六年级数学分数百分数应用题复习
六年级数学应用题总复习

六年级数学应用题总复习(一)姓名________【知识梳理】1、一般应用题常见的数量关系:总价= 单价×数量路程= 速度×时间工作总量=工作时间×工效总产量=单产量×数量2、平均问题:平均数是等分除法的发展。
解题关键:在于确定总数量和与之相对应的总份数。
算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。
数量关系式:数量之和÷数量的个数=算术平均数。
加权平均数:已知两个以上若干份的平均数,求总平均数是多少。
数量关系式(部分平均数×权数)的总和÷(权数的和)=加权平均数。
-差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。
数量关系式:(大数-小数)÷2=小数应得数最大数与各数之差的和÷总份数=最大数应给数最大数与个数之差的和÷总份数=最小数应得数。
3、归一问题归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。
解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量),然后以它为标准,根据题目的要求算出结果。
数量关系式:单一量×份数=总数量(正归一)总数量÷单一量=份数(反归一)4、行程问题行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。
解答这类问题首先要搞清楚速度、时间、路程、方向、速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。
解题关键及规律:同时同地相背而行:路程=速度和×时间。
同时相向而行:路程=速度和×相遇时间同时同向而行(速度慢的在前,快的在后):追及时间=路程÷速度差。
同时同地同向而行(速度慢的在后,快的在前):路程=速度差×时间。
5、植树问题植树问题:这类应用题是以“植树”为内容。
小学六年级数学学科毕业专项训练复习资料——分数百分数应用题练习

小学六年级数学学科毕业专项训练复习资料分数、百分数应用题练习(一)1、服装厂计划生产童装7200套,第一周完成了生产任务的41,第二周完成了生产任务的一半。
根据题目告诉的条件,说出以下各式所表示的意义. A “7200)2141(+⨯”表示 。
B “7200)4121(-⨯”表示 。
C “7200)21411(--⨯”表示 。
2、一堆煤,第一次用去它的52,第二次用去它的30% ,这堆煤有多少吨?根据下面不同算式,给题目补充不同的条件,填在算式后面的横线上。
“%)3052(12+÷” “%)3052(12-÷" “%)30521(12--÷” 3、根据线段分析图列算式解答。
剩下54千米 已修好总长的54这段公路长?米4、某拖拉机厂计划生产拖拉机450台,上半年已经完成了计划的53,下半年还应生产多少台才能完成任务?如果要比计划数增产20%,下半年又要生产多少台才能达到要求?5、工地上有一些砖,第一次用去总数的31,第二次用去余下块数的43。
如果第二次用去2400块,工地上原有砖多少块?6、一列火车从甲站开往乙站,行全程的75,还距乙站有162千米。
这列火车已经行了多少千米?7、一桶油,第一次用去油的总千克数的30%,第二次用去10千克,两次共用去这桶油的52.这桶油有多少千克?用去两次后还剩多少千克?8、某校六年级有学生280人,分成三队到街头进行宣传,已知第一队人数是第二队的32,第二队人数是第三队的53.问三队各有多少人?9、工程队铺一段铁路,计划25天完成,结果前5天就铺了全长的41.照这样的速度,可以提前几天铺好这段路?10、计划生产零件2000只,第一天完成15%,第二天完成余下的20%,还有多少零件?11、修一条公路,第一个月修了20%,第二个月修了余下的20%,还有960米没修,这条公路长多少米?12、一套服装值700元,其中上衣比裤子贵80%,一件上衣和一条裤子各值多少元?13、甲比乙多25本书,甲给乙5本书后,甲的书比乙多30%,甲、乙两人原来各有多少本书?14、两个商场分别推出两种促销方案:甲商场打九折,乙商场满百送十,满千送百,爸爸准备花掉1000元,到哪个商场购物合算?15、新华小学在校园里植树,48棵成活了,只有2棵没有活,成活率是多少?16、一份稿件,原计划5小时打完,结果只用了4小时,工作效率提高了百分之几?17、一个果园共有果树480棵,其中苹果树占3/8 ,梨树占1/4 ,桃树占 1/6。
六年级数学分数和百分数应用问题试题答案及解析

