大学物理小论文设计--电磁学中地主要物理思想
电磁学小论文

2018/7/2
实验
由于线圈的这种绕法,我们研究了不同距离下的输出电压大小:
Distant/cm U/mv
1
0
160
2
1
80
3
1.5
54 发现,最大电压也不过160mv,而在用水平盘绕的方法时,电压却可以
达到4V。
关于频率
最初采用频率为1KHZ,得出 来的结果中,不论是漆包线
还是耳机线,在这种频率下
电流,不仅在相位上落后 ⁄ 个周期,而且其大小还与感应的线圈匝数,半径大小以及线圈的
长度有关,而且在其他条件不变的情况下,高频电明显的感觉到,如果线圈相距较远,或者摆放不在正中心的话,都会对传输电
能的效率照成巨大影响,所以如果要大规模的应用与市场的话,就要投入大量的基础设施和 人力物力。
得到一组输出电压
2
压,找到一个频率值使电压最大。
的数据,然而接着,
我们在主,次级电
3
路中拆掉了电容,
却发现在增大点处
4
实验发现:在输入频率为
的电压不减反增。
2.5MHZ时输出电压最大。
Horizon U/V shift/cm
2.7
1.04
3
2.56
3.3
2.62
3.6
2.18
关于磁共振
可以发现,在3.3cm处的 电压为2.62V对比加了震 荡电路的电压(2.30V), 不降反增,于是我们推 测,我们在这次尝试中 没有时主级电路达到谐 振频率,一方面,这是 由于我们实验仪器造成, 另一方面,谐振必须使 频率非常精确才达到效 果,而我们的实验只是 粗调,达不到效果也是 必然的
小论文参考文献: 《磁共振耦合电能传输系统功率与效率传输特性分析与优化》(李长生,张合,曹娟,刘明) 《无线电能传输系统平行多匝线圈空间位置与效率分析》(张晋勇,麦晓冬,关曼清,邱怡怡)
电磁学原理的应用论文

电磁学原理的应用论文1. 引言电磁学是物理学的一个重要分支,研究电场和磁场以及它们之间的相互作用。
电磁学原理在各个领域得到广泛应用,包括通信、能源、医学等。
本论文将探讨电磁学原理在不同领域的应用案例,并分析其原理和效果。
2. 通信领域应用2.1 电磁波传输•无线通信中常用的调制技术有频率调制、相位调制和幅度调制。
•调制技术基于电磁波的传播原理,通过改变电磁波的频率、相位或幅度来传输信息。
2.2 电磁波天线•通信系统中常用的天线类型有单极天线、双极天线、饼形天线等。
•这些天线通过辐射电磁波来实现无线通信,天线的设计和调整基于电磁学原理。
2.3 频率选择性表面•频率选择性表面(FSS)通过设计和布局特定形状和尺寸的导电元件,选择特定的频率波段进行传输。
•FSS在通信领域中被广泛应用于天线设计、电磁波隔离等。
3. 能源领域应用3.1 电磁感应发电•电磁感应发电是将磁场相对于导线产生感应电动势,并通过导线形成电流,实现能量转换的原理。
•应用电磁学原理设计的电磁感应发电装置广泛应用于各种发电系统,例如风力发电、水力发电等。
3.2 电磁辐射加热•电磁辐射加热利用电磁场对材料的吸收和转化,实现物体加热的原理。
•该原理应用于工业加热、医疗设备等领域,具有高效、环保等优势。
4. 医学领域应用4.1 磁共振成像(MRI)•磁共振成像利用人体组织对强磁场和射频信号的响应来获得影像。
•MRI是一种无创性的检查方法,应用于医学诊断、病理学研究等领域。
4.2 细胞电生理实验•细胞电生理实验通过记录和分析细胞膜上的电流、电势变化,研究细胞的电生理特性。
•应用电磁学原理的电生理研究在解析生物系统的工作原理、疾病治疗等方面具有重要意义。
