多边形及其内角和第2课时
11.3.2多边形的内角和说课稿

11.3.2多边形的内角和说课稿一、说教材本文为《11.3.2多边形的内角和》,在初中数学课程中具有重要作用和地位。
它是学生在学习了三角形、四边形的内角和的基础上,对多边形内角和概念进行拓展和深化的内容。
本节主要内容包括:多边形内角和的定义、计算公式及其推导过程,通过实际操作和例题分析,让学生更好地理解多边形的内角和性质,提高学生的空间想象能力和逻辑思维能力。
(1)作用与地位:多边形的内角和是几何学中的基础概念,对于培养学生的空间观念和逻辑思维具有重要作用。
它是连接平面几何与立体几何的桥梁,为后续学习多面体的内角和、表面积和体积等内容打下基础。
(2)主要内容:本节课主要围绕多边形的内角和展开,包括以下小节内容:1. 多边形内角和的定义;2. 多边形内角和的计算公式;3. 多边形内角和的推导过程;4. 应用多边形内角和解决实际问题。
二、说教学目标学习本课,学生需要达到以下教学目标:(1)理解多边形内角和的定义,掌握多边形内角和的计算公式;(2)通过实际操作和推导过程,培养学生的空间想象能力和逻辑思维能力;(3)能够运用多边形内角和的性质解决实际问题,提高学生的应用能力;(4)激发学生对几何学的兴趣,培养学生的探究精神。
三、说教学重难点(1)重点:多边形内角和的定义、计算公式及其推导过程。
(2)难点:多边形内角和的推导过程,以及运用多边形内角和解决实际问题。
在教学过程中,要注意引导学生理解多边形内角和的定义,突破推导过程的难点,同时注重培养学生的空间想象能力和逻辑思维能力,为解决实际问题打下基础。
四、说教法在教学《11.3.2多边形的内角和》这一课时,我计划采用以下几种教学方法,旨在提高学生的理解和应用能力,同时突出我的教学特色:1. 启发法:- 通过提出问题引导学生思考,例如:“一个三角形的内角和是多少?四边形的内角和又是多少?那么五边形、六边形呢?它们之间是否存在某种规律?”- 利用学生已知的三角形和四边形的内角和知识,启发学生发现多边形内角和的规律。
七年级数学《多边形的内角和》一等奖说课稿

七年级数学《多边形的内角和》一等奖说课稿1、七年级数学《多边形的内角和》一等奖说课稿各位评委、老师:早上好,我今天说课的题目是:华东师大版七年级数学第八章《多边形》的第三节“多边形的内角和”。
说课内容包括教材分析、教学目标、教法分析、过程设计和评价分析五个部分。
一、教材分析1、教学内容“多边形的内角和”一节包括的内容主要有多边形的有关概念以及多边形内角和公式的推导和运用。
2、本章及本节的地位与作用本章《多边形》,探索的是三角形和多边形的有关概念和性质,是学生在上学期初步认识和感受空间图形之后的延伸,也为今后进一步学习各种多边形打好基础。
本节课“多边形的内角和”作为本章的一个重点,是三角形有关知识的拓展,学习四边形的基础、公式的运用还充分地体现了图形与客观世界的密切联系。
3、重点与难点多边形内角和的公式及公式的推导和运用是本节课的重点;因为公式的得出可以用多种不同的方法推导、所以我确定本节课的难点是如何引导学生通过自主学习、探索多边形内角和的公式。
二、教学目标根据新课程标准的要求,课改应体现学生身心发展特点;应有利于引导学生主动探索和发现;有利于进行创造性的教学。
因此,我把本节课的教学目标确定为以下三个方面:知识目标:①识别多边形的顶点、边、内角及对角线;②理解多边形内角和公式的推导过程;③掌握多边形内角和公式的内涵及其运用。
能力目标:①培养学生类比归纳、转化的能力;②培养学生观察分析、猜想和概括的能力。
思想情感目标:通过体会数学图形的美感,提高审美能力、树立认识数学来源于生活,又服务于实践的观点。
三、教法分析在教法上树立以学生为本的思想,通过创设问题情境,启发引导学生观察————分析————猜想————概括,培养学生积极思考,勇于探索的精神,充分发挥其自主能动性。
学法指导是培养学生学习能力的关键,本节课针对学生的认知规律,指导他们动手操作、交流合作,体验发现问题、探索问题和解决问题的学习过程。
教学手段上采用多媒体辅助教学,通过直观演示,更好地实现了“数形结合”的教学,切实有效地提高了课堂教学的效果。
6.4.2多边形的内角和与外角和(2)

练一练
练习:如果一个多边形的每一个外角等 12 。 于30°,则这个多边形的边数是_____
n边形外角和=360 ° n×30°=360° n=12
练一练
72° 练习2:正五边形的每一个外角等于____ , 144° 每一个内角等于_____ 。
解:设正五边形的每一个外角度数为x,由
多边形的外角和等于360度可得:
注意
一般地,在多边形的任 一顶点处按顺(逆)时针方向 可作外角,n边形有n个外角.
