同
2.2.2.8平方差公式:两个数的和与这两个数的差的积等于这两个数的平方差,即 (注意事项:公 式中的 , 所代表的内容具有广泛性,可以表示数字,也可以表示单项式或多项式) 2.2.2.9完全平方公式:两个数和(或差)的平方等于它们的平方和,加上(或减去)它们积的2倍, 即: (注意事项:公式中的a,b所代表的内容具有广泛性,可以表示数字,也可以表示单项式或多 项式) 2.2.2.10立方和与立方差公式:两数和(或差)乘以它们的平方和与它们积的差(或和),等于这 两个数的立方和(或立方差),即 2.2.2.11其他乘法公式: ① ② 2.2.3因式分解 2.2.3.1因式分解的定义:把一个多项式化成几个单项式的积的形式,叫做多项式的因式分解。 2.2.3.2因式分解的注意事项:因式分解要分解到不能再分解为止;因式分解与整式乘法互为逆运算。 2.2.3.3公因式的定义:一个多项式的各项都含有的相同的因式叫做这个多项式各项的公因式。 2.2.3.4分解因式的方法:①提取公因式法:如果多项式的各项有公因式,可以把这个公因式提到括 号外面,将多项式写成因式乘积的形式,这种因式分解叫做提取公因式法。即: ②运用公式法:反 用乘法公式,可以把某些多项式分解因式,这种方法叫做运用公式法(常用的有: 和 )③分组分 解法:利用分组来分解因式的方法叫做分组分解法④十字相乘法:将 型的二次三项式分解为 。 2.3分式 2.3.1分式的概念 2.3.1.1分式的定义:A,B表示两个整式,如果B中含有字母,式子 就叫做分式。其中A叫做分式的 分子,B叫做分式的分母。 2.3.1.2 有理式的定义:整式和分式的统称。 2.3.1.3 繁分式的定义:分式的分子或分母中含有分式,这样的分式叫做繁分式。 2.3.1.4最简分式的定义:当一个分式的分子和分母没有公因式的时候就叫做最简分式。 2.3.1.5约分的定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去的过程就叫做约 分。 2.3.1.6通分的定义:把异分母的分式化成和原来的分式相等的同分母的分式的过程叫做通分。 2.3.2分式的基本性质 2.3.2.1分式的基本性质:分式的分子分母都同时乘以或同时除以一个不为0的整式,分式的值不变, 即 2.3.2.2分式的符号法则:分式的分子、分母和分式本身的符号,改变其中任何两个,分式的值都不 变,即 2.3.3分式的运算 2.3.2.3 分式的加减法计算法则:同分母分式相加减,分母不变,分子相加减,即 ;异分母分式相 加减,先通分成同分母的分式,再按同分母的分式相加减的法则进行计算,即 . 2.3.2.4分式的乘除法计算法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母, 即 ;分式除以分式,把除式的分子分母颠倒位置后,再按分式的乘法法则进行计算。 2.3.2.5分式的混合运算:①先算乘方(即:三级运算),再算乘除(即:二级运算),最后算加减 (即:一级运算)②如果是同级运算,则按从左到右的运算顺序计算③如果有括号,先算小括号, 再算中括号,最后算大括号。 三、方程与方程组 3.1方程与方程组 3.1.1基本概念 3.1.1.1等式的定义:用等号表示相等关系的式子叫做等式。 3.1.1.2等式的性质:①等式两边同时加上或同时减去一个数或一个整式,所得结果仍是等式②等式 两边同时乘以或同时除以一个不为0的数,所得结果仍为等式。 3.1.1.3方程的定义:含有未知数的等式叫做方程。 3.1.1.4方程的解:使方程两边相等的未知数的值叫做方程的解,只有一个未知数的方程的解也叫做
样适用 1.2.5.3两个实数的大小比较:①正数大于0,负数小于0,正数大于一切负数,两个负数比较大小, 绝对值大的反而小。②在数轴上表示的两个数,右边的数总比左边的数大③作商法:两个实数相除 (除数或分母不为0)。若大于1,则被除数大;若等于1,则两个数相等;若小于1,则除数大。④ 作差法:两个有理数相减。若大于0,则被减数大;若等于0,则两个数相等;若小于0,则减数大。 1.2.6二次根式 1.2.6.1二次根式的定义:式子 ( ≥0)叫做二次根式。 1.2.6.2二次根式的运算性质:① ( ≥0, ≥0)② ( ≥0, >0) 1.2.6.3最简二次根式:满足下列两个条件的二次根式叫做最简二次根式:①被开方数的因数是整数, 因式是整式②被开方数中不含能开得尽的因数或因式 1.2.6.4分母有理化定义:在分母含有根式的式子中,把分母中的根号划去的过程叫做分母有理化。 1.2.6.5二次根式的混合运算:应按顺序先做乘方运算,再做乘除运算,最后做加减运算;若有括号, 应按小、中、大括号的顺序进行运算。 二、代数式 2.1代数式 2.1.1代数式的定义:用运算符号把数或字母连接而成的式子叫做代数式。 2.1.2代数式的分类:代数式分为有理式和无理式,有理式又可以分为整式和分式,而整式又可以分 为单项式和多项式。 2.1.3列代数式的定义:把问题中与数量有关的词语,用含有数、字母和运算符号的式子表示出来, 就是列代数式。 2.1.4代数式的值:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值。 2.2整式 2.2.1整式的概念 2.2.1.1单项式:只含有数字与字母乘积的代数式叫单项式(单独的一个数或字母也是单项式)。其 中,数字因式叫做单项式的系数,单项式中所有的字母的指数的和叫做这个单项式的次数。 2.2.1.2多项式:几个单项式的和叫做多项式。多项式中的每一个单项式叫做多项式的项,其中不含 字母的项叫做常数项。 2.2.1.3多项式的次数:多项式中系数最高项的次数叫做多项式的次数。 2.2.1.4降(升)幂排列:把一个多项式按某一字母的指数从大(小)到小(大)的顺序排列起来。 2.2.1.5整式的定义:单项式和多项式的统称。 2.2.1.6同类项的定义:所含字母相同,并且相同字母的次数也相同的项叫做同类项。 2.2.1.7合并同类项:把多项式中同类项合成一项的过程叫做合并同类项。 2.2.1.8合并同类项的法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。 2.2.2整式的运算 2.2.2.1整式的加减法计算法则:先去括号,再合并同类项。 2.2.2.2整式的乘除法计算法则:①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即 (m,n是正整数)②同底数幂的除法法则:同底数幂相除,底数不变,指数相减即 ( ≠0, , 是 正整数, > )③幂的乘方法则:幂的乘方,底数不变,指数相乘,即 (m,n是正整数)④积的乘方 法则:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,即 ( 是正整数)。 2.2.2.3单项式乘以单项式的法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个 单项式中只含有的字母,则连同它的指数作为积的一个因式。(在计算系数时,应先确定符号,再 计算绝对值,当系数为-1时,只须在结果的最前面写上“-”) 2.2.2.4单项式乘以多项式的法则:用单项式乘以多项式的每一项,再把所得的积相加。 2.2.2.5单项式除以单项式的运算法则:一般地,单项式相除,把系数、同底数幂分别相除作为商的 因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。 2.2.2.6多项式除以单项式的运算法则:一般地,多项式除以单项式,先把这个多项式的每一项分别 除以这个单项式,再把所得的商相加。 2.2.2.7多项式乘以多项式的法则:先用一个多项式的每一项乘以另一个多项式的每一项,再把所得 的积相加。
相关文档
最新文档