5. 结论电磁学原理是现代科学和技术的核心基础,其应用涉及到多个领域。
本论文简要介绍了电磁学原理在通信、能源和医学领域的应用案例。
通过对这些案例的分析,可以看出电磁学原理在实际应用中的重要性和价值。
电磁学的原理及其应用论文

电磁学的原理及其应用论文电磁学是自然界一项重要的物理学分支,研究电荷之间的相互作用及其与磁场之间的关系。
其原理是基于麦克斯韦方程组,描述了电磁场的行为与相互作用,其中包括库仑定律、安培定律、法拉第电磁感应定律和麦克斯韦-安培定律等。
电磁学的原理在实际应用中有着广泛的应用,可以用于电路分析、电磁波传播、电磁传感器等方面。
首先,电磁学原理可以用于电路分析。
在电路中,通过应用欧姆定律和基尔霍夫定律等电磁学原理,我们可以分析电路中各个元件之间的电流和电压关系,帮助我们理解电路的工作原理,研究电路中的功率、电阻、电容和电感等参数。
例如,在设计电子设备时,我们需要通过电磁学原理计算电路中的电流和电压分布,确保电路的正常工作。
其次,电磁学原理在电磁波传播中有着重要的应用。
根据麦克斯韦方程组,我们可以推导出电磁波的传播方程,进一步研究电磁波的传播特性。
在通信系统中,例如无线电与光纤通信中,我们可以利用电磁学原理,研究电磁波在不同介质中的传播速度、传播损耗和反射折射等现象,从而优化通信系统的设计和性能。
此外,电磁学原理也有着广泛的应用于电磁传感器中。
根据法拉第电磁感应定律,当一个导体相对于磁场发生运动时会产生感应电动势。
这一原理被广泛应用于感应电机、发电机和变压器等电磁传感器中,将机械能转化为电能或者电能转化为机械能。
例如,在电能供应方面,我们利用电磁感应原理,通过转动磁铁和线圈的相对运动,产生变化的磁场,从而产生交流电,实现电能的传输和分配。
综上所述,电磁学的原理可以广泛应用于电路分析、电磁波传播和电磁传感器等方面。
通过运用电磁学原理,我们能够深入研究电磁场的特性,提高电路和通信系统的设计与性能。
在实际应用中,电磁学原理为我们解决电磁场及其相互作用的问题提供了重要的理论基础,推动了电子技术的发展和应用。
电磁学论文写作范例(导师推荐6篇)

电磁学论文写作范例(导师推荐6篇)电磁学是物理学的一个分支。
电学与磁学领域有着紧密关系,广义的电磁学可以说是包含电学和磁学;但狭义来说是一门探讨电性与磁性交互关系的学科。
主要研究电磁波,电磁场以及有关电荷,带电物体的动力学等。
我们在这里整理了六篇电磁学论文,希望给你带来灵感和启发。
电磁学论文写作范例一:题目:超材料在可重构电磁学中的应用与发展摘要:介绍了超材料在微波(0.3~300GHz)、太赫兹(0.3~100THz)和近红外频段(100~790THz)中的可重构电磁学的调控方法和研究现状,并依照功能分类,对在可重构电磁学方面的应用分别做了综合性归纳描述,最后对其在可重构电磁学方向的未来可能的发展趋势做了进一步的展望。
关键词:超材料,可重构,发展趋势超材料(Metamaterial)是可用于工程的但自然界不存在的一种材料,又叫"异向介质";"超电磁介质";或"特异电磁介质";,主要由复合材料以一定的方式重复排列形成,尺度上比涉及的波长更小。
超材料的特性不是来自基本材料的特性,而是他们新设计的结构。
通过外形、尺寸和排列方式等的精确设计能给超材料操纵电磁波的超级特性,通过吸收、增强、或波形弯曲,可以获得传统材料所不具备的益处。
恰当设计的超材料可以以一定的方式影响电磁辐射波或声波,这在一般材料中是做不到的。