六年级数学分数和百分数应用问题试题答案及解析1.学校图书馆科技书占图书总数的40%,故事书占图书总数的30%,科技书比故事书多1200本.学校图书馆共有图书多少本?【答案】12000本【解析】由题意可知:图书总数看作单位“1”,单位“1”是未知的,关键是求出1200本占图书总数的百分之几,然后根据已知一个数的百分之几是多少,求这个数,用除法解答.解:1200÷(40%﹣30%),=1200÷0.1,=12000(本),答:学校图书馆共有图书12000本.【点评】此题的解题关键是找“1”,根据已知比一个数多百分之几的数是多少求这个数,解答即可.2.小强的妈妈在银行存了5000元,定期两年,年利率是4.50%,到期时,她应得利息元.【答案】450.【解析】可根据求利息的计算公式,利息=本金×年利率×时间,由此代入公式计算解答.解:5000×4.50%×2=225×2=450(元)答:到期时,她应得利息450元.故答案为:450.【点评】这种类型属于利息问题,运用关系式:利息=本金×利率×时间(注意时间和利率的对应),找清数据与问题,代入公式计算即可.3.一本书定价75元,售出后可获利50%,如果按定价的七折出售,可获利元.【答案】2.5.【解析】按定价的七折出售,是把定价看成单位“1”,现价是它的70%,用乘法求出现价;再把进价看成单位“1”,它的(1+50%)就是定价75元,由此用除法求出进价,再用现价减去进价,即可求出获利的钱数.解:75×70%=52.5(元)75÷(1+50%)=50(元)52.5﹣50=2.5(元)答:可获利2.5元.故答案为:2.5.【点评】解决进价、定价以及打折的含义,找清楚单位“1”的不同,根据分数乘除法的意义分别求出进价和现价,进而求解.4.如果甲比乙多20%,则乙比甲一定少20%..(判断对错)【答案】×【解析】比乙多20%,即以乙作为单位“1“,甲是乙的(1+20%),要求乙比甲少百分之几,是以甲作为单位“1“,即20%÷(1+20%).解:20%÷(1+20%)=20%÷120%≈17%;故答案为:×.【点评】完成本题的关健是单位“1”的确定.5.一根铁丝长米,第一次用去米,第二次用去剩下的,()用去的铁丝长一些.A.第一次长 B.第二次长 C.两次同样长【答案】C【解析】我们计算出第二次用去的长度,再与第一次的长度进行比较,再进行选择即可.解:第二次用去的长度:()×,=1×,=(米);米=米;故选:C.【点评】本题运用分数的乘法的计算法则进行解答即可,同时考查了分数的大小比较.6.一种纺织品的合格率是98%,300件产品中有()件不合格.A.2B.4C.6D.294【答案】C【解析】合格率98%是指合格产品数量占产品总数量的98%,把产品的总数量看成单位“1”,不合格的产品数量就占总数量的(1﹣98%),用产品总数量乘上这个百分数即可求解.解:300×(1﹣98%)=300×2%=6(件)答:300件产品中有6件不合格.故选:C.【点评】先理解合格率的含义,找出单位“1”,再根据分数乘法的意义进行求解.7.按要求做题.【答案】250本;见解析【解析】(1)由图可知,故事书有200本,将故事书本数当作单位“1”,科技书比故事书多,根据分数加法的意义,科技书本数是故事书的1+,根据分数乘法的意义,用故事书本数乘科技书占故事书本数的分率,即得科技书多少本.(2)由图可知,图中的长方形被平均分成30份,根据分数乘法的意义,求一个数的几分之几是多少,用乘法,则其中的25%是30×25%=7份,据此作图.解:(1)200×(1+)=200×=250(本)答:科技书有250本.(2)30×25%=7即【点评】完成此类题目要注意从图文中获取正确信息,然后分析完成.8.吨煤,用去,还剩吨..(判断对错)【答案】×【解析】此题的易误区是“用去”,“”是分率,而不是具体的数量;它的意思是把吨煤看作单位“1”,平均分成了5份,用去了1份,还剩4份.解:(1),=,=(吨).答:还剩吨.故答案为:×【点评】在分数应用题中要注意“量”和“率”的区别.9.王老师的月工资为2800元.按照国家的新税法规定,超过1600元的部分应缴5%个人所得税.王老师每月实际工资收入是多少元.【答案】2740元【解析】超过1600元的部分应缴5%个人所得税,先用总钱数减去1600元,求出应缴税的部分,再乘上5%,即可得出个人所得税,再用总钱数减去个人所得税即可求出实际收入的钱数.解:(2800﹣1600)×5%=1200×5%=60(元)2800﹣60=2740(元)答:王老师每月实际工资收入是2740元.【点评】解决本题先求出应缴税部分的钱数,再根据应纳税额=缴税部分的收入×税率进行求解.10.一件商品,先打八折,后又涨价20%,现价与原价相比,()A.