初中 数学 所有 公式 定义 性质 定理教材
初中数学-教材上的定义、公理、定理及推论

教材上的定义、公理(基本事实)、定理及推论1、直线、射线、线段定义;点动成线,线动成面,面动成体2、两点确定一条直线,两点之间线段最短3、两条直线有3种关系:重合、平行、相交4、过直线外一点,有且只有一条直线与已知直线平行5、同一平面,过一点有且只有一条直线与已知直线垂直6、垂线段最短7、两直线平行的判定定理1同一平面内,不想交的两直线平行2同位角相等,两直线平行3内错角相等,两直线平行4同旁内角互补,两直线平行5两直线与第三条直线平行,则这两直线平行6两直线与第三条直线垂直,则这两直线平行8、同角、等角、余角、补角、互补、互余定义9、邻补角定义和性质10、外角定义和性质11、对顶角相等12、角平分线定义、性质、判定1定义:从一个角的顶点引一条射线,把这个角分成两个相同的角,这条射线叫做角平分线2性质:角平分线上的点到角两边的距离相等3判定:角内部到角两边距离相等的点在这个角的平分线上13、垂直平分线(中垂线)定义、性质、判定1定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线2性质:垂直平分线上的点到线段两端点的距离相等3判定:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上14、三角形任意两边之和大于第三边,即最短的两条边之后大于第三边;如果三角形三条边a、b、c,则有|a-b|<c<a+b15、N边形内角和:(n-2)180,N边形外角和:360°,N边形对角线总数:n(n--3)/216、直角三角形中,30°所对的直角边是斜边的一半;直角三角形中,如果直角边是斜边的一半,那么其所对的角为30°17、三角形的中位线定理:三角形的中位线平行于第三边,且等于第三边的一半18、勾股定理:直角三角形中,两条直角边的平方和等于斜边平方19、勾股定理逆定理:三角形中如果两条边的平方和等于另一边的平方则该三角形为直角三角形20、三角形“四心”1三条中线的交点是重心2三边垂直平分线的交点是外心3三条内角平分线的交点为内心4三角形三条高线的交点为垂心。
初中数学各种公式及性质

初中数学各种公式及性质初中数学中常用的各种公式及性质包括但不限于:1.代数运算性质:- 交换律:a + b = b + a,ab = ba- 结合律:(a + b) + c = a + (b + c),(ab)c = a(bc)- 分配律:a(b + c) = ab + ac-恒等律:a+0=a,a×1=a-互补律:a+(-a)=0-结合数和乘法的逆元:a+(-a)=0,a×(1/a)=1(a≠0)2.数列求和公式:-等差数列求和公式:Sn = (n/2)(a1 + an),其中Sn表示前n项和,a1为首项,an为末项-等比数列求和公式:Sn=a1(1-q^n)/(1-q),其中q为公比-等差数列通项公式:an = a1 + (n - 1)d-等比数列通项公式:an = a1 × q^(n-1)3.同底数幂运算性质:-a^m×a^n=a^(m+n)- (a^m)^n = a^(mn)-a^(-n)=1/a^n(a≠0)-a^0=1(a≠0)4.三角函数公式:- 正弦定理:a/sinA = b/sinB = c/sinC = 2R (其中a、b、c为三角形的边长,A、B、C为对应的角,R为外接圆半径)- 余弦定理:c^2 = a^2 + b^2 - 2abcosC- 正弦函数和余弦函数的关系:sin²A + cos²A = 15.平面几何定理:-锐角三角形内角和为180°,直角三角形内角和为90°-三角形内任意一边的长度小于另外两边的长度之和-平行四边形对角线互相等长-三角形内一个角的对边长度与角的正弦值成正比,对边长度与角的余弦值成反比6.椭圆、抛物线和双曲线的基本性质:-椭圆:离心率e<1,焦点到准线的距离之和等于常数2a-抛物线:离心率e=1,焦点到准线的距离等于焦距的一半-双曲线:离心率e>1,焦点到准线的距离之差等于常数2a7.数据分析相关公式:-平均数=总和/个数-中位数:将数据从小到大排列,若有奇数个数据,则中位数为排序后的中间值;若有偶数个数据,则中位数为排序后的中间两个值的平均数-众数:数据中出现次数最多的数值-极差:最大值减去最小值-方差:各数据与平均数之差的平方和的平均数-标准差:方差的平方根这些公式和性质在初中数学中是较为常见且基础的,通过掌握和应用这些公式和性质,可以帮助学生提高解题能力和数学思维。