超材料的出现迄今为止已有几十年,尤其是对于特定的波长有负折射率,这一现象引起工业界和学术界的广泛兴趣,超材料相关科学研究成果已有3次被《科学》杂志评选为年度十大科技突破。
超材料介质具有从负到正的折射率,其中包括零折射率。
并以其低成本、可满足多种的成本、尺寸和性能的需要,目前已使用在透镜、天线、天线罩和频率选择性表面等设计中。
特别是在引入自然界不存在的场操控特性的工程材料之后,应用更趋广泛。
最初,具有奇异电磁特性的超材料主要通过有序的亚波长谐振器实现,这使新型电磁器件的制造成为可能,包括高增益小天线、完美透镜、小型滤波器以及功率分配器、隐身斗篷、吸收器、波操纵表面和小型极化器。
电磁学的应用及原理论文

电磁学的应用及原理论文引言电磁学是物理学的重要分支,研究电荷之间的相互作用以及电场和磁场对物体的影响。
电磁学的应用十分广泛,涵盖了许多领域,包括工业、通信、医学等。
本论文将介绍电磁学的应用及其原理,探讨其在各个领域中的重要性和影响。
电磁学的基本原理电磁学的研究基于两个基本方程:电场的高斯定律和磁场的法拉第定律。
根据这些基本方程,我们可以推导出许多电磁学的定律和理论。
以下是一些电磁学的基本原理:•库仑定律:描述了两个电荷之间的力和它们之间的相互作用。
电磁力的大小与电荷之间的距离成反比,与它们的电荷量的乘积成正比。
•安培定律:描述了电流通过导线时产生的磁场。
根据安培定律,电流的大小和方向决定了所产生磁场的强度和方向。
•法拉第定律:描述了磁场对电流产生的感应力。
根据法拉第定律,当一个导体在磁场中运动时,磁场会对导体中的电荷产生力,从而产生感应电流。
电磁学的应用电磁学在工业领域中的应用电磁学在工业领域中有着广泛的应用。
以下是一些示例:1.电动机:电动机是将电能转化为机械能的设备,它利用电磁场中的相互作用来产生转矩。
电动机广泛应用于各种机械设备中,如风力发电机、电动汽车等。
2.发电机:发电机是将机械能转化为电能的设备,它利用电磁学原理来产生电流。
发电机广泛应用于电力系统中,为我们提供稳定的电力供应。
3.变压器:变压器是将交流电的电压变换为不同电压的装置,它利用电磁学原理来实现电压的转换。
变压器在电力系统中起到重要的作用,帮助实现电能的传输和分配。
电磁学在通信领域中的应用电磁学在通信领域中起着至关重要的作用。
以下是一些示例:1.电磁波传输:无线电、电视、手机等通信设备都是利用电磁波进行信息传输的。
电磁学原理帮助我们理解电磁波的传播和调制技术,从而实现高效的通信。
2.天线技术:天线是接收和发送无线电波的设备,它利用电磁学原理来实现无线通信。
不同类型的天线可以接收和发射不同频率的电磁波,如Wifi、蓝牙等。
3.电磁兼容性:电磁兼容性是指设备在电磁环境中能够正常工作,而不会相互干扰。
论文电磁学及其原理的应用

论文电磁学及其原理的应用1. 引言电磁学是研究电荷之间相互作用和电磁场的性质的学科。
它在物理学理论体系中占据着重要的地位,并且在现代科技发展中有着广泛的应用。
本文将介绍电磁学的基本原理,并探讨其在论文撰写过程中的应用。
2. 电磁学基本原理2.1 电磁场的产生和特性•电荷与电荷之间的相互作用产生电磁场。
•电磁场具有电场和磁场两个相互垂直且相互作用的成分。
•电磁场的特性包括电场强度、磁感应强度、电势和标势等。
2.2 麦克斯韦方程组麦克斯韦方程组是描述电磁场的基本方程,包括:•高斯定律:电场通过任意闭合曲面的总通量等于被该曲面围住的电荷总量除以介电常数。
•麦氏定律:磁场沿任意闭合曲面的环路积分为零。
