(完整版)小学数学六年级比和比例应用题

合集下载

(完整)六年级数学比和比的应用题

(完整)六年级数学比和比的应用题

一、比的意义1、比的意义:两个数相除又叫做两个数的比。

2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。

例如 15 :10 = 15÷10= 23(比值通常用分数表示,也可以用小数或整数表示)3、比可以表示两个相同量的关系,即倍数关系。

也可以表示两个不同量的比,得到一个新量。

例:路程÷速度=时间。

4、 比和除法、分数的联系:二、比的基本性质1、根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。

比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

三、化简比与求比值的区别1、 求比值 (前项除以后项的商叫做比值。

比值是一个数) 方法:整数比或者小数比求比值,可以把它写成分数形式(后项前项),再把它约分,约成最简分数或整数。

这个结果就是比值。

练习:14:35 120:30 0.25:2 1.8:2.4 方法:分数比,可以把它看成分数除法来做,求得的结果就是比值。

58 ∶56 14:7152、 化简比 (最后结果是一个比,且是前项和后项只有公因数1,而不是一个数)方法:可以采用求比值的方法,先求比值,再把比值转化为最简整数比。

(比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

)练习: 14:35 120:30 0.25:2 1.8:2.4 58 ∶56练习一1、两个数( )又叫做两个数的( )。

2、 如果A ∶B=C ,那么A 是比的( ),B 是比的( ),C 是比的( )。

3、4÷5=( )∶( )=()()4、从A 地到B 地共180千米,客车要行2小时,货车要行3小时。

客车所行的路程与所用时间的比是( ),比值是( );客车所用的时间与货车所用的时间比是( ),比值是( );货车与客车的速度比是( ),比值是( );客车与货车所行的路程比是( ),比值是( )。

(完整版)六年级比和比例应用题

(完整版)六年级比和比例应用题

名同学调到一班去,则一班和二班的人数比是6:5.求两个班原来各有多少人?2.甲乙两校原有图书的比是7:5,如果甲校给乙校600本,那么甲乙两校图书之比是1:2.甲校原有图书多少本?3.某工厂有甲乙两个车间,甲车间与乙车间的人数之比是3:5,如果从甲车间调150人去乙车间,则甲乙车间的人数之比是3:7,原来两个车间各多少人?4.小明读一本书,已读和未读的页数之比是1:5,如果再读30页,则已读和未读的页数之比是3:5,这本书共有多少页?5.甲乙两个学校原有篮球的个数比是2:1,如果甲校给乙校4个,甲乙两校的篮球个数比是4:3,原来甲校有篮球多少个?6.修一条路,已修和未修的千米数的比是3:5,如果再修12千米,则已修和未修的千米数的比是9:11,这条路长多少千米?7.甲乙两袋水果的重量比是4:1,如果从甲袋中取出130千克放入乙袋后,甲乙两袋水果的重量比是7:5,两袋水果的重量和是多少千克?水的体积之比是3:1,乙瓶中酒精和水的体积之比是5:2,如果把两瓶酒精溶液混合,混合后的溶液中酒精和水的体积之比是多少?9.甲乙两班人数相同,甲班男女生人数之比是3:4,乙班男女生的人数之比是4:5,求甲乙两班总人数中男女生的人数之比是多少?10.两个同样的容器中各装满盐水,第一个容器中盐与水的比是2:3,第二个容器中盐与水的比是3:4。

把两个容器中的盐水都倒入另一个大的容器中,求混合后的溶液中盐与水的比11.甲乙两车同时从A、B两地相向而行,当甲到达B时,乙距A还有10千米,当乙到达A时,甲超过B20千米。

A、B相距多少千米?12.师徒两人同时开始加工同样多的零件,当师傅完成任务时,徒弟还有30个没完成,当徒弟完成任务时,师傅可以超额完成50个,这批零件共有多少个?13.甲乙丙三人同时从A向B跑,当甲跑到B时,乙离B还有25米,丙离B 还有40米,当乙跑到B时,丙离B还有20米。

A、B相距多少米?14.甲乙两人的数学分数之比是5:4,如果甲少得22.5分,乙多得22.5分,则他们的分数之比。

6年级比例应用题

6年级比例应用题

6年级比例应用题一、简单比例关系应用题(1 10题)1. 一辆汽车3小时行驶180千米,照这样的速度,5小时行驶多少千米?解析:首先根据速度 = 路程÷时间,求出汽车的速度。