1 B 2 5 E
C 3 D 4
(2)他每跑完一圈,跑步方向改变的角一共有几 个?它们的和是多少?
动动脑
探索多边形的外角和是多少?说说你的方法.
1 1 3 2 2 1 4 3 3 2 5 4
问题解决
∠1﹢∠2﹢∠3=180°
A
C
1 2
B
课时小结
1.多边形的外角及外角和的定义;
2.多边形的外角和等于360°; 3、利用多边形的内角和与外角和公式能解决以下 问题: (1)已知边数求内角和与内角度数; (2)已知内角和求边数; (3)已知各相等内角与外角度数求多边形边数。 4.在探求过程中我们使用了观察、归纳的数学方 法,并且运用了类比、转化等数学思想。
练习:
1.已知一个多边形的每个外角都等于45°,
那么这个多边形的边数是?
2.已知十边形的各个内角都相等,求每个内角、
外角的度数。
3.如果一个多边形的内角和是它的外角和的 5倍,那么这个多边形的边数是多少?
3.一个多边形切(剪)去一个角后,形成另一 个多边形的内角和为2520度,则原多边形 的边数为 15或16或17
问题解决
∠1﹢∠2﹢∠3﹢∠4 ﹢∠5 =540°
多边形及其内角和(第2课时)课件最新版

应是整数,因此不存在这样的多边形.
课堂小结
(1)本节课学习了哪些主要内容? (2)我们是怎样得到“多边形外角和等于360°”这
一结论的?
布置作业
教科书习题11.3第6题.
现代人每天生活在纷繁、复杂的社会当中,紧张、高速的节奏让人难得有休闲和放松的时光。人们在奋斗事业的搏斗中深感身心的疲惫。然而,如果你细心观察,你会发现作 为现代人,其实人们每天都在尽可能的放松自己,调整生活节奏,追求充实快乐的人生。看似纷繁的社会里,人们的生活方式其实也不复杂。大家在忙忙碌碌中体味着平凡的 人生乐趣。由此我悟出一个道理,那就是----生活简单就是幸福。生活简单就是幸福。一首优美的音乐、一支喜爱的歌曲,会让你心境开朗。你可以静静地欣赏你喜爱的音乐, 可以在流荡的旋律中回忆些什么,或者什么都不去想;你可以一个人在房间里大声的放着摇滚,也可以在网上用耳麦与远方的朋友静静地共享;你还可以一边放送着音乐,一 边做着家务....生活简单就是幸福。一杯清茶,或一杯咖啡,放在你的桌边,你的心情格外的怡然。你可以浏览当天的报纸,了解最新的国内外动态,哪怕是街头趣闻;或者捧 一本自己喜欢的杂志、小说,从字里行间获得那种特别的轻松和愉悦....生活简单就是幸福。经过精心的烹制,一桌可心的菜肴就在你的面前,你招呼家人快来品尝,再备上最 喜欢的美酒,这是多么难得的享受!生活简单就是幸福。春暖花开的季节,或是清风送爽的金秋,你和家人一起,或是朋友结伴,走出户外,来一次假日的郊游,享受大自然 带给你的美丽、芬芳。吸一口新鲜的空气,忘却都市的喧嚣,身心仿佛受到一番洗涤,这是一种什么样的轻松感受!生活简单就是幸福。你参加朋友们的一次聚会,那久违的 感觉带给你温馨和激动,在觥酬交错之间你享受与回味真挚的友情。