•法拉第定律:磁感应强度的变化率等于通过该表面的电场沿边界线的环路积分。
2.3 电磁波电磁波是由变化的电场和磁场相互作用而产生的,并能够在空间中传播的波动现象。
根据频率的不同,电磁波可以分为不同的频段,如无线电波、微波、红外线、可见光、紫外线和 X 射线等。
3. 论文电磁学的应用3.1 电磁学在天文学中的应用•电磁学帮助研究天体的电磁辐射特性,从而了解宇宙的结构和演化。
•通过电磁波观测天体,可以获取宇宙中的各种信息,如星系的距离、恒星的温度、星云的组成等。
3.2 电磁学在通信技术中的应用•电磁学为现代通信技术的实现提供了基础理论和工具,如无线通信、卫星通信等。
•通过电磁波的传播和接收,实现信息的传递和交流。
3.3 电磁学在材料科学中的应用•电磁学研究材料的电磁性质,为材料的设计和应用提供理论依据。
•电磁学在超导体、磁性材料、光学材料等领域的应用日益重要。
3.4 电磁学在医学影像中的应用•电磁学在医学影像中的应用主要包括磁共振成像(MRI)、计算机断层扫描(CT)和正电子发射断层成像(PET)等。
•通过对人体内部的电磁信号的探测和分析,可以获得人体器官的结构和功能信息。
4. 结论电磁学是一门重要的学科,它的理论和应用研究对于现代科技的发展至关重要。
大学物理小论文--电磁,原理

电磁现象的原理摘要电磁学是研究电和磁的相互作用现象,及其规律和应用的物理学分支学科。
根据近代物理学的观点,磁的现象是由运动电荷所产生的,因而在电学的范围内必然不同程度地包含磁学的内容。
所以,电磁学和电学的内容很难截然划分,而“电学”有时也就作为“电磁学”的简称。
关键词:电磁学目录1.库伦定律 12.安培定律 13.法拉第定律 34.麦克斯韦电磁理论 45.总结 41.库伦定律库仑定律(Coulomb's law),法国物理学家查尔斯·库仑于1785年发现,因而命名的一条物理学定律。
库仑定律是电学发展史上的第一个定量规律。
因此,电学的研究从定性进入定量阶段,是电学史中的一块重要的里程碑。
库仑定律阐明,在真空中两个静止点电荷之间的相互作用力与距离平方成反比,与电量乘积成正比,作用力的方向在它们的连线上,同号电荷相斥,异号电荷相吸。
库仑定律:是电磁场理论的基本定律之一。
真空中两个静止的点电荷之间的作用力与这两个电荷所带电量的乘积成正比,和它们距离的平方成反比,作用力的方向沿着这两个点电荷的连线,同名电荷相斥,异名电荷相吸。
公式:F=k*(q1*q2)/r^2库仑定律成立的条件:1.真空中 2.静止 3.点电荷2.安培定律安培定则安培定则,也叫右手螺旋定则,是表示电流和电流激发磁场的磁感线方向间关系的定则。
通电直导线中的安培定则(安培定则一):用右手握住通电直导线,让大拇指指向电流的方向,那么四指的指向就是磁感线的环绕方向;通电螺线管中的安培定则(安培定则二):用右手握住通电螺线管,使四指弯曲与电流方向一致,那么大拇指所指的那一端是通电螺线管的N极。
直线电流的安培定则对一小段直线电流也适用。
环形电流可看成多段小直线电流组成,对每一小段直线电流用直线电流的安培定则判定出环形电流中心轴线上磁感强度的方向。
叠加起来就得到环形电流中心轴线上磁感线的方向。
直线电流的安培定则是基本的,环形电流的安培定则可由直线电流的安培定则导出安培定则图示,直线电流的安培定则对电荷作直线运动产生的磁场也适用,这时电流方向与正电荷运动方向相同,与负电荷运动方向相反。
大学物理电磁学的基本原理

大学物理电磁学的基本原理电磁学是物理学的一个分支,研究电荷和电流之间相互作用的规律以及电磁场的性质和行为。