汽车3小时行驶180千米,速度为公式千米/小时。

然后根据路程 = 速度×时间,5小时行驶的路程为公式千米。

设5小时行驶公式千米,根据速度一定,路程和时间成正比例关系,可得公式,解得公式。

2. 配制一种农药,药粉和水的比是1:500,现有水6000千克,配制这种农药需要药粉多少千克?解析:药粉和水的比是公式,即水是药粉的500倍。

现有水6000千克,那么药粉的重量为公式千克。

设需要药粉公式千克,根据比例关系公式,解得公式。

3. 学校图书馆科技书与故事书的比是3:5,科技书有180本,故事书有多少本?解析:因为科技书与故事书的比是公式,设故事书有公式本,则公式,交叉相乘得公式,公式本。

思路是根据两种书数量的比例关系列方程求解。

4. 一块长方形菜地长和宽的比是5:3,长是40米,宽是多少米?解析:设宽是公式米,因为长和宽的比是公式,所以公式,交叉相乘得公式,公式米。

利用长和宽的比例关系来建立方程求解宽的长度。

5. 某工厂男职工与女职工的人数比是4:3,男职工有320人,女职工有多少人?解析:设女职工有公式人,根据男职工与女职工人数比是公式,可得公式,交叉相乘得公式,公式人。

依据给定的人数比例关系列方程求解女职工人数。

6. 一种混凝土是由水泥、沙子和石子按2:3:5配制而成的。

现在要配制150吨这种混凝土,需要水泥、沙子和石子各多少吨?解析:水泥、沙子和石子的比例为公式,总份数为公式份。

水泥占公式,沙子占公式,石子占公式。

水泥的重量为公式吨,沙子的重量为公式吨,石子的重量为公式吨。

先求出各成分占总量的比例,再根据总量求出各成分的量。

7. 小明和小红的零花钱之比是7:5,如果小明有56元零花钱,小红有多少元零花钱?解析:设小红有公式元零花钱,因为小明和小红零花钱之比是公式,所以公式,交叉相乘得公式,公式元。

六年级数学比应用题

六年级数学比应用题

六年级数学比应用题一、简单的比的计算应用题(1 - 5题)1. 已知甲、乙两数的比是3:5,甲数是12,求乙数。

- 解析:- 因为甲、乙两数的比是3:5,设乙数为x,则(甲)/(乙)=(3)/(5)。

- 已知甲数是12,即(12)/(x)=(3)/(5)。

- 根据比例的性质,内项之积等于外项之积,可得3x = 12×5。

- 解得x=(12×5)/(3)=20。

2. 某班男、女生人数比是4:3,男生有24人,女生有多少人?- 解析:- 设女生有x人,因为男、女生人数比是4:3,所以(24)/(x)=(4)/(3)。

- 由比例性质可得4x = 24×3。

- 解得x=(24×3)/(4)=18人。

3. 一种药水是把药粉和水按照1:100的比配成的。

要配制这种药水4040克,需要药粉多少克?- 解析:- 药粉和水的比是1:100,那么药水就是1 + 100=101份。

- 这种药水共4040克,那么一份就是4040÷101 = 40克。

- 药粉占1份,所以需要药粉40克。

4. 学校图书馆里科技书和故事书的比是3:4,科技书有180本,故事书有多少本?- 解析:- 设故事书有x本,因为科技书和故事书的比是3:4,所以(180)/(x)=(3)/(4)。

- 根据比例性质3x=180×4。

- 解得x=(180×4)/(3)=240本。

5. 甲、乙两个数的比是5:6,它们的和是66,求甲、乙两数。

- 解析:- 甲、乙两个数的比是5:6,设甲数是5x,乙数是6x。

- 它们的和是66,则5x + 6x=66。

- 即11x = 66,解得x = 6。

- 所以甲数5x = 5×6 = 30,乙数6x=6×6 = 36。

二、比在几何中的应用题(6 - 10题)6. 一个长方形的长和宽的比是5:3,长是25厘米,宽是多少厘米?- 解析:- 设宽是x厘米,因为长和宽的比是5:3,所以(25)/(x)=(5)/(3)。

六年级数学下册比和比例应用题

六年级数学下册比和比例应用题

六年级数学下册比和比例应用题解答下面的各题。

(1)一幅地图,图上的4厘米,表示实际间隔 200千米,这幅图的比例尺是多少?(2)在一幅的平面图上,量得一块平行四边形的菜地的底是12厘米,高是10厘米,这块菜地的实际面积是多少公顷?(3)甲、乙两地相距240千米,画在比例尺是1∶3000000的地图上,长度是多少厘米?(4)在一幅地图上,用3厘米的线段表示实际间隔 600千米。