不变 B.降低了 C.提高了【答案】B【解析】将原价当作单位“1”,先打八折,即是按原价的80%出售,后又涨价20%,根据分数加法的意义,此时价格是打折后价格的1+20%,根据分数乘法的意义,现价是原价的80%×(1+20%).解:80%×(1+20%)=80%×120%=96%即此时价格是原价的96%,比原价降低了.故选:B.【点评】完成本题要注意前后打折与降价分率的单位“1”是不同的.11.王叔叔买了一辆5200元的摩托车.按规定,买摩托车要缴纳10%的车辆购置税.他买这辆摩托车一共要花多少元?【答案】5720【解析】把摩托车的原价看作单位“1”,摩托车要缴纳10%的车辆购置税,实际花费为摩托车原价的(1+10%),根据一个数乘分数的意义,用乘法解答即可.解:5200×(1+10%)=5200×1.1=5720(元)答:王叔叔买这辆摩托车一共要花5720元钱.【点评】解答此题的关键是先判断出单位“1”,进而根据一个数乘分数的意义用乘法解答.12.一本书有80页,小亮看了20%,下一次应从17页开始看.(判断对错)【答案】√【解析】把全书的总页数看成单位“1”,用总页数乘上20%就是小亮第一次看的页数,再加上1页就是下一次开始看的页数.解:80×20%+1=16+1=17(页)即下一次应从17页开始看,原题说法正确.故答案为:√.【点评】解决本题根据分数乘法的意义求出已经看的页数,下一次开始看的页数是第一次已经看的页数加1.13.一台冰箱原价3500元,连续两次降价,每次降20%,现价是多少元?【答案】960元.【解析】连续两次降价,每次降20%,第一次降价20%,将原价当作单位“1”,根据分数减法的意义,此时价格是原价的1﹣20%,第二次降20%,则此时价格是第一次降价后的1﹣20%,根据分数乘法的意义,此时价格是原价的(1﹣20%)×(1﹣20%),则用原价乘此时价格占原价的分率,即得现价是多少.解:1500×(1﹣20%)×(1﹣20%)=1500×80%×80%=960(元)答:现价是960元.【点评】完成本题要注意前后两次降价分率的单位“1”是不同的.14.一件物品原价60元,提价20%,再打九折出售,现价是元.【答案】64.8【解析】先把这件商品的原价看成单位“1”,则提价后的价格是原价的1+20%,由此求出提价后的价格;再把提价后的价格看成单位“1”,打九折是指现价是提价后价格的90%,由此求出现价.据此解答.解:60×(1+20%)×90%=60×1.2×0.9=64.8(元)答:现价是64.8元.故答案为:64.8.【点评】解答此题的关键是分清两个单位“1”的区别,找清各自以谁为标准,再根据求一个数的百分之几是多少用乘法计算来列式解答.15.王华和李明到书城买复习资料,请根据他们的对话内容,帮李明算一算上次所买资料的原价.王华:听说你用20元办了一张会员卡,买书可享受8折优惠.李明:是呀,我上次买了几本书,除了办卡的费用还省10元.【答案】买资料的原价是150元.【解析】由于办了会员卡可可享受8折优惠,即可按原价的80%买书,将原价当作单位“1”,则打折后的价格比原价省了1﹣80%,又李明上次买书除了办卡的费用还省10元,所以共节省了20+10=30元,则这30元占按原价买书费用了1﹣80%,已知一个数的几分之几是多少,求这个数,用除法,则上次所买资料的原价是30÷(1﹣80%)元.解:(20+10)÷(1﹣80%)=30÷20%=150(元)答:上次所买资料的原价是150元.【点评】在商品销售中,打几折即得按原价的百分之几十出售.16.小雨将20000人民币存入银行定期3年,如果年利率是2.5%,国家新规定不用纳利息税,到期后,她可得本息元.【答案】21500.【解析】利息=本金×年利率×时间,由此代入数据求出利息;然后用本金加上利息即可.解:20000+20000×2.5%×3=20000+20000×0.025×3=20000+1500=21500(元),答:她可得本息21500元.故答案为:21500.【点评】此题考查的目的是理解利息的意义,掌握利息的计算方法及应用,明确:本息=本金+利息.17.一本故事书小亮三天看完,第一天看了60页,第二天看了全书的40%,第三天看了全书的.这本书一共多少页?【答案】150页.【解析】将总页数当作单位“1”,第一天看了60页,第二天看了全书的40%,第三天看了全书的,三天看完,根据分数减法的意义,第一天看的60页占总页数的1﹣40%﹣,已知一个数的几分之几是多少,求这个数,用除法,则用第一看的页数除以其占总页数的分率,即得共有多少页.解:60÷(1﹣40%﹣)=60÷40%=150(页)答:这本书共有150页.