在大学物理学习的过程中,掌握电磁学的基本原理是非常重要的。
本文将介绍大学物理电磁学的基本原理,帮助读者理解电磁学的核心概念。
一、库仑定律库仑定律是电磁学的基石之一,描述了两个电荷之间的相互作用力。
库仑定律可以表示为:F = k * |q1 * q2| / r^2其中,F为两个电荷之间的相互作用力,q1和q2为电荷的大小,r为两个电荷之间的距离,k为一个常数。
库仑定律说明了电荷之间的相互作用力与电荷大小成正比,与距离的平方成反比。
这个定律在许多电磁现象的解释中起着重要作用。
二、电场电场是电荷周围的一种物理量,用向量表示,表示电荷对其他电荷施加的作用力。
电场可以用库仑定律来定义:E =F / q其中,E为电场强度,F为电荷所受的力,q为测试电荷。
电场可以通过电场线来可视化,电场线表示了电场的方向和强度。
电场线由正电荷指向负电荷,线的密度表示电场强度的大小。
三、电势电势是描述电场能量的物理量,也是描述电荷周围电场性质的一种方式。
电势可以理解为单位正电荷在电场中所具有的能量。
电势可以通过电势差来定义:V = W / q其中,V为电势,W为单位正电荷所具有的能量,q为测试电荷。
电势差表示了两个位置之间的电势差异。
电荷会沿着电势差的方向移动,从高电势到低电势。
四、安培定律和法拉第电磁感应定律安培定律描述了电流对磁场的产生作用。
安培定律可以表示为:B = μ * I / (2πr)其中,B为磁场强度,μ为真空磁导率,I为电流强度,r为距离电流的距离。
法拉第电磁感应定律描述了磁场对电荷运动所产生的电动势。
根据法拉第电磁感应定律,当磁场穿过一个闭合电路时,电路中会产生电动势。
五、麦克斯韦方程组麦克斯韦方程组是描述电磁学的基本方程。
麦克斯韦方程组包括四个方程:1. 麦克斯韦第一方程:∇·E = ρ / ε₀2. 麦克斯韦第二方程:∇×E = -∂B / ∂t3. 麦克斯韦第三方程:∇·B = 04. 麦克斯韦第四方程:∇×B = μ₀J + μ₀ε₀∂E / ∂t其中,E为电场强度,B为磁场强度,ρ为电荷密度,J为电流密度,ε₀和μ₀分别为真空电常数和真空磁导率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁学中的主要物理思想
姓名:学号:
摘要
电磁运动是物质的又一种基本运动形式,电磁相互作用是自然界已知的四种基本相互作用之一,也是人们认识得较深入的一种相互作用。
在日常生活和生产活动中,在对物质结构的深入认识过程中,都要涉及电磁运动。
因此,理解和掌握电磁运动的基本规律,在理论上和实际上都有及其重要的意义,这也就是我们所说的电磁学。
关键词:电磁学,电磁运动
目录
1.库伦定律 (1)
2.安培定律 (2)
3.法拉第定律 (3)
4.麦克斯韦电磁理论 (5)
5.总结 (7)
6.参考文献 (8)
1.库伦定律
1785年法国物理学家库伦用扭秤实验测定了两个带电球体之间的相互作用的电力。
库伦在实验的基础上提出了两个点电荷之间的相互作用的规律,即库仑定律:
在真空中,两个静止的点电荷之间的相互作用力,其大小和他们电荷的乘积成正比,与他们之间距离的二次方成反比;作用的方向沿着亮点电荷的连线,同号电荷相斥,异号电荷相吸。
这是电学以数学描述的第一步。
1.此定律用到了牛顿力的观念。
这成为了牛顿力学中一种新的力。
与牛顿万有引力有相同之处。
2.此定律成了电磁学的基础。
3.这也是电荷单位的来源。
