用平方差公式分解因式
利用完全平方差公式进行因式分解

因式分解的几种方法把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。
因式分解的方法多种多样,现总结如下:1、提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
例1、分解因式x3 -2x 2-xx3 -2x2 -x=x(x2 -2x-1)2、应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。
例2、分解因式a2 +4ab+4b2解:a2 +4ab+4b2 =(a+2b)23、分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)例3、分解因式m2 +5n-mn-5m解:m2 +5n-mn-5m= m 2-5m -mn+5n= (m2 -5m )+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)4、十字相乘法对于mx2 +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)例4、分解因式7x2 -19x-6分析: 1 ×7=7, 2×(-3)=-61×2+7×(-3)=-19解:7x2 -19x-6=(7x+2)(x-3)5、配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
例5、分解因式x2 +6x-40解x2 +6x-40=x2 +6x+( 9) -(9 ) -40=(x+ 3)2 -(7 ) 2=[(x+3)+7]*[(x+3) – 7]=(x+10)(x-4)6、拆、添项法可以把多项式拆成若干部分,再用进行因式分解。
因式分解公式平方差公式

因式分解公式平方差公式因式分解公式中的平方差公式,那可是数学世界里的一个超级实用的工具!咱们先来看看啥是平方差公式。
简单说,就是 a² - b² = (a + b)(a - b) 。
这公式看着简单,用起来可厉害着呢!就拿我曾经教过的一个学生小明的例子来说吧。
有一次课堂练习,题目是分解因式 x² - 25 。
小明一开始抓耳挠腮,不知道从哪儿下手。
我就提醒他,看看这式子像不像平方差公式的样子?他眼睛一亮,马上反应过来,25 不就是 5 的平方嘛,这式子不就是 x² - 5²嘛。
然后,他迅速写下 (x + 5)(x - 5) ,那脸上的表情,别提多得意了。
再比如,遇到 9m² - 4n²这样的式子。
咱们一看,9m²就是 (3m)²,4n²就是 (2n)²,那这就可以用平方差公式分解为 (3m + 2n)(3m - 2n) 。
平方差公式在解决实际问题中也大有用处。
比如说,要计算一个长方形场地的面积,已知它的长是 (x + 3) 米,宽是 (x - 3) 米,那面积就是 (x² - 9) 平方米。
这时候用平方差公式一分解,就能更清楚地知道具体数值。
而且啊,平方差公式还能帮我们在做数学证明题的时候找到思路。
有些看起来特别复杂的式子,一旦发现能用平方差公式分解,就好像找到了打开难题大门的钥匙。
我还记得有一次考试,有一道题是分解 16a⁴ - b⁴。
很多同学都被难住了,但那些真正掌握了平方差公式的同学,很快就把它分解为 (4a²+ b²)(2a + b)(2a - b) ,轻松拿下分数。
在数学的学习中,平方差公式就像是我们的得力助手,只要用对了地方,就能让难题变得简单。
所以同学们一定要好好掌握这个公式,多做练习,让它成为我们解题的神器!总之,平方差公式虽然简单,但是用处多多。
第1课时 用平方差公式进行因式分解

当堂反馈
即学即用
1.下列多项式中能用平方差公式分解因式的是( )A.a2+(-b)2 B.5m2-20mnC.-x2-y2 D.-x2+9
D
2.分解因式(2x+3)2 -x2的结果是( )A.3(x2+4x+3) B.3(x2+2x+3)C.(3x+3)(x+3) D.3(x+1)(x+3)
=6.82-3.22
=(6.8+3.2)(6.8 - 3.2)
=10×3.6
=36 (cm2)
答:剩余部分的面积为36 cm2.
5. (1)992-1能否被100整除吗?
解:(1)因为 992-1=(99+1)(99-1)=100×98,
所以,(2n+1)2-25能被4整除.
(2)n为整数,(2n+1)2-25能否被4整除?
=5m2(a2+b2)(a2-b2)
(2)解:原式=ab(a2-4)
=ab(a+2)(a-2)
有公因式的先提公因式再用平方差公式
分解因式后,一定要检查是否还有能继续分解的因式,若有,则需继续分解.
【例3】 计算下列各题:(1)1012-992; (2)53.52×4-46.52×4.
解:(1)原式=(101+99)(101-99)=400;
(2)原式=4(53.52-46.52)
=4(53.5+46.5)(53.5-46.5)
=4×100×7=2800.
方法总结:较为复杂的有理数运算,可以运用因式分解对其进行变形,使运算得以简化.
【例4】已知x+y =7, x-y=5,求代数式x2-y2-2y+2x的值.
平方差公式因式分解课件