初中数学所有定理与公式

初中数学所有定理与公式初中数学中的定理与公式有很多,以下是一些重要的定理和公式:一、整数与出列1.整数与负数相乘,结果为负数。
(定理)2.出列法则:同号相乘为正,异号相乘为负。
(公式)二、整式的加减与乘除1.加法交换律:a+b=b+a。
(定理)2.减法可加法运算:a-b=a+(-b)。
(公式)3.乘法交换律:a×b=b×a。
(定理)4.乘法分配律:a×(b+c)=a×b+a×c。
(定理)5.除法公式:a÷b=a×(1/b)。
(公式)6.乘幂公式:a^m×a^n=a^(m+n)。
(公式)三、因式分解与倍数与公约数1.因式分解:将一个多项式写成几个因式相乘的形式。
(规则)2.公约数:能同时整除两个或多个数的数。
(定义)3.最大公约数:一组数的公约数中最大的一个。
(定义)4.最小公倍数:一组数中能被所有数整除的最小整数。
(定义)四、平方根与勾股定理1.平方根的性质:如果a²=b,则√b=,a。
(定理)2.勾股定理:在直角三角形中,a²+b²=c²。
(定理)五、百分数及其应用1.百分比:以百为基数的计数单位。
(定义)2.百分数计算:a%=a/100。
(公式)3.利率计算:利息=本金×利率×时间。
(公式)4.百分数的增减:数据增加或减少的百分比计算。
(公式)六、方程与不等式1. 一元一次方程:ax + b = 0,x = -b/a。
(定理)2. 一元二次方程求解公式:x = (-b ± √(b² - 4ac))/(2a)。
(公式)3.不等式的性质:同意负号,异号取反,非负数平方不小于0。
(定理)七、平行线与相交线1.平行线的性质:同位角相等,内错角相等,外错角相等。
(定理)2.相交线的性质:同位角互补,内错角互补,外错角互补。
(定理)八、三角形与四边形1.三角形内角和为180°。
初中数学所有公式定义性质定理

初中数学所有公式定义性质定理初中数学是学生接触的第一门高等数学课程,其中涵盖了许多重要的公式,定义,性质和定理。
这些数学概念和结果将帮助学生发展数学思维,提高解决问题的能力。
本文将介绍常见的初中数学公式、定义、性质和定理,帮助学生更好地理解和应用数学知识。
一、数学公式1.一次方程求解公式一次方程是形如ax+b=0的方程,其中a和b是实数且a≠0。
一次方程的求解公式为x=-b/a。
2.二次方程求根公式二次方程是形如ax²+bx+c=0的方程,其中a、b和c是实数且a≠0。
求根公式为x=(-b±√(b²-4ac))/2a。
3.相似三角形比例公式对于两个相似三角形,它们对应边的比例相等。
设两个相似三角形的对应边长度分别为a、b、c和x、y、z,则有a/x=b/y=c/z。
4.正弦定理正弦定理适用于任意三角形ABC,其中a、b和c是对应的边长,A、B和C是对应的角度。
定理表述为a/sinA=b/sinB=c/sinC。
5.余弦定理余弦定理适用于任意三角形ABC,其中a、b和c是对应的边长,A、B和C是对应的角度。
定理表述为c²=a²+b²-2abcosC。
6.圆的周长公式二、数学定义1.有理数有理数是可以表示为两个整数的比值的数。
有理数包括整数、分数和小数。
2.无理数无理数是不能表示为有理数的小数。
例如,π和√2都是无理数。
3.等差数列等差数列是指数列中相邻两个数之差都相等的数列。
公差是等差数列中相邻两个数之差的值。
4.等比数列等比数列是指数列中相邻两个数之比都相等的数列。
公比是等比数列中相邻两个数之比的值。
5.直角三角形直角三角形是其中一个角为90度的三角形。
直角三角形的斜边是两条直角边的最长边。
三、数学性质1.乘法交换和结合律乘法满足交换律和结合律,即对于任意实数a、b和c,有a*b=b*a,(a*b)*c=a*(b*c)。
2.加法交换和结合律加法满足交换律和结合律,即对于任意实数a、b和c,有a+b=b+a,(a+b)+c=a+(b+c)。
初中数学重要公式定理定律