因此,虽然库伦定律描述电荷静止时的状态十分精准,单独的库伦定律却不容易,以静电效应为主的复印机,静电除尘、静电喇叭等,发明年代也在1960以后,距库伦定律之发现几乎近两百年。
我们现在用的电器,绝大部份都靠电流,而没有电荷(甚至接地以免产生多余电荷)。
也就是说,正负电仍是抵消,但相互
移动。
2.安培定律
法国物理学家安培(Andre Marie Ampere, 1775-1836)提出:所有磁性的来源,或许就是电流。
他在1820年,听到奥斯特实验结果之后,两个星期之内,便开始实验。
五个月内,便证明了两根通电的导线之间也有吸力或斥力。
这就是电磁学中第二个最重要的定理“安培定律”:
两根平行的长直导线中皆有电流,若电流方向相同,则相吸引。
反之,则相斥。
力之大小与两线之间距离成反比,与电流之大小成正比。
以后,安培又证实了通了电流的筒状线圈之磁性,与磁铁棒完全一样。
故他提出假说:物质之磁性,皆是由物质内的电流而引起的。
这使磁性成为电流的
生成物──他后来被誉为“电磁学”的始祖(电与磁从此在物理中是分不开的)。
他的名字,也成了电流的单位。
安培这个发现,在应用上极为重要。
它提出了用电流而发出动力,使物体动起来的方法,准确而可靠。
因此,它是电流计(以及各种电表)、电马达、电报,电话之原理。
特别是电报,在1835年以后就成了新兴事业,大赚其钱。
安培定律之后,电磁学理论与应用之发展可以说是风起云涌。
3.法拉第定律
法拉第早年是达维(1807年发现金属钠和钾)的助手,他对电解有很周密的研究。
他发现了通电量与分解量有一定的关系,并且与被分解的元素之原子量有一定的关系。
由此,可以大致导致两个结论:
(1) 每个原子中有一定的电含量。
(2)原子在化合时,这些电量起了作用,而通电可使化合物分解。
因此,牛顿寻求的分子中的化合之力,必与电有关。
此想法在1807年由达维提出,法拉第进一步加以验证,至今尚是正确的。
牛顿的万有引力定律提出之初,受到很多质疑。
其中之一是:很多人认为,两个相距遥远的物体,无所媒介,而相互牵引,是不可置信的。
但是由于万有引力之大获成功,这种超距力的概念,不久便被普遍接受了。
电磁学中的库伦、安培等力之观念,起始时亦是这种超距力。
在牛顿前一百年的英国人吉伯特是伊利莎白一世的御医。
他的一本“论磁”是有系统地研究电磁现象的第一本书(大部份说磁,因其在当时比较有用),其重要性是扬弃了磁性之神秘色彩,以一种客观的自然现象来描述之。
吉伯特的“论磁”中曾提出“力线”的观念。
这就是说:磁性物质发出一种“力线”,其它磁性物质遇到了这“力线”便受到力之作用。
这样就避过了“超距力”的“反直觉”。
(a)力线不断、不裂、不交叉打结,但可以有起头与终止。
例如:电场之力线由
正电荷发出,由负电荷接受。
力线的数量与电荷之大小成正比。
(b)力线像有弹性的线,在空中互相排斥又尽量紧绷。
其密度与施力之大小成正比。
(c)力线有方向性,电力线的方向是对正电荷的施力方向(负电受力方向相反),在磁力线是对“磁北极”的施力方向。
法拉第则更进一步,提出了场的概念:空中任意一点,虽然空无一物,但有电场或磁场之存在,这种场可使带电或带磁之物质受力。
而“力线”则是表现“场”的一种方式。
但是,法拉第的“场”观念,当时也受到强烈的质疑与反对。
最重要的理由是这观念不及“超距力”之精确。
把“场”观念精确化,数学化的是后来的麦克斯韦。
法拉第发现,一个移动的磁铁或通了电流的筒状线圈,也可以使附近的线圈中,产生感应电流──这就是电磁学中第三个最重要的法拉第定律。