朋友,是那样的弥足珍贵....生活简单就是幸福。周末的夜晚,一家老小围坐在电视机旁,尽享团圆的欢乐 现代人越来越会生活,越来越会用各种不同的方式来放松自己。垂钓、上网、打牌、玩球、唱卡拉OK、下棋.....不一而足。人们根据自己的兴趣爱好寻找放松身心的最佳方式, 在相对固定的社交圈子里怡然的生活,而且不断的扩大交往的圈子,结交新的朋友有时,你会为新添置的一套漂亮时装而快乐无比;有时,你会为孩子的一次小考成绩优异而 倍感欣慰;有时,你会为刚参加的一项比赛拿了名次而喜不自胜;有时,你会为完成了上司交给的一个任务而信心大增生活简单就是幸福!生活简单就是幸福,不意味着我们 放弃了对目标的追逐,是在忙碌中的停歇,是身心的恢复和调整,是下一步冲刺的前奏,是以饱满的精力和旺盛的热情去投入新的“战斗”的一个“驿站”;生活简单就是幸 福,不意味着我们放弃了对生活的热爱,是于点点滴滴中去积累人生,在平平淡淡中寻求充实和快乐。放下沉重的负累,敞开明丽的心扉,去过好你的每一天。生活简单就是 幸福!我的心徜徉于春风又绿的江南岸,纯粹,清透,雀跃,欣喜。原来,真正的愉悦感莫过于触摸到一颗不染的初心。人到中年,初心依然,纯真依然,情怀依然,幸甚至 哉。生而为人,芳华刹那,真的不必太多要求,一盏茶,一本书,一颗笃静的心,三两心灵知己,兴趣爱好一二,足矣。亦舒说:“什么叫做理想生活?不用吃得太好穿得太 好住得太好,但必需自由自在,不感到任何压力,不做工作的奴隶,不受名利的支配,有志同道合的伴侣,活泼可爱的孩子,丰衣足食,已经算是理想。”时间如此猝不及防, 生命如此仓促,忠于自己的内心才是真正的勇敢,以不张扬的姿态,将自己活成一道独一无二的风景,才是最大的成功。试问,你有多久没有靠在门槛上看月亮了,你有多久 没有在家门口的那棵大树下乘凉了,你有多久没有因为一个人一件事而心生感动了,你又有多久没有审视自己的内心了?与命运的较量中,我们被迫前行,却忘记了来时的方
八年级上册数学11.3.2多边形内角和

提示: 1.六边形的每一个外角和相邻的 内角有什么关系? 2.六边形的6个外角加上与它们相 邻的内角,所得总和是多少? 3.上述总和与六边形的内角和、 外角和有什么关系?
E 5
4
D3
F
C
6
2
A1 B
1.六边形的每一个外角和相邻的内角有什么关系? 任意一个外角加上与它相邻的内角等于180°.
2.六边形的6个外角加上与它们相邻的内角,所得总 和是多少? 每一个外角加上与它相邻的内角等于180°,所以 六个外角加上与它们相邻的内角等于180°×6.
解:(1)四边形的内角和为360°,
则x°+x°+140°+90°=360°,解得x=65.
(2)四边形的内角和为360°,
则∠1+75°+120°+80°=360°,解得∠1=85°,
因为∠1+x°=180°,所以x=95.
例4 一个多边形的各内角都等于120°,它是几边形?