在这幅地图上,量得甲、乙两地的间隔是4.5厘米,甲、乙两地的实际间隔是多少千米?(5)甲地到乙地的实际间隔是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米?(6)在一幅比例尺是1:30000 的地图上,量得东、西两村的间隔是12.3厘米,东、西两村的实际间隔是多少米?(7)在比例尺是15000000 的地图上,量得甲、乙两地的间隔是9.6厘米。

甲、乙两地的实际间隔是多少千米?(8)甲地到乙地的实际间隔是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米?(9)一幅地图,图上的4厘米,表示实际间隔 200千米,这幅图的比例尺是多少?(10)在一幅比例尺是14000 的平面图上,量得一块三角形的菜地的底是12厘米,高是8厘米,这块菜地的实际面积是多少公顷?(11)在比例尺是1∶300000的地图上,量得甲、乙两地的间隔是12厘米,它们之间的实际间隔是多少千米?假如改用1∶500000的比例尺,甲、乙两地的间隔应画多少厘米?(12)一辆汽车2小时行驶130千米。

照这样的速度,从甲地到乙地共行驶5小时。

甲、乙两地相距多少千米?〔用比例解〕(13)一辆汽车从甲地开往乙地,每小时行64千米,5小时到达。

假如要4小时到达,每小时需行驶多少千米?〔用比例解〕(14)修一条公路,原方案每天修360米,30天可以修完。

假如要提早5天修完,每天要修多少米?〔用比例解〕(15)修一条路,假如每天修120米,8天可以修完;假如每天修150米,可以提早几天可以修完?〔用比例方法解〕(16)修一条公路,总长12千米,开工3天修了1.5千米。

比例的应用题六年级

比例的应用题六年级

比例的应用题六年级一、按比例分配问题。

1. 学校把栽70棵树的任务,按照六年级三个班的人数分配给各班,一班有46人,二班有44人,三班有50人。

三个班各应栽树多少棵?- 解析:首先求出三个班的总人数:46 + 44+50=140(人)。

然后计算各班人数占总人数的比例,一班:(46)/(140),二班:(44)/(140),三班:(50)/(140)。

最后用树的总数乘以各班所占比例得到各班应栽树的棵数。

- 一班应栽树:70×(46)/(140) = 23(棵);- 二班应栽树:70×(44)/(140)=22(棵);- 三班应栽树:70×(50)/(140)=25(棵)。

2. 一种混凝土是由水泥、沙子和石子按2:3:5的比例混合而成的。

如果要配制20吨这种混凝土,需要水泥、沙子和石子各多少吨?- 解析:首先求出总份数:2 + 3+5 = 10份。

然后计算每份的重量:20÷10 = 2吨。

最后根据各自的份数求出水泥、沙子和石子的重量。

- 水泥:2×2 = 4吨;- 沙子:2×3 = 6吨;- 石子:2×5 = 10吨。

3. 某工厂有三个车间,第一车间、第二车间、第三车间的人数比是8:12:21,第一车间比第二车间少80人,三个车间共有多少人?- 解析:设第一车间有8x人,第二车间有12x人。

根据第一车间比第二车间少80人,可列方程12x-8x = 80,解得x = 20。

则三个车间总人数为(8 +12+21)×20=41×20 = 820人。

二、比例尺问题。

4. 在比例尺是1:6000000的地图上,量得A、B两地的距离是5厘米。

一辆汽车以每小时75千米的速度从A地开往B地,需要多少小时?- 解析:根据比例尺公式,实际距离=图上距离÷比例尺,所以A、B两地的实际距离为5÷(1)/(6000000)=5×6000000 = 30000000厘米=300千米。

六年级关于比例的应用题

六年级关于比例的应用题

六年级关于比例的应用题一、比例应用题。

1. 一辆汽车3小时行驶180千米,照这样的速度,行驶300千米需要几小时?- 解析:首先根据速度 = 路程÷时间,求出汽车的速度。

已知汽车3小时行驶180千米,那么速度为180÷3 = 60(千米/小时)。

设行驶300千米需要x小时,因为速度一定,路程和时间成正比例,所以可列出比例式180:3 = 300:x,即180x=300×3,180x = 900,解得x = 5小时。