初中数学重要公式定理定律1. 一次函数的公式:y = kx + b,其中k是斜率,b是y轴截距。
2. 二次函数的公式:y = ax² + bx + c,其中a≠0,a、b、c是实数。
3. 三角函数的正弦定理:在任意三角形ABC中,有a/sinA =b/sinB = c/sinC,其中a、b、c分别是三角形的边长,A、B、C分别是对应的角度。
4. 三角函数的余弦定理:在任意三角形ABC中,有c² = a² + b² - 2abcosC,其中a、b、c分别是三角形的边长,C是夹角。
5. 三角函数的正切定理:在任意三角形ABC中,有tanA = a/b,tanB = b/a,tanC = c/b,其中a、b、c分别是三角形的边长,A、B、C 分别是对应的角度。
6. 对数的性质:logAB = logA + logB,log(A/B) = logA - logB,log(A^m) = m·logA,其中A、B为正实数,m是实数。
7. 平方差公式:(a + b)² = a² + 2ab + b²,(a - b)² = a² - 2ab + b²。
8.平方根性质:√(a·b)=√a·√b,√(a/b)=√a/√b,其中a、b都是非负实数。
9.相似三角形的性质:如果两个三角形的对应角度相等,那么它们对应边长之比相等。
10.二项式定理:(a+b)ⁿ=C(n,0)·aⁿ+C(n,1)·aⁿ⁻¹·b+C(n,2)·aⁿ⁻²·b²+...+C(n,n-1)·a·bⁿ⁻¹+C(n,n)·bⁿ,其中C(n,k)为组合数。
11. 最大公约数性质:如果a能整除b且a能整除c,那么a能整除b和c的最大公约数gcd(b, c)。
初中数学所有公式定义性质定理

初中数学所有公式定义性质定理数学是一门基础学科,其中包含了大量的公式、定义、性质和定理。
以下是一些初中数学中常见的公式、定义、性质和定理。
1.公式:- 一次方程:ax + b = 0,其中 a 和 b 是已知常数,x 是未知数。
- 二次方程:ax^2 + bx + c = 0,其中 a、b 和 c 是已知常数,x 是未知数。
-直角三角形勾股定理:a^2+b^2=c^2,其中a和b是直角三角形的两条直角边,c是斜边。
-等差数列前 n 项和:Sn = (a1 + an) * n / 2,其中 a1 是首项,an 是末项,n 是项数。
-等比数列前n项和:Sn=a1*(q^n-1)/(q-1),其中a1是首项,q是公比,n是项数。
-圆的面积:A=π*r^2,其中r是半径。
-三角形的面积:A=1/2*b*h,其中b是底边长,h是高。
2.定义:-等腰三角形:具有两条边相等的三角形。
-直角三角形:具有一个角为直角(90度)的三角形。
-平行四边形:具有两对对边平行的四边形。
-正方形:具有四条边相等且四个角都是直角的四边形。
-梯形:具有两对平行边的四边形。
-锐角、直角和钝角:锐角小于90度,直角等于90度,钝角大于90度。
-圆:由平面上到圆心距离相等的所有点组成的图形。
3.性质:- 两个正数的乘积等于其对数的和:a * b = c,c = loga + logb。
- 两个正数的商等于其对数的差:a / b = c,c = loga - logb。
-乘法交换律:a*b=b*a。
-加法交换律:a+b=b+a。
-乘法结合律:(a*b)*c=a*(b*c)。
-加法结合律:(a+b)+c=a+(b+c)。
4.定理:-两个相等的角的补角相等。
-相等的直角三角形的两条直角边相等。
-对角线相等的平行四边形是矩形。
-在一个等腰三角形中,等腰边的中线也是高和角平分线。
-一个三角形的内角和等于180度。
-具有相等底边和高的梯形面积相等。
初中三年数学所有公式及定理

在初中三年的数学学习中,我们学习了很多数学公式及定理,下面我将为你列举一些常见且重要的数学公式及定理。