平方差公式的证明
以几何解释和代数推导的方式,详细介绍平方差公式的证明,并提供一些实例来巩固理解。
平方差公式的应用
展示平方差公式在解决实际数学问题中的应用,包括面积计算、数列求和和方程式的变形等。
因式分解实例1:4x^2 - 9y^2
通过实际例子演示如何应用平方差公式进行因式分解,帮助学生更好地理解 和掌握这一概念。
平方差公式的探究
发掘更深层次的平方差公式相关概念,讨论剩余和约分等概念,并展示它们 是如何相互影响的。
平方差公式的历史背景
介绍平方差公式的历史渊源和相关数学家,帮助学生了解数学知识的发展和演变。
平方差公式在实际生活中的应用
探索平方差公式在实际生活中的实际应用,如建筑设计、物理力学和经济分析等领域。
平方差公式因式分解ppt 课件
本课件将带您了解平方差公式因式分解的概念、应用和推广。深入浅出,轻 松掌握这一数学难题,让您的数学技巧更上一层楼!
平方差公式介绍
通过直观的示意图,了解平方差公式是什么,并掌握其重要性以及在因式分解中的作用。
பைடு நூலகம்
什么是因式分解?
深入分析因式分解的定义,展示因式分解在数学中的重要性,以及为什么它 是数学解决难题的基础。
因式分解实例5:9a^2 - 16b^2
最后一个实例将帮助学生巩固平方差公式因式分解的知识,并解决更具挑战 性的方程式问题。
平方差公式的推广
探讨平方差公式的推广应用,如立方差公式和高次幂差公式,并帮助学生扩 展他们的数学思维。
平方差公式的变形1:(a+b)^3
了解如何将平方差公式应用于(a+b)^ 3的展开,并解决更复杂的代数问题。
平方差公式的变形2:(a+b)^4
8用平方差公式分解因式

3
x2
y3
2
0.1z 2
4
3 x2 y3 0.1z 3 x2 y3 0.1z
4
4
附:判断
m2 4k2 m2 2k 2
m 4km4k
22
用平方差公式进行简便计算:
1) 38²-37² 2) 213²-87² 3) 229²-171² 4) 91×89
a4 a2b2
解二:原式 a2 2 ab2
a2 aba2 ab
aa b aa b
a2 a ba b
哪种方 法好些?
多项式
分解因式的结果
(1) a2 4 a 2a 2
(2) (3) (4)
16 x2
当我们进行因式分解时,
一、如果多项式各项含有公 因式,一般先提出公因式;
二、分解因式必须分解到每一 个因式都不能再分解为止。
1 1 a 2b2 4
xቤተ መጻሕፍቲ ባይዱ y2 9m2
4 x4 x
1 1 ab1 1 ab 2 2
x y3mx y3m
在如图所示的圆环中,外圆半径R=9.5cm, 内圆半径r=8.5cm,求圆环(阴影部分)的面积 (取3.14,结果保留三个有效数字)
分析:圆环(阴影部分)的
r
面积= S大圆面积 S小圆面积
R
R2 r 2
R2 r 2
R rR r
小结
1、因式分解的一个重要工 具————平方差公式
2、我们在进行因式分解时 应注意的问题
运用平方差公式分解因式
a2 b2 a ba b
a2 b2 a ba b
用完全平方差公式因式分解

x2 x1
4
(4)4x2 2xy y2
练一练:按照完全平方公式填空:
(1) a2 10a ( 25 ) ( a 5 )2
(2) ( a2 y2) 2ay 1 ( ay 1 )2
(3) 1 ( rs ) r 2s2 ( 1 rs )2
4
2
平方差公式法和完全平方公式法统称公式法。 平方差公式法:适用于平方差形式的多项式 完全平方公式法:适用于完全平方式
用完全平方公式分解因式的关键是:在判断一个多项式 是不是一个完全平方式。 做一做:下列多项式中,哪些是完全平方式?
(1) a2 4a 4 (2) (3) m2n2 4 4mn
2 (3)a 2a 1
2 (4)4 x 4 x 1
(5)ax2 2a2 x a3
(6) 3x2 6xy 3y2
(7) (a+b)4-10(a+b)2+25
例2.用简便方法运算。
(1)2006 2 62 (2)132 213 3 9 (3)112 39 2 66 13
分解因式4x2-9 =(2x)2-32=(2x+3)(2x-3)
能用平方差公式进行因式分解的多项式有 什么特点?
(1)两项 (2)平方差
下面的多项式能用平方差公式分解因式吗? (1) a2+2ab+b2 (2) a2-2ab+b2
完全平方公式: 完全平方公式
(a+b)2 = a²+2ab+ b² 反过来就是:
已知a、b、c是三角形的三边,请你判断 a2-b2+c2-2bc的值的正负
解: a2-b2+c2-2bc=a2-(b+c)2
因式分解的平方差公式

