高一数学练习册答案下

合集下载

人教版数学高中A版必修一全册课后同步练习(附答案)

人教版数学高中A版必修一全册课后同步练习(附答案)

(本文档资料包括高一必修一数学各章节的课后同步练习与答案解析)第一章1.1 1.1.1集合的含义与表示课后练习[A组课后达标]1.已知集合M={3,m+1},且4∈M,则实数m等于()A.4B.3C.2 D.12.若以集合A的四个元素a、b、c、d为边长构成一个四边形,则这个四边形可能是()A.梯形B.平行四边形C.菱形D.矩形3.集合{x∈N+|x-3<2}用列举法可表示为()A.{0,1,2,3,4} B.{1,2,3,4}C.{0,1,2,3,4,5} D.{1,2,3,4,5}4.若集合A={-1,1},B={0,2},则集合{z|z=x+y,x∈A,y∈B}中的元素的个数为()A.5 B.4C.3 D.25.由实数x,-x,|x|,x2,-3x3所组成的集合中,最多含有的元素个数为()A.2个B.3个C.4个D.5个6.设a,b∈R,集合{0,ba,b}={1,a+b,a},则b-a=________。

7.已知-5∈{x|x2-ax-5=0},则集合{x|x2-4x-a=0}中所有元素之和为________。

8.设P,Q为两个非空实数集合,定义集合P+Q={a+b|a∈P,b∈Q},若P ={0,2,5},Q={1,2,6},则P+Q中元素的个数为________。

9.集合A={x|kx2-8x+16=0},若集合A只有一个元素,试求实数k的值,并用列举法表示集合A。

10.已知集合A含有两个元素a-3和2a-1,(1)若-3∈A,试求实数a的值;(2)若a∈A,试求实数a的值。

[B组课后提升]1.有以下说法:①0与{0}是同一个集合;②由1,2,3组成的集合可以表示为{1,2,3}或{3,2,1};③方程(x-1)2(x-2)=0的所有解的集合可表示为{1,1,2};④集合{x|4<x<5}是有限集。

其中正确说法是()A.①④B.②C.②③D.以上说法都不对2.已知集合P={x|x=a|a|+|b|b,a,b为非零常数},则下列不正确的是()A.-1∈P B.-2∈P C.0∈P D.2∈P3.已知集合M={a|a∈N,且65-a∈N},则M=________。