【点评】首先根据已知条件求出已知数量占单位“1”的分率是完成本题的关键.18.一件儿童服装原价200元,打九折后现价是元,现价比原价便宜元.【答案】180,20.【解析】一件儿童服装原价200元,打九折即按原价的90%出售,根据分数乘法的意义,用原价乘现价占原价的分率,即得现价是多少,然后用原价减现价,即得比原价便宜多少钱.解:200×90%=180(元)200﹣180=20(元)答:打九折后现价是 180元,现价比原价便宜 20元.故答案为:180,20.【点评】在商品销售中,打几折即得按原价的百分之几十出售.19.一种商品七五折销售,“七五折”表示原价的 %,如果商品原价是300元,现在便宜了元.【答案】75,75.【解析】打七五折销售是指现价是原价的75%;把原价看作单位“1”,比原价便宜了(1﹣70%),根据一个数乘分数的意义,解答即可.解:打七五折销售是指现价是原价的75%;300×(1﹣75%)=300×0.25=75(元);答:现在便宜了25元.故答案为:75,75.【点评】此题考查了折扣的意义,应明确明确几折,即十分之几,百分之十几;用到的知识点:判断出单位“1”,根据一个数乘分数的意义解答.20.八一小学准备买56台电脑.甲、乙两个商家每台电脑原价都是4000元.为了做成这笔生意,两商家作出如下优惠:请你先算一算,再比一比,为学校拿个主意:到哪个商家购买更便宜?【答案】甲商店便宜.【解析】甲商店:打七五折,现价就是原价的75%,先求出56台的原价是多少元,再用原价乘75%即可;乙商店:买40台可送12台,另再买4台就行,求出这44台的需要多少元;再把两个商店的价格相比较即可.解:甲商店:56×4000×75%,=224000×75%,=168000(元);乙商店:买40台可送12台,另再买4台就行,40×4000+4×4000,=16000+16000,=176000(元),176000>168000,所以买甲商家的便宜.答:到甲商家购买更便宜.可以直接不算价格,算台数:甲商店:买56台相当于买56×75%=42(台);乙商店:买40台可送12台,另再买4台就行,相当于买40+4=44(台);由此看出甲商店便宜.【点评】本题先理解优惠的办法,根据这个办法求出到两个商店各需要多少钱,比较即可求解.。
北师大版 六年级上册数学讲义-《分数(百分数)应用题》

成都市六年级上期《分数(百分数)应用题》-复习课一、分数应用题主要讨论的是以下三者之间的关系。
1、分率:表示一个数是另一个数的几分之几,这几分之几通常称为分率。
2、标准量:解答分数应用题时,通常把题目中作为单位“1”的那个数,称为标准量。
(也叫单位“1”的数量)3、比较量:解答分数应用题时,通常把题目中同标准量比较的那个数,称为比较量。
(也叫分率对应的数量)三种数量有如下关系:标准量×分率=比较量,比较量÷标准量=分率,比较量÷分率=标准量。
二、找单位1:(1)当两种数量比较时,抓关键词找准单位“1”分数应用题,题目中经常出现“是”、“占”、“比”、“等于”、“相当于”这些词,一般来说,单位“1”的量就隐藏在这些关键字的后面的量就是单位“1”。
一般“的”前面是单位“1”(2)部分数和总数有些分数应用题,存在着整体和部分两个数量,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。
例如:食堂买来100千克白菜,吃了2/5,吃了多少千克?在这里,食堂一共买来的白菜是总数,吃掉的是部分数,所以100千克白菜就是单位“1” 。
(3)、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。
这类分数应用题的单位“1”比较难找。
例如:水结成冰后体积增加了1/10,冰融化成水后,体积减少了1/12。
象这样的水和冰两种数量到底谁作为单位“1”?两句关键句的单位“1”是不是相同?用上面讲过的两种方法不容易找出单位“1”。
其实我们只要看,原来的数量是谁?这个原来的数量就是单位“1”!三、分数应用题的分类。
(三类)1.1 直接求一个数是另一个数的百分之几一个数÷另一个数1.2 求一个数比另一个数多百分之几差量(多的部分)÷单位11.3 求一个数比另一个数少百分之几差量(少的部分)÷单位12.1直接求一个数的百分之几是多少单位1×分率2.2求比一个数多百分之几的数是多少单位1×(1+分率)2.3 求比一个数少百分之几的数是多少单位1×(1-分率)3.1已知一个数的百分之几是多少,求这个数。
六年级数学上册分数应用题总复习

例三
600千瓦时 上个月 用电 ?千瓦时 这个月 用电 1/12
你学会前面的三道例题了吗? 如果“yes”,那么恭喜你已经 过了乘法的一关!