2. 用同样的方砖铺地,铺20平方米要320块,如果铺42平方米,要用多少块方砖?- 解析:因为每块方砖的面积是一定的,所以方砖的块数和铺地的面积成正比例。

设铺42平方米要用x块方砖。

可列出比例式20:320 = 42:x,20x=320×42,20x = 13440,解得x = 672块。

3. 配制一种农药,药粉和水的比是1:500。

- 现有水6000千克,配制这种农药需要药粉多少千克?- 解析:药粉和水的比是1:500,设需要药粉x千克,可列出比例式1:500=x:6000,500x = 6000,解得x = 12千克。

- 现有药粉3.6千克,配制这种农药需要水多少千克?- 解析:设需要水y千克,根据比例1:500 = 3.6:y,y=3.6×500 = 1800千克。

4. 学校操场长120米,宽80米,画在比例尺为1:4000的图纸上,长和宽各应画多少厘米?- 解析:因为比例尺=图上距离:实际距离,所以图上距离 = 实际距离×比例尺。

操场长120米=12000厘米,宽80米=8000厘米。

长应画12000×(1)/(4000)=3厘米,宽应画8000×(1)/(4000) = 2厘米。

5. 一个机器零件长5毫米,画在图纸上是4厘米,求这幅图纸的比例尺。

- 解析:首先统一单位,4厘米= 40毫米。

比例尺=图上距离:实际距离=40:5 = 8:1。

六年级 比与比例练习(8套)

六年级 比与比例练习(8套)

比和比例(一)一、 精学精用1、 填空(1) 两个数相除,又叫做( );( )叫做比值。

(2) 比号前面的数叫做比的( ),比号后面的数叫做比的( )。

(3) 比的前项和比的后项同时( ),( )不变,这就是比的基本性质。

(4) 把比化简成最简单的整数比,通常叫做( )。

(5) 填写下面比与除法、分数之间的关系表:(6) 甲正方体的棱长是5分米,乙正方体的棱长是甲正方体的4倍:① 甲乙两个正方体的棱长的比是( ); ② 甲乙两个正方体底面周长的比是( ); ③ 甲乙两个正方体的底面积的比是( ); ④ 甲乙两个正方体的表面积的比是( ); ⑤ 甲乙两个正方体的体积的比是( )。

2、求下列各比的比值105:35 2.4:8 70:0.5 12:48 105:51:二、 活学活用1、 求比的未知项X:18.4=141 1255:x=0.26 x:531212= 158542=X :2、 化简下列各比 8:0.5 69232.5:23.1:18.6 51:173、 求下列各比的比值3:45 18:4 0.25:12 6:61 3192:4、 配制一种糖水,在150克的水中,放了25克的糖。

(1)写出糖和水的质量的比,并化简。

(2)写出糖和糖水的质量的比,并化简。

(3)写出水喝糖水的质量的比,并化简。

比和比例(二)3、精学精练(3)填空 (1)()211530÷==( )÷( )=()35(2) 一辆汽车3小时行了195千米,汽车所行的路程和所用的时间的比是( )。

(3) 某班有男生18人,女生22人,男生和全班人数的比是( )。

(4) 甲数是乙数的1.5倍,甲数和乙数的比是( )。

(5) 直角三角形的两个锐角的比是2:3,它的两个锐角分别是( )度和( )度。

(6) 男生占全班人数的60%,女生人数和男生人数的比是( )。

(7) 大圆与小圆的半径的比是2:1,小圆与大圆的面积的比是( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7、甲仓库存粮比乙仓存粮多100吨,而甲仓库存粮的3/4与乙仓库存粮的4/5相等。原来甲、乙两仓库各存粮多少吨?
4、专业户刘大伯家养鸡、鸭、鹅共1800只,这三种家禽的只数比是5:3:1。刘大伯家养鸡、鸭、鹅各多少只?
5、把一批书按4:5:6的比例分给甲、乙、丙三个班,已知甲班比丙班少分到24本,三个班各分到多少本书?
6、亮亮家造了新房,准备用边长是0.4米的正方形地砖装饰客厅地面,这样需要180块,装修老师建议改用边长0.6米的正方形地砖铺地。请你算一算需要多少块?(用比例解答)ቤተ መጻሕፍቲ ባይዱ
1、房产博览会上,某楼盘的模型是按照1:500的比例尺制作的,该楼盘1号楼模型高7厘米,它的实际高度是多少?
2、兰州到乌鲁木齐的铁路长约1900千米,在比例尺是1:40000000的地图上,它的长是多少?
3、修一条长12千米的公路,开工3天修了1.5千米。照这样计算,修完这条路还要多少天?(用比例解答)
相关文档
最新文档