解:设这个多边形的边数为n,
内角的大小,并计算出四个内角的和是多少? 经过测量发现四边形的四个内角和为360°.
试用三角形内角和定理来证明任意一个四边形的内 角和为360°.利用对角线将四边形分成三角形来求 解.
如图,在四边形ABCD中,连接对角线AC,求四边形 ABCD的内角和.
解:∵对角线AC将四边形分为△ACD和△ACB,
(2)小李同学在计算一个n边形的内角和时不小心多加了一 个内角,得到的内角之和是1 380°,则这个多边形的 边数n的值是多少?多加的这个内角度数是多少? 解:设多加的这个内角度数为α,则(n-2)·180°= 1 380°-α.∵1 380°=7×180°+120°,多边形的 内角和应是180°的倍数,∴n=9,α=120°. 答:这个多边形的边数n的值是9,多加的这个内角 度数是120°.
多边形的内角和与外角和(第2课时)

探究新知
6.4 多边形的内角和与外角和
问题解决:
(1)小明每从一条街道转到下一条街道时,身体转过的 角是哪个角?
∠1,∠2,∠3,∠4,∠5
1A
(2)他每跑完一圈,身体转过
B
5Hale Waihona Puke 的角度之和是多少?2 1+2+3+4+5
E
(3)你能求出1+2+3+4+5的 C 结果吗?
3
4 D
探究新知
6.4 多边形的内角和与外角和
A.6
B.12
C.16
D.18
探究新知
6.4 多边形的内角和与外角和
例2 一个多边形的内角和等于它的外角和的3倍,它是几边形?
解:设这个多边形是n边形, 则它的内角和为(n-2)·180°,外角和为360°. 则根据题意,得(n-2)·180°=3×360°. 解得n=8,所以这个多边形是八边形.
问题1:任意一个外角和它相邻的内角有什么关系?
互补
问题2:五个外角加上它们分别相邻的五个内角和是多少? 5×180°=900°
探究新知
6.4 多边形的内角和与外角和
问题3:这五个平角和与五边形的内角和、外角和有什么 关系?
五边形外角和 =5个平角 -五边形内角和 =5×180°-(5-2) × 180° =360 °
2.某正多边形的一个外角的度数为60°,则这个正多边形的边 数为( A )
A.6
B.8
C. 10
D. 12
课堂检测
6.4 多边形的内角和与外角和
拓广探索题
如图,AP,CP分别是四边形ABCD的外角∠DAM, ∠DCN的
平分线,设∠ABC=α, ∠APC=β,则∠ADC的度数为( C )
《多边形的内角和》教案

《多边形的内角和》教案一、教学目标:1. 让学生理解多边形的内角和的概念。
2. 引导学生通过观察、思考、探究,发现多边形内角和的计算规律。
3. 培养学生运用数学知识解决实际问题的能力。
二、教学内容:1. 多边形的内角和的概念。
2. 多边形内角和的计算规律。
三、教学重点与难点:重点:多边形的内角和的概念,多边形内角和的计算规律。
难点:发现并证明多边形内角和的计算规律。
四、教学方法:1. 采用问题驱动的教学方法,引导学生观察、思考、探究。
2. 利用几何画板软件,直观展示多边形的内角和。
3. 分组讨论,合作学习,培养学生的团队协作能力。
五、教学过程:1. 导入:通过展示一些多边形图片,引导学生关注多边形的内角和。
2. 新课导入:介绍多边形的内角和的概念,让学生理解多边形内角和的意义。
3. 探究活动:引导学生观察、思考多边形内角和的计算规律。
4. 小组讨论:分组讨论,让学生合作探究多边形内角和的计算规律。
5. 成果展示:各小组代表展示探究成果,总结多边形内角和的计算规律。
6. 讲解与示范:讲解多边形内角和的计算方法,并利用几何画板软件进行示范。
7. 练习与巩固:布置一些练习题,让学生运用所学知识解决问题。
8. 总结与反思:对本节课的内容进行总结,引导学生反思学习过程。
9. 课后作业:布置一些课后作业,巩固所学知识。
10. 教学反思:对课堂教学进行总结,反思教学过程中的优点与不足,为下一步教学做好准备。