前路仍然艰险,好戏还在后面 继续前行吧!
加油
例 一
我国幅员辽阔,东西相距5200km, 东西相距是南北的52/55。南北相距多 少千米?
要求单位“1“,应该怎么办?
1.学校买来354本新书,其中学科辅导书占 1/3,文艺书占25 ,文艺书比学科辅导书 少了多少本 2.甲乙两个书架上的书的本数比是2:5,甲 书架上的书增加360本后,甲乙两个书架上 书的本数的比是5:8,两个书架现在共有 多少本书?
• (l)某村去年植树
800棵,比前年多 1/4。前年比去年少 百分之几?
• (7)甲、乙两个车间 共同加工一批零件。已 知甲车间生产零件数的 1/ 3 与乙 车间生产零件 数的2 /5 相等。完成任 务 时,乙车间共生产 零件900个,甲车间共 生产零件多少个?
•
(8)某车间有工人52 人,其中男工人数的 1/4 比女工人数1 /3 少l 人。这个 车间有男女 工各多少人?
例二
?周 小齿轮 周数 80周 大齿轮 周数
例三: 光明村今年毎百户拥有电脑121台,比 去年增加66台,去年毎百户拥有彩电多少台?今 年比去年增长百分之几?
(1) 121-66=55(台) (2) 能用两种方法解答吗?
第一种做法:
用今年比去年多的台数 除以去年的台数 66÷5×100 % =120
如:一个数的5/8是1/12,这个数是多少?
例一
•
一杯约250毫升的鲜牛奶大约含有3/10克 的钙质,占一个成年人一天所需钙质的3/8. 一个成年人一天大约需要多少钙质?
六年级数学总复习----分数百分数应用题

(3)池塘里有4只鹅,正好是鸭的只数 1 的 3 。池塘里有多少只鸭? 单位“1”
鸭: 鹅:
4只 ?只 鸭的只数 鹅 ×1 3 =
单位“1”的量未知, 可直接用除法计算。 1 4÷ =12(只) 3
答:池塘里有12只鸭。
五年级师生向希望小学捐书150本,六 2 年级比五年级多捐 15 。六年级师生捐 书多少本?
学习目标
• 进一步巩固用分数知识解决 实际问题的基本思考方法, 进一步体会分数在实际生活 中的广泛应用。
补充问题【使其成为分数应用题】
• 六一班男生30人,女生20人。 • 女生人数是男生人数的几分之几? • 男生人数是女生人数的几分之几? • 女生人数比男生人数少几分之几? • 男生人数比女生人数多几分之几?
﹋﹋ ﹋﹋﹋﹋﹋﹋ 多的公顷数占计划的百分之几
12公顷
实际比原计划多的
原计划:
实 际: 14公顷
是求多的公顷数与计划造林数的比, 要以原计划造林的公顷数(12公顷)作 为单位“1”,求(14-12)是12的百分之 几,用除法计算。
第一步:求实际比计划多的公顷数。 第二步:求多的公顷数占计划的百分之几。
校园里栽杨树30棵,比柳树 多 1 ,校园里栽柳树多少棵?