一、初一数学公式及定理:1.平方差公式:$$(a+b)(a-b)=a^2-b^2$$2. 乘法公式:$$(a+b)^2=a^2+2ab+b^2$$3. 二项式定理:$$(x+y)^n=\sum_{k=0}^nC_n^kx^ky^{n-k}$$4. 比例式:$$\frac{a}{b}=\frac{c}{d} \Rightarrow ad=bc$$5. 三角形内角和定理:$$\angle A + \angle B + \angle C =180°$$6. 两角和公式:$$\sin(A\pm B)=\sin A\cos B \pm \cos A\sinB$$7.勾股定理:$$a^2+b^2=c^2$$(其中a、b为直角三角形的两条直角边,c为斜边)8. 三角形面积公式:$$S=\frac{1}{2}bh$$(其中S为三角形的面积,b为底边长,h为对应底边的高)9.相交弦定理:$$(AB)(CD)=(AC)(BD)+(AD)(BC)$$(其中AB、AC、CD、BD为圆上的弦)10.等腰三角形的性质:底边上的两个角是相等的,底边上的两个边也是相等的。
二、初二数学公式及定理:1. 三角函数定义:$$\sin\theta=\frac{y}{r}$$,$$\cos\theta=\frac{x}{r}$$,$$\tan\theta=\frac{y}{x}$$2. 正余弦定理:$$\frac{a}{\sin A}=\frac{b}{\sinB}=\frac{c}{\sin C}$$3.角平分线定理:一个角的平分线将该角分成两个相等的角。
4. 面积公式:$$S=\sqrt{p(p-a)(p-b)(p-c)}$$(其中S为三角形的面积,a、b、c为三角形的三边长,p为半周长)5. 长方体体积公式:$$V=lwh$$(其中V为长方体的体积,l、w、h分别为长方体的长、宽、高)6.等腰梯形面积公式:$$S=\frac{1}{2}(a+b)h$$(其中S为等腰梯形的面积,a、b为上下底边长,h为高)7. 三角形三边关系:$$c^2=a^2+b^2-2ab\cos C$$8.平行线性质:同旁内角互补,同旁外角相等,对顶角互补。
初中数学各种公式(完整版)

数学各种公式及性质1.乘法与因式分解①(a+b)(a-b)=a2-b2;②(a±b)2=a2±2ab+b2;③(a+b)(a2-ab+b2)=a3+b3;④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab;(a-b)2=(a+b)2-4ab。
2.幂的运算性质①a m×a n=a m+n;②a m÷a n=a m-n;③(a m)n=a mn;④(ab)n=a n b n;⑤(ab)n =nnab;⑥a-n=1na,特别:()-n=()n ;⑦a0=1(a ≠0)。
3.二次根式①()2=a(a≥0);②=丨a丨;③=×;④=(a>0,b≥0)。
4.三角不等式|a|-|b|≤|a±b|≤|a|+|b|(定理);加强条件:||a|-|b||≤|a±b|≤|a|+|b|也成立,这个不等式也可称为向量的三角不等式(其中a,b分别为向量a和向量b)|a+b|≤|a|+|b|;|a-b|≤|a|+|b|;|a|≤b<=>-b≤a≤b ;|a-b|≥|a|-|b|;-|a|≤a≤|a|;5.某些数列前n项之和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2;1+3+5+7+9+11+13+15+…+(2n-1)=n2;2+4+6+8+10+12+14+…+(2n)=n(n+1);12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6;13+23+33+43+53+63+…n3=n2(n+1)2/4;1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3;6.一元二次方程对于方程:ax2+bx+c=0:①求根公式是x242b b aca-±-△=b2-4ac叫做根的判别式。
当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.互为相反数的两个数相加得零;
4.一个数与零相加,仍得这个数。
有理数的加法仍满足交换律和结合律。
加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a.
加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。(a+b)+c=a+(b+c).