六、教学评价:1. 评价学生对多边形内角和概念的理解程度。
2. 评价学生是否能运用多边形内角和计算规律解决实际问题。
3. 评价学生在小组讨论中的参与程度及团队协作能力。
七、教学反馈:1. 课后收集学生练习作业,分析学生掌握情况。
2. 课堂观察学生参与度,了解学生对教学内容的兴趣。
3. 听取学生对教学过程的建议和意见,以便改进教学方法。
八、教学拓展:1. 引导学生进一步研究多边形的其他性质,如外角和、对角线等。
2019-2020学年八年级数学上册11.3多边形及其内角和第2课时教案新版新人教版 .doc

2019-2020学年八年级数学上册11.3多边形及其内角和第2课时教案新版新人教版教学内容多边形的内角和.教学过程一、新课导入说出正方形、长方形的内角和都等于度,其他四边形的内角和等于多少?二、探究新知1.多边形的内角和让学生任意画一个四边形,量出它的4个内角,计算它们的和.再画几个四边形,量一量,算一算.你能得出什么结论?提示:能否利用三角形内角和等于180°得出这个结论?要用三角形内角和定理证明四边形的内角和等于360°,只要将四边形分成几个三角形即可.学生独立思考交流后,师生完成证明过程.如下图,在四边形ABCD中,连接对角线AC,则四边形ABCD被分为△ABC和△ACD两个三角形.由此可得∠DAB+∠B+∠BCD+∠D=∠1+∠2+∠B+∠3+∠4+∠D=(∠1+∠B+∠3)+(∠2+∠4+∠D).∵∠1+∠B+∠3=180°,∠2+∠4+∠D=180°,∴∠DAB+∠B+∠BCD+∠D=180°+180°=360°.即四边形的内角和等于360°.类比上面的过程,你能推导出五边形和六边形的内角和各是多少吗?请填空:把一个多边形分成几个三角形,还有其他分法吗?由新的分法,能得出多边形内角和公式吗?2.内角和的应用例1 如果一个四边形的一组对角互补,那么另一组对角有什么关系?解:如图,在四边形ABCD中,∠A+∠C=180°.∵∠A+∠B+∠C+∠D=(4-2)×180°=360°,∴∠B+∠D=360°-(∠A+∠C)=360°-180°=180°.这就是说,如果四边形的一组对角互补,那么另一组对角也互补.3.多边形的外角和例2 如下图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和.六边形的外角和等于多少?分析:考虑以下问题:(1)任何一个外角同与它相邻的内角有什么关系?(2)六边形的6个外角加上与它们相邻的内角,所得总和是多少?(3)上述总和与六边形的内角和、外角和有什么关系?联系这些问题,考虑外角和的求法.解:六边形的任何一个外角加上与它相邻的内角都等于180°.因此六边形的6个外角加上与它们相邻的内角,所得总和等于6×180°.这个总和就是六边形的外角和加上内角和.所以外角和等于总和减去内角和,即外角和等于6×180°-(6-2)×180°=2×180°=360°.思考:如果将例2中六边形换为n边形(n是不小于3的任意整数),可以得到同样结果吗?教师引导学生进行思考,然后师生共同得到:多边形的外角和等于360°.三、课堂小结1.记住多边形内角和定理及其推导过程.2.知道把多边形分成三角形的两种方法.3.记住多边形外角和定理及其推导过程.2.能利用多边形外角和定理解答有关问题.四、布置作业习题11.3第4、5、6题.教学反思:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
D
C
5
探索四边形、五边形、六边形的外角和
问题2 如图,你能仿照上面的方法求四边形的外
角和吗?
由 ∠BAD +∠1 =180°, ∠ABC +∠2 =180°,
A1 B
2
∠BCD +∠3 =180°,
∠ADC +∠4 =180°, D
C
得∠BAD + ∠1 + ∠ABC
4
3
+∠2 +∠BCD +∠3 +∠ADC +∠4 =180°×4.