4
百分数
发芽率是求发芽种子数占试 验种子总数的百分之几。
发芽种子数 发芽率= ×100% 试验种子总数
某县种子推广站,用300粒玉米种 子作发芽试验,结果发芽的种子有 288粒。求发芽率。
发芽种子数 ×100% 发芽率= 试验种子总数
(4)一种电视机打九折出售。 原价
看谁先找到题中的单位“1”。
5 (1)小牛头数是大牛的 6 。
9 (2)计划产量是实际的 10 。
六年级数学上册分数、百分数应用题复习题

六年级数学上册分数.百分数应用题复习题【知识要点】一、“求一个数的几分之几是多少用乘法计算”是分数应用题解题的根本依据,结合分数的定义来理解,就是把一个数(或是整体)平均分成分母份,取分子份.二、分数.百分数应用题的主要类型:(1)求一个数是另一个数的几(百)分之几:用“一个数÷另一个数”(2)求一个数的几(百)分之几是多少;(3)求比一个数多(少)几(百)分之几的数是多少:A. B.(4)求一个数比另一个数多(少)几(百)分之几(大数—小数)÷单位“1”的量,或者“相差数÷单位“1”的量”(5)已知一个数的几(百)分之几是多少,求这个数.A.或者B..设所求的数为未知数X,然后根据求这个数的几(百)分之几,用乘法列方程解.三、较复杂的分数(百分数)应用题是基本分数应用题的延续和发展,它的特点是已知条件之间.已知条件和所求问题之间不再有直接的对应量率关系.解题时一定要找准标准量(单位“1’),找准“与量对应的率”.“与率对应的量”,并利用线段图来帮助理解题意,分析数量关系.四、百分率问题:优秀率=优秀人数÷总人数×100%成活率=成活棵树÷总棵树×100%合格率=合格人数÷总人数×100%百分率=部分数÷总数×100%出粉率=面粉质量÷小面质量×100%花生出油率=花生油重量÷花生重量×100%现实生活中还有“及格率”.“出勤率”.“合格率”.“达标率”.“利息”.“成数”.“利润率”.“折扣”等含意相近的词,我们要灵活运用(百)分数知识,解决这些实际问题.五、按比例分配问题:按比例分配:把一个数按着一定的比来进行分配,这种分配方法通常叫做按比例分配.解答按比例分配问题,要根据已知条件,把已知数量与份数对应起来,转化为求一个数的几分之几来做.六、工程问题.解题指导:“工程问题”指的都是两个人以上合作完成某一项工作,有时还将内容延伸到相遇运动和向水池注水等等.解答工程问题时,一般都是把总工作量看作单位“1”,把单位“1”除以工作时间看成工作效率,因此,工作效率就是工作时间的倒数.工程问题关系式是:工作总量÷工作效率=工作时间工作总量÷工作效率和=合作时间【基础练习】一.求一个数是另一个数的几(百)分之几.1、光明小学有学生1200人,其中男生有576人,男生占全校人数几分之几?2、学校的果园里有梨树15棵,苹果树20棵.梨树的棵数是苹果树的百分之几?3、学校的果园里有梨树15棵,苹果树20棵.苹果树的棵数是梨树的几倍?二、求一个数的几(百)分之几是多少.1、一个排球定价60元,篮球的价格是排球的150% .篮球的价格是多少元?2、一本书有200页,小丽第一天看了全书的25%,第二天看了第一天的80%,第二天看了多少页?3、一块长方形玻璃长56厘米,宽是长的50%,这块玻璃的面积是多少平方厘米?4、商场搞打折促销,其中服装类打5折,文具类打8折.小明买一件原价320元的衣服,和原价120元的书包,实际要付多少钱?三、求比一个数多(少)几(百)分之几是多少1.一件衬衣原价125元,现在降价.现在售价是多少元?2、一件衬衣原价125元,现在涨价20%.现在售价是多少元?3、要挖一条长2000米的水渠,第一天挖了12.5%,还剩多少米没挖?4、一个果园里去年产了4500千克的苹果,今年因为气候好,比去年增产了2成,今年产了多少千克苹果?1、有一台空调,原价1600元,涨价后卖2000元,涨了百分之几?2、学校运来34吨煤,已经烧了18吨,烧掉的比剩下的多几分之几?3、光明小学去年有篮球24个,今年新买了6个.今年比去年增加了百分之几?4、有一个公园原来的门票是80元,国庆期间打8折,每张门票能节省多少元?相当于降价了百分之几?五、已知一个数的几(百)分之几是多少,求这个数.1、一个儿童体内所含水分有28千克,占体重的75%.这个儿童的体重有多少千克?2、小红家买来一袋大米,吃了15%,还剩15千克.买来大米多少千克?3、水果店运一批水果.