这个定律与库伦、安培都不同;它是动态的。
第一线圈中的电流变化越快,第二线圈中的电流越大。
或磁铁、有电流的筒状线圈,移动得越快,第二线圈中的电流也越大。
这就是发电机的原理。
4.麦克斯韦电磁理论
与法拉第之实验天才对比,麦克斯韦则是长于数学的理论物理学家的典型。
他生于苏格兰的一个小康之家。
自幼便充份显示了数学之才能。
他先在阿伯丁大学任教,以后转往剑桥。
在物理中,今日麦克斯威之重要性,几可与牛顿、爱因斯坦等量齐观。
但生前,麦克斯威并不受其故乡苏格兰之欢迎。
他在剑桥大学则受到重用。
他在1855年,发表了《法拉第之力线》一文,受到将退休的法拉第的鼓励。
1862年,他由理论推导出:电场变化时,也会感应出磁场。
这与法拉第的电感定律相对而相成,合称电磁交感。
此后他出版了《电磁场的动态理论》,《电磁论》,其重要性可以与牛顿的《自然哲学的数学原理》相提并论。
通过了数学中的向量分析,麦克斯韦写下了著名的麦克斯威方程式,不但完整而精确地描述了所有的已知电磁场之现象,而且有新的预言。
其中最重要的是电磁波:
(1)由于电磁交感,故电磁场可以在真空中以波的形式传递。
(2)计算之结果,这波之速度与光速一致,故光是一种可见的电磁波。
(3)这种波亦携带能量、动量等,并且遵从守恒律。
“光是一种电磁波!”这句话现在是常识,在当年则骇人听闻。
麦克斯韦只靠纸上谈兵,就做大胆宣言,也难怪当年根本不信有电磁波的人居多。
但他自己却信心满满。
有人告诉他有关的实验结果,不完全成功,他毫不在意。
他有信心他的理论一定是对的。
──以后的理论物理学家很多人就学了他这种态度。
德国人赫兹是第一个在实验室中证明电磁波存在的人。
他先把麦克斯韦的电磁学改写成今天常见的形式。
然后在1886-1888年,做了一系列的实验,不但证明电磁波存在,而且与光有相同波速,并有反射、折射等现象,也对电磁波性质(波长、频率)定量测定。
当然,也同时发展出发射、接收电磁波的方法──这是所有无线通讯的始祖。
5.总结
麦克斯威的电磁理论,成为现在理工科的学生都要修的电磁学。
简单的说来,电磁学核心只有四个部分:库伦定律、安培定律、法拉第定律与麦克斯威方程式。
并且顺序也一定如此。
这可以说与电磁学的历史发展平行。
其原因也不难想见;没有库伦定律对电荷的观念,安培定律中的电流就不
容易说清楚。
不理解法拉第的磁感生电,也很难了解麦克斯威的电磁交感。
这套电磁理论,在物理学中,是与牛顿力学分庭抗礼的古典理论之一。
如果以应用之广,经济价值之大而言,犹在牛顿力学之上。
但也不能忘记,如果没有牛顿力学中力之概念,电磁学也发生不了。
电磁学中的各定律,也无法理解。
因此,
普通物理中,也必然先教力学再教电磁。
力学与电磁学被称为古典理论有两层意思:
(1)它可以自圆其说,没有内在的矛盾。
(2)但是到了廿世纪量子理论确立后,它们被修改了。
力学后来被修改为量子力学,电磁学被修改为量子电动力学。
然而,在原子之外,这两个古典理论仍是非常精确,故理工学生仍然不得不学它们。
回顾电磁学的历史,是很有趣的。
一直到十八世纪中,电磁似乎只是一种新奇的玩具──科学与艺术一样,起步时都有游戏性质──但到了后来,其产生的结果,竟然改造了世界。
当然,并不是所有科学工作都有这样大的威力。
也有些科学的成果令人不敢恭维。
然而,科学有这样的可能,却是我们不得不重视科学研究的终极原因。
6.参考文献
1.倪光炯,李洪芳,近代物理,上海科学技术出版社,(1979),393。
2.百度百科
3.维基百科。