2.7 有理数的减法
有理数减法法则:减去一个数,等于加上这个数的相反数。
(3)除法运算写成分数形式;如1500t通常写作(t≠0)。
由数字和字母用运算符号连接所成的式子,成为代数式。单独一个数或一个字母也是代数式。
在解决实际问题时,常常先把问题中有关的数量用代数式表示出来,即列出代数式,使问题变得简洁,更具一般性。
偶数2n,奇数2n+1(n为整数)。
3.2 代数式的值
用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果,叫做代数式的值。
初中 数学 所有 公式 定义 性质 定理
第2章(七年级上)有理数
2.1 有理数
负数
正数
正整数、零和负整数统称整数,正分数和负分数统称分数。
整数和分数统称有理数。
把一些数放在一起,就组成一个数的集合,简称数集。有理数集。整数集。负数集。非负整数集(自然数集)。
2.2 数轴
原点
规定了原点、正方向和单位长度的直线叫做数轴。
3.4 整式的加减
所含字母相同,并且形同字母的指数也相等的项叫做同类项。
所有的常数项都是同类项。
合并同类项的法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变。
去括号法则:
括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变正负号;
括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变正负号。
添括号法则:
所添括号前面是“+”号,括到括号里的各项都不改变正负号;
所添括号前面是“-”号,括到括号里的各项都改变正负号。
去括号和合并同类项是整式加减的基础。整式加减运算的一般步骤是:先去括号,再合并同类项。
第4章图形的初步认识
4.1 生活中的立体图形
立柱
锥体
球体
棱柱
圆柱
圆锥
棱锥
多面体
4.2 立体图形的视图
根据有理数乘法法则,有:
正数的任何次幂都是正数;
负数的奇次幂是负数,负数的偶次幂是正数。
2.12 科学计数法
一个大于10的数就记成a 的形式,其中 ,n是正整数。像这样的计数法叫做科学计数法。
2.13 有理数的混合运算
有理数的混合运算,应按以下顺序进行:
1.先算乘方,再算乘除,最后算加减;
2.同级运算,按照从左至右的顺序进行;
在数轴上表示的两个数,右边的数总比左边的数大。
正数都大于零,负数都小于零,正数都大于负数。
2.3 相反数
只有正负号不同的两个数称互为相反数。
在数轴上表示互为相反数的两个点分别位于原点的两旁,且与原点的距离相等。
零的相反数是零。
2.4 绝对值
我们把在数轴上表示数a与原点的距离叫做数a的绝对值,记作。
1.一个正数的绝对值是它本身;
2.零的绝对值是零;
3.一个负数的绝对值是它的相反数。
2.5 有理数的大小比较
在数轴上,表示两个负数的两个点中,与原点距离较远的那个点在左边,也就是绝对值大的点在左边。所以,两个负数,绝对值大的反而小。
2.6 有理数的加法
有理数加法法则:
1.同号两数相加,取与加数相同的正负号,并把绝对值相加;
2.绝对值不相等的异号两数相加,取绝对值较大的加数的正负号,并用较大的绝对值减去较小的绝对值;
几个不等于零的数相乘,积的正负号由负因数的个数决定,当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正。
几个数相乘,有一个因数为零,积就为零。
有理数的运算仍满足分配律。
分配律:一个数与两个数的和相乘,等于把这个数分别与这两个数相乘,再把积相加。a(b+c)=ab+ac.
2.10 有理数的除法
3.3 整式
由数与字母的乘积组成的代数式叫做单项式。单独一个数或一个字母也是单项式。
单项式中的数字因数叫做这个单项式的系数。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
几个单项式的和叫做多项式。期中,每个单项式叫做多项式的项,不含字母的项叫做常数项。
单项式与多项式统称整式。
把一个多项式各项的位置按照其中某一字母指数的大小顺序来排列。把多项式按x的指数从大到小的顺序排列,叫做这个多形式按字母x的降幂排列。若按x的指数从小到大的顺序排列,叫做这个多形式按字母x的升幂排列。
3.如果有括号,就先算小括号里的,再算中括号里的,然后算大括号里的。
2.14 近似数
一个与实际……非常接近的数,成为近似数。
如果结果只取整数,就叫做精确到个位;
如果结果取1位小数,就叫做精确是十分位(或精确到0.1);
如果结果取2位小数,就叫做精确到百分位(或精确到0.01);……
2.15 用计算器进行计算
2.8 有理数的加减混合运算
2.9 有理数的乘法
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数与零相乘,都得零。
有理数的乘法仍满足交换律与结合律。
乘法交换律:两个数相乘,交换因数的位置,积不变。ab=ba.
乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。(ab)c=a(bc).
对于有理数仍然有:乘积是1的两个数互为倒数。
除以一个数等于乘以这个数的倒数。
零不能作除数。
有理数除法法则:
两数相除,同号得正,异号得负,并把绝对值相除。
零除以任何一个不等于零的数,都得零。
2.11 有理数的乘方
求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在中,a叫做底数,n叫做指数,读作a的n次方,看作是a的n次方的结果时,也可读作a的n次幂。
第3章整式的加减
3.1 列代数式
常见图形的面积
长方形S=ab;正方形S=;三角形S=;平行四边形S=ah;梯形S=;圆S=。
用字母表示数之后,有些数量之间的关系用含有字母的式子表示,看上去更加简明,更具有普遍意义了。
(1)式子中出现的乘号,通常写作“”或省略不写,如常写作或5n;
(2)数字与字母相乘时,数字通常写在字母前面,如5n一般不写成n5;