第一次运了50千克,第二次运了70 千克,两次正好运了这批水果的60%.这批水果有多少千克?4、要挖一条水渠,第一天挖了全长的12.5%,第二天挖了全长的27.5%,还剩1200米没挖,这条水渠长多少米?5、一件衬衣降价20%后,售价为100元.这件衬衣原价是所少元?6、一件衬衣涨价20%后,售价为120元.这件衬衣原价是多少元?六.百分率问题.1.大米加工厂用200千克的稻谷加工成大米时,共碾出大米160千克,求大米的出米率.2、林场春季植树,成活了175棵,死了25棵,求成活率.3、用一批玉米种子做发芽试验,结果发芽的有192粒,没有发芽的有8粒,求这一批种子的发芽率.4、菜籽的出油率是28%,若榨油84千克,需要菜籽多少千克?七.按比例分配问题.1.石灰水是用石灰和水按1:100配成的,要配制4545千克的石灰水,需石灰多少千克?2、一件衬衣售价为100元,一条长裤的价钱和这件衬衣的价钱之比是 .这条长裤售价是多少元?3、一块长方形地,周长400米,长和宽的比是3:2,这块地的面积是多少平方米?4、一种药水是用药物和水按3:400配制成的.(1)要配制这种药水1612千克,需要药粉多少千克?(2)用水60千克,需要药粉多少千克?(3)用48千克药粉,可配制成多少千克的药水?八.工程问题.1.一篇稿件,甲.乙两人合打.甲一个人完成要5小时,乙一个人完成要8小时,求两人合打几小时可以完成?2、一项工程,甲独立完成要12天,乙独立完成要15天,现两队合作,几天可以完成这项工程的?3、客车由甲城到乙城需行12小时,货车由乙城到甲城需行15小时,两车同时从两城相向开出,相遇时客车距离乙城还有360于米.两城相距多少千米?九.较复杂的分数.百分数应用题.1.一件衬衣售价为100元,一条长裤的价钱是这件衬衫的150%,这条长裤的价钱又是一双皮鞋的 .这双皮鞋售价是多少元?2.8月初鸡蛋价格比7月初上涨了10%,9月初又比8月初回落了15%.9月初鸡蛋价格比7月初涨了还是跌了?涨跌幅度是多少?3、长虹电视机进行促销活动,降价8%.在此基础上,商场又返还售价5%的现金.此时购买长虹牌电视机,相当于降价百分之多少?4、红光农场去年植树的数量比前年成活的树木多50%,去年的成活率是80%.去年成活的树木数量是前年成活树木的百分之多少?5、有科技书和文艺书360本,其中科技书占总数的1/9,现在又买来一些科技书,此时科技书占总数的1/6.又买来多少本科技书?6、有一堆糖果,其中奶糖占45%,再放16块水果糖后,奶糖就占25%,那么,这堆糖中奶糖有多少块?【综合练习一】1、地球上海洋面积是36000万平方千米,占地球总面积的 .地球总面积是多少万平方千米?2、三个同学跳绳.小明跳了120个,小强跳的是小明跳的,小亮跳的是小强跳的 .小亮跳了多少个?3、(1)五年级同学收集了165个易拉罐,六年级同学比五年级多收集了 .六年级收集了多少个易拉罐?(2)四年级比六年级少收集了,四年级收集了多少个易拉罐?4.(1)一个县迁建绿色蔬菜总产量720万千克,是去年绿色蔬菜总产量的 .去年全县绿色蔬菜总产量是多少万千克?(2)一个县迁建绿色蔬菜总产量720万千克,比去年少 .去年全县绿色蔬菜总产量是多少万千克?【综合练习二】1、一列火车的速度是180千米/时.一辆小汽车的速度是这列火车的,是一架喷气式飞机的 .这架喷气式飞机的速度是多少?2.(1)用84 长的铁丝围城一个长方形,这个长方形的长于宽的比是 .这个长方形的长与宽分别是多少?(2)用84 长得铁丝围成一个三角形,这个三角形三条边长度的比是3:4:5,.三条边各是多少厘米?3、取小麦500克,烘干后,还有428克.计算这种小麦的烘干率和含水率.4、在北纬以上的地方,一年连续约有2个月的时间没有夜晚,没有夜晚的时间约占全年的百分之几?5.由于纬度比较高,瑞典首都斯德哥尔摩七月份的每天平均日照时间大约是一天的75%,约有多少小时?【综合练习三】1、人体血液在动脉中的流动速度是50厘米/秒,在静脉中的流动速度是动脉中的 2/5,在毛细血管中的流动速度只有静脉中的 1/40.血液在毛细血管中每秒流动多少厘米?2、海象的寿命大约是40年,海狮的寿命是海象的 2/3,海豹的寿命是海狮的3/4 .海豹的寿命大约是多少年?3.蜜蜂每秒能振动翅膀236次,蝗虫每秒振动翅膀次数比蜜蜂少 109/118.蝗虫每秒能振动多少次?4、鸡的孵化期是21天,鸭的孵化期比鸡长1/3 .