高一数学练习册答案

高一数学练习册答案

高一数学练习册答案高一数学练习册答案篇一:数学配套练习册答案配套练习册的作业最好当天完成。

下面要为大家分享的就是数学配套练习册答案,希望你会喜欢!数学配套练习册答案(一)有理数的乘法基础知识1~2:D;B;B4、-12;-105、1/86、07、(1)35(2)-360(3)-4.32(4)21.6(5)1/6(6)2/3(7)60(8)-2能力提升8、43℃9、4探索和研究10、1/100数学配套练习册答案(二) 科学记数法基础知识12345CBCBB6、(1)3.59×10;-9.909×107、68、6×109、3.75×1010、6.37×1011、4270012、1.29×10m13、(1)2×10(2)-6.9×1014、(1)-30000000(2)87400(3)-98000能力提升15、(1)1.08×10 (2)6.1×10(3)1.6×1016、(1)70×60×24×365=3.6792×10(次)(2)若人正常寿命60~80岁,则3.679×10×60 1亿,所以一个正常人一生的心跳次数能达到1亿次17、-2.7×1018、9.87×10 1.02×1019、3.1586×10s探索研究20、4.32×10个,4.32×10个数学配套练习册答案(三)相反数基础知识1~4:B;A;C;A5、14/9;16;36、1.1;27、3.68、-2.59、110、图略;-5 -3 -2 -1/3 0 1/3 2 3 5 11、(1)54(2)-3.6(3)-5/3(4)2/512、(1)-0.5(2)1/5(3)-2mn(4)a能力提升13、214、∵a-2=7,∴a=915、0探究研究16、3;互为相反数高一数学练习册答案篇二:高一数学小测题目及答案高一数学小测题目及答案1.下列各组对象不能构成集合的是( )A.所有直角三角形B.抛物线y=x2上的所有点C.某中学高一年级开设的所有课程D.充分接近3的所有实数解析 A、B、C中的对象具备“三性”,而D中的对象不具备确定性.答案 D2.给出下列关系:①12∈R;②2R;③|-3|∈N;④|-3|∈Q.其中正确的个数为( )A.1B.2C.3D.4解析①③正确.答案 B3.已知集合A只含一个元素a,则下列各式正确的是( )A.0∈AB.a=AC.aAD.a∈A答案 D4.已知集合A中只含1,a2两个元素,则实数a不能取( )A.1B.-1C.-1和1D.1或-1解析由集合元素的互异性知,a2≠1,即a≠±1.答案 C5.设不等式3-2x 0的解集为M,下列正确的是( )A.0∈M,2∈MB.0M,2∈MC.0∈M,2MD.0M,2M解析从四个选项来看,本题是判断0和2与集合M间的关系,因此只需判断0和2是否是不等式3-2x 0的解即可.当x=0时,3-2x=3 0,所以0不属于M,即0M;当x=2时,3-2x=-1 0,所以2属于M,即2∈M.答案 B6.已知集合A中含1和a2+a+1两个元素,且3∈A,则a3的值为( )A.0B.1C.-8D.1或-8解析3∈A,∴a2+a+1=3,即a2+a-2=0,即(a+2)(a-1)=0,解得a=-2,或a=1.当a=1时,a3=1.当a=-2时,a3=-8.∴a3=1,或a3=-8.答案 D高一数学练习册答案篇三:高中数学三角函数练习题及答案一、选择题1.探索如图所呈现的规律,判断2 013至2 014箭头的方向是() 图1-2-3【解析】观察题图可知0到3为一个周期,则从2 013到2 014对应着1到2到3.【答案】 B2.-330是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角【解析】-330=30+(-1)360,则-330是第一象限角.【答案】 A3.把-1 485转化为+k360,kZ)的形式是()A.45-4360 B.-45-4360C.-45-5360 D.315-5360【解析】-1 485=-5360+315,故选D.【答案】 D4.(2023济南高一检测)若是第四象限的角,则180-是() A.第一象限的角 B.第二象限的角C.第三象限的角 D.第四象限的角【解析】∵是第四象限的角,k360-90k360,kZ,-k360+180180--k360+270,kZ,180-是第三象限的角.【答案】 C5.在直角坐标系中,若与的终边互相垂直,则与的关系为()A.=+90B.=90C.=+90-k360D.=90+k360【解析】∵与的终边互相垂直,故-=90+k360,kZ,=90+k360,kZ. 【答案】 D二、填空题6.,两角的终边互为反向延长线,且=-120,则=________.【解析】依题意知,的终边与60角终边相同,=k360+60,kZ.【答案】 k360+60,kZ7.是第三象限角,则2是第________象限角.【解析】∵k360+180k360+270,kZk180+90k180+135,kZ当k=2n(nZ)时,n360+90n360+135,kZ,2是第二象限角,当k=2n+1(nZ)时,n360+270n360+315,nZ2是第四象限角.【答案】二或四8.与610角终边相同的角表示为________.【解析】与610角终边相同的角为n360+610=n360+360+250=(n+1)360+250=k360+250(kZ,nZ).【答案】 k360+250(kZ)三、解答题9.若一弹簧振子相对平衡位置的位移x(cm)与时间t(s)的函数关系如图所示,图1-2-4(1)求该函数的周期;(2)求t=10.5 s时该弹簧振子相对平衡位置的位移.【解】 (1)由题图可知,该函数的周期为4 s.(2)设本题中位移与时间的函数关系为x=f(t),由函数的周期为4 s,可知f(10.5)=f(2.5+24)=f(2.5)=-8(cm),故t=10.5 s时弹簧振子相对平衡位置的位移为-8 cm.图1-2-510.如图所示,试表示终边落在阴影区域的角.【解】在0~360范围中,终边落在指定区域的角是0或315360,转化为-360~360范围内,终边落在指定区域的角是-4545,故满足条件的角的集合为{|-45+k36045+k360,kZ}.11.在与530终边相同的角中,求满足下列条件的角.(1)最大的负角;(2)最小的正角;(3)-720到-360的角.【解】与530终边相同的角为k360+530,kZ.(1)由-360<k360+530<0,且kZ可得k=-2,故所求的最大负角为-190.(2)由0<k360+530<360且kZ可得k=-1,故所求的最小正角为170(3)由-720k360+530-360且kZ得k=-3,故所求的角为-550.。

2022-2023学年人教A版(2019)高一下数学同步练习(含解析)

2022-2023学年人教A版(2019)高一下数学同步练习(含解析)