由∠BAD +∠ABC +∠BCD +∠ADC =180°×2,得
∠1 +∠2 +∠3 +∠4 =1多8边0形°及其×内角4和第-2课1时80°×2 =360°. 6
探索四边形、五边形、六边形的外角和
问题3 五边形的外角和等于多少度?六边形呢? 仿照上面的方法试一试.
类比求三角形、四边形的外角和的方法求出五边 形的外角和是360°,六边形的外角和是360°(解答 过程略).
在行程中转过的各个
角的和,就是多边形的外
角和.由于走了一周,所
转过的各个角的和等于一
个周角,所以多边形外角
和等于360°.
A
多边形及其内角和第2课时
10
巩固多边形外角和公式
例1 一个多边形的内角和等于它的外角和的3 倍, 它是几边形?
解:设这个多边形为 n 边形, 根据题意,可列方程 ( n -2)×180°=3×360°. 解得 n =8.
八年级 上册
11.3 多边形及其内角和 (第2课时)
多边形及其内角和第2课时
1
课件说明
• 本节课内容主要是在学习了三角形的内角和、外角 和、多边形的内角和的基础上,进一步研究多边形 的外角和.
多边形及其内角和第2课时
2
课件说明
• 学习目标: 探索并掌握多边形的外角和公式.
• 学习重点: 探索并掌握多边形的外角和公式.
多边形及其内角和第2课时
7
探索n 边形的外角和
问题4 你能仿照上面的方法求n 边形(n 是不小 于3 的任意整数)的外角和吗?
因为n 边形的每个内角与它相邻的外角是邻补角, 它们的和是180°,所以n 边形内角和加外角和等于 n ·180°,所以, n 边形的外角和为:
n ·180°-(n -2)·180°= 360°. 任意多边形的外角和等于360°.
答:它是八边形.
多边形及其内角和第2课时
11
课堂练习
练习1 一个多边形的内角和与外角和相等,它是 几边形?
四形
多边形及其内角和第2课时
12
课堂练习
练习2 是否存在一个多边形,它的每个内角都等 于相邻外角的 1 ?为什么?
5 解:不存在.
理由:如果存在这样的多边形,设它的一个外角
为x ,则对应的内角为180°-x , 于是 1 x =180°- x,解得 x =150°.
多边形及其内角和第2课时
3
探索四边形、五边形、六边形的外角和
问题1 我们知道,三角形的内角和是180°,三 角形的外角和是360°.得出三角形的外角和是360° 有多种方法.如图,你能说说怎样由外角与相邻内角
互补的关系得出这个结论吗? E
B2
F
多边形及其内角和第2课时
A
1
3
D
C
4
探索四边形、五边形、六边形的外角和
由 ∠1 +∠BAE =180°,∠2 +∠CBF =180°,
∠3 +∠ACD =180°,
得 ∠1 +∠2 +∠3 +∠BAE +∠CBF +∠ACD =540°.
由 ∠1 + ∠2 + ∠3 = 180°,得
∠BAE +∠CBF +∠ACD
E
= 540° - 180°
A
= 360°.
1
B2
F
多边形及其内角和第2课时
5 这个多边形的边数为:360°÷150°=2.4,而边数
应是整数,因此不存在这样的多边形.
多边形及其内角和第2课时
13
课堂小结
(1)本节课学习了哪些主要内容? (2)我们是怎样得到“多边形外角和等于360°”这
一结论的?
多边形及其内角和第2课时
14
多边形及其内角和第2课时
8
探索n 边形的外角和
我们也可以在问题4 的基础上这样理解多边形外角 和等于360°.
如图,从多边形的一
个顶点A 出发,沿多边形 的各边走过各顶点,再回
到点A,然后转向出发的 方向.
A
多边形及其内角和第2课时
9
探索n 边形的外角和
我们也可以在问题4 的基础上这样理解多边形外角 和等于360°.