因式分解的平方差公式
平方差公式是统计学中一个重要的概念,它可以用来计算一组数据的方差。
通常,它是用来计算数据的变异程度的指标,而且它是通过因式分解来计算的。
平方差公式(也称为样本方差公式)可以表示如下:
s² = ∑(xi - x)² / (n - 1)
其中,s²是平方差,xi是样本中每个数据,x是样本的平均数,n 是样本的数量。
从这个公式可以看出,平方差是由两部分组成的,一部分是每个样本数据与样本平均数之差的平方,而另一部分是一个常数(n-1)。
每个样本数据与样本平均数之差的平方是平方差的基本元素,它可以表示每个样本的离散程度。
而常数(n-1)是用来将每个样本的离散程度综合起来,从而得出样本整体的变异程度。
因此,可以认为平方差公式是由两个部分组成的,一部分是每个样本数据与样本平均数之差的平方,另一部分是一个常数(n-1)。
这两部分组成的公式可以用来计算一组数据的变异程度,从而可以对数据进行分析和比较。
总之,平方差公式是由两部分组成的,它可以用来计算一组数据的
变异程度,它是通过因式分解来计算的。
它的一部分是每个样本数据与样本平均数之差的平方,而另一部分是一个常数(n-1),这两部分组成的公式可以用来计算一组数据的变异程度,从而可以对数据进行分析和比较。
因式分解:平方差公式

1.什么是因式分解?
把一个多项式分解成几个整式的积的形式.
2.什么是提公因式法分解因式?
在一个多项式中,若各项都含有相同的因式,即公 因式,就可以把这个公因式提出来,从而将多项式 化成几个因式乘积的形式.
如果一个多项式没有公因式,是否就不能分解因式了?
1.计算:
(1)(x+1)(x-1)
此处运用了什么公式? 逆用 平方差公式
试计算:9992 – 12 = (999+1)(999–1) = 1000×998 = 998000
因式分解:(1)x2 – 422 ;(2)y2 – 2552 = (x+2)(x–2) = (y+5)(y–5)
这些计算过程中都逆用了平方差公式
即:a2 b2 a ba b
x2 1
(2) (y+4)(y-4)
y2 16
2. 根据1题的结果分解因式:
(1)x 2 1
=(x+1)(x-1)
(2) y 2 16
=(y+4)(y-4)
你能将多项式 y2-25 与多项式 x2-4 分解因式吗?
y2 -25=(y+5)(y-5) x2 -4=(x+2)(x-2)
由以上1、2两题你发现了什么?
2 4 6 8 10 12
4022 4024
通过本课时的学习,需要我们掌握:
1.利用平方差公式分解因式: a2-b2=(a+b)(a-b) 2.因式分解的步骤是:首先提取公因式,然后考虑用公式法. 3.因式分解应进行到每一个因式不能分解为止. 4.计算中应用因式分解,可使计算简便.
纯数学是魔术家真正的魔杖. ——诺瓦列斯
(9) 2a2-8
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学内容使用平方差公式分解因式
目标知识
技能
1.了解使用公式法分解因式的意义.
2.知道提公因式法是分解因式的首先考虑的方法,再考虑用平方差公式分解因
式.
3.分解因式要分解到不能再分解为止.
过程
方法
1.通过对平方差公式特点的辨析,培养学生的观察水平.
2.训练学生对平方差公式的使用水平.
情感
态度
在引导学生逆用乘法公式的过程中,培养学生逆向思维的意识,同时让学生了
解换元的思想方法.
教学重点掌握使用平方差公式分解因式.
教学难点灵活使用平方差公式,解决实际问题.
学情分析学生已熟练掌握乘法公式中的平方差公式,为本节课的的教学奠定了良好的基础。
学生基本掌握良好的预习习惯,为本节课的难点突破提供了一定的良好条件。
教学方法启发式教学
教学准备多媒体
教时安排1课时
教学流程学法指导备注一、复习旧知
1.提问:1、(a+b)(a-b)=
用语言叙述为
二、探究新知
1.探索练习
“数学来源于生活,也应用于生活”.双休日,装潢师傅出了这样一道题:要在一个边长为12.75cm的正方形纸板内,割去一个边长为7.25cm的正方形,剩余部分的面积是多少?不使用计算器,你能计算出来吗?教师引导学生回顾,
学生积极回答.
教师提出问题,学生
认真思考大胆回答。
学生思考回答问题.
弄懂整式乘法中的
平方差公式与因式
通过复习
上节课所
学的平方
差公式内
容,为探索
用平方差公
式分解因式
做准备。
通过情境,
引出新知
识,激发学
4.已知x 2-y 2=-1 , x+y=2
1,求x -y 的值。
四、小结归纳
1.明确分解因式的顺序是: 先提公因式,再用公式法 分解因式必须到不能再分解为止.
2.使用平方差公式分解因式的步骤:
①先写成平方的形式;②再写成和与差的积.
纠正讲解。
学生总结,教师强调。
让学生准确使用平方差公式法实行分解因式,对所学知识心中有数。
板 书 设 计
15.4.2用平方差公式分解因式
1、平方差公式与因式分解中的平方差公式的联系与区别. 3、例题讲解
2、使用平方差公式分解因式的步骤 4、学生练习
教 学 反 思。