鸭的孵化期是多少天?5.严重的水土流失致使每年大约有16亿吨的泥沙流入黄河,其中25%的泥沙沉积在河道口,其余被带到入海口.有多少亿吨泥沙被带到入海口?6.一幢楼房共有15层,高约50米.小萍家住在7楼,小萍家的地板离地有多高?【综合练习四】1、一共有240千克水果糖,每袋装 1/4千克.已经装完了总量的3/4 ,已经装完了多少袋?2、我国幅员辽阔,东西相距5200km,东西距离是南北的52/55.南北相距多少千米?3、一杯250ml的鲜牛奶大约含有 3/10的钙质,占一个成年人一天所需钙质的 3/8.一个成年人一天大约需要多少钙质?4.一本课外读物,小芳读了35页,还剩下 2/7没有读.这本课外读物一共有多少页?5.体积相等的冰的质量比水的质量少 1/10,现有一块重9kg的冰,如果有一桶水的体积和这块冰的体积相等,这桶水有多重?6.一批大米运往灾区,运了4车才运走,平均每车运走这批大米的几分之几?剩下的大米还要几车才能运完?【综合练习五】1、某电视机厂去年全年生产电视机108万台,其中上半年产量是下半年的4/5.这个电视机厂去年上半年和下半年的产量分别是是多少?2、一套运动服共300元,裤子价钱是上衣的2/3.上衣和裤子的价钱分别是多少?3、中国农历中的“夏至”是一年中白昼最长.黑夜最短的一天.这一天,北京的黑夜时间是白天的3/5.白昼和黑夜分别是多少小时?4、挖一条水渠,王伯伯需要20天,李叔叔需要30天.两人合作,几天挖完这天水渠的一半?5、甲车从A城市到B城市要行驶12小时,乙车从B城市到A城市要行驶15小时.两车分别从A城市和B城市出发,几小时后相遇?6.甲乙两队合作种树,甲队单独种需要8天,乙队单独种需要10天.现在两队合作,5天能种完吗?【综合练习六】1、某妇产医院上月新生婴儿303名,男女婴儿人数之比是51:50.上月新生男.女婴儿各有多少人?2、学校把栽70棵树的任务按人数比分配给六年级三个班,一班有46人,二班有44人,三班有50人.三个班各应栽多少棵?3、刘大爷家里的菜地共800 ,刘大爷准备用2/5种西红柿,剩下的按2:1的面积比种黄瓜和茄子.三种蔬菜的面积分别是多少平方米?4、一种混凝土的水泥.沙子和石子的比是2:3:5.要搅拌20t这样的混凝土,需要水泥.沙子和石子各多少吨?。
小学六年级数学--百分数应用题--归纳总结

百分数应用题注:“是”“比”“占”字后都是单位 1,什么“的”几%,的字前是单位1【题型一】A是B的百分之几? A占B的百分之几?【解题方法】①找单位“1”;②其它量÷单位“1”;因为上面两个问题的单位“1”都是B,所以解法是:A÷B【例题】某班男生有20人,女生有25人。
(1)男生人数是女生的百分之几?(2)女生人数是男生的百分之几?(3)男生人数占全班的百分之几?【练习】1、小红家二月份计划支出1500元,实际支出1200元,请求:实际支出是计划的百分之几?计划支出是实际的百分之几?2、把30克盐加入到120克水中,盐占盐水的百分之几?【题型二】求常见的百分率。
比如:合格率、及格率、出油率、出勤率、发芽率、成活率等。
【解题方法】××率=××数÷总数【例题】新华小学在校园里植树,48棵成活了,2棵没有活,成活率是多少?【练习】1、六年级有学生160人,已达到《国家体育炼标准》(儿童组)的有 120人。
六年级学生的达标率是多少?2、榨油厂的李叔叔告诉小静:“2000kg花生仁能榨出花生油760kg。
”这些花生的出油率是多少?【题型三】已知一个数,求它的百分之几是多少?比如:A是60,求A的20%是多少? 60*20%=60*0.2=12【解题方法】①找单位“1”;②单位“1”已知,所以用乘法;③用单位“1”×对应的百分率。
总结:已知单位“1”的量(用乘法),求单位“1”的百分之几是多少的问题,解析:数量关系式和分数乘法解决问题中的关系式相同(1) 百分率前是“的”:单位“1”的量×百分率=百分率对应量(2) 百分率前是“多或少”的数量关系:单位“1”的量×(1±百分率)=百分率对应量【例题】1、新城市中小学校开展回收废纸活,共回收废纸87.5吨。
用废纸生产再生纸的再生率为80%,这些回收的废纸能生立多少吨再生纸?2、一个果园共有果树480棵,其中苹果树占17%,梨树占25%,桃树占28%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。