2022-2023学年高中高一下数学同步练习学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:50 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )1. 若函数,则以下判断正确的是( )A.函数是周期为的奇函数B.函数是周期为的偶函数C.函数是周期为的偶函数D.函数是周期为的奇函数2. 已知角是的一个内角,则“ ”是“ ”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3. 已知函数的定义域为,则函数的定义域为()A.B.C.D.f (x)=sin(x −)12π2f (x)πf (x)2πf (x)4πf (x)4πα△ABC sin α=12cos α=3–√2y =f (x)[−,1)12y =f (sin x)[−,]π67π6[−+2kπ,+2kπ]π67π6[+2kπ,+2kπ)7π611π6[−+2kπ,+2kπ)∪(+2kπ,+2kπ]π6π2π27π6y =sin(2x +θ)–√4. 已知函数是偶函数,则的一个值是( )A.B.C.D.5. 已知函数的部分图象如图所示,则的解析式可能为( )A.B.C.D.6. 已知函数的最小正周期为,若在上单调递增,在上单调递减,则实数的取值范围是( )A.B.C.D.二、 多选题 (本题共计 2 小题 ,每题 5 分 ,共计10分 )7. 已知函数,若将函数的图象平移后能与函数=的图象完全重合,则下列说法正确的有( )y =sin(2x +θ)2–√θπ−π2π4−π8f (x)f (x)f (x)=ln |x|2+cos xf (x)=2−ln |x|sin xf (x)=cos x ⋅ln |x|f (x)=sin x ⋅ln |x|f (x)=8sin(ωx −)(ω>0)π3πf (x)[−,]π24m 3[,]m 22π3m [π,π]32[π,π]5654[,]π3π2[−,π]π843f(x)y sin 2x f(x)A.函数的最小正周期为B.将函数的图象向左平移个单位长度后,得到的函数图象关于轴对称C.当时,函数的值域为D.当函数取得最值时,8. 设函数,则下列命题中正确的有( )A.当时,函数在上有最小值B.当时,函数在是单调增函数C.若,则D.方程可能有三个实数根卷II (非选择题)三、 填空题 (本题共计 1 小题 ,共计5分 )9. (5分) 定义在上的偶函数 满足 ,且当 时,,则的零点个数为________.四、 解答题 (本题共计 1 小题 ,共计5分 ) 10.(5分) 已知函数,其中常数.若在上单调递增,求的取值范围;令,将函数的图象向左平移个单位,再向上平移个单位,得到函数的图象,区间,且满足:在上至少含有个零点,在所有满足上述条件的中,求的最小值.f(x)πf(x)y f(x)f(x)f (x)=x|x|−bx +c b >0f (x)R b <0f (x)R f (2020)+f (−2020)=2022c =1011f (x)=0R f(x)f(x)=f(4−x)x ∈[0,2]f(x)=cos x g(x)=f(x)−lg|x|f(x)=2sin(ωx)ω>0(1)y =f(x)[−,]π42π3ω(2)ω=2y =f(x)π61y =g(x)[a,b](a b ∈R a <b)y =g(x)[a,b]30[a,b]b −a参考答案与试题解析2022-2023学年高中高一下数学同步练习一、 选择题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )1.【答案】C【考点】三角函数的周期性及其求法诱导公式函数奇偶性的判断【解析】利用诱导公式化简函数解析式,再利用三角函数的性质求解即可.【解答】解:函数,所以函数为偶函数,且最小正周期为.故选.2.【答案】B【考点】必要条件、充分条件与充要条件的判断任意角的三角函数【解析】首先求出各自情况下,的角,即可判断充要性.【解答】f (x)=sin(x −)=−sin(−x)=−cos x 12π2π21212=4π2π12C αα=–√解:∵,又是的内角,∴.∵,又是的内角,∴或,∴“”是“”的必要不充分条件.故选.3.【答案】D【考点】函数的定义域及其求法正弦函数的定义域和值域【解析】因为函数的定义域为,函数中,,解得,故选.【解答】解:因为函数的定义域为,函数中,,解得,故选.4.【答案】B【考点】余弦函数的奇偶性【解析】把选项的值分别代入函数中的,化简函数表达式,判断是不是偶函数即可.cos α=3–√2α△ABC α=π6sin α=12α△ABC α=π65π6sin α=12cos α=3–√2B y =1(x)−[,1)12y =f (sin x)−≤sin x <112x ∈[−+2kπ,+2kπ)∪(+2kπ,+2kπ]π6π2π27π6D y =f (x)−[,1)12y =f (sin x)−≤sin x <112x ∈[−+2kπ,+2kπ)∪(+2kπ,+2kπ]π6π2π27π6D θ解:因为,,是奇函数,不正确;因为,,是偶函数,正确;因为,,不是奇函数也不是偶函数,不正确;因为,,不是奇函数也不是偶函数,不正确;故选.5.【答案】D【考点】函数的图象函数奇偶性的判断【解析】根据题意,依次分析选项中函数是否符合函数的图象,综合即可得答案.【解答】解:,,其定义域为,,不符合题意,排除;,,其定义域为,不符合题意,排除;,,其定义域为,,不符合题意,排除;,,其定义域为,,符合题意.故选.6.【答案】B【考点】函数y=Asin (ωx+φ)的性质正弦函数的单调性【解析】答案未提供解析.θ=πy =sin(2x +π)=−sin 2x 2–√2–√A θ=−π2y =sin(2x −)=−cos 2x 2–√π22–√B θ=π4y =sin(2x +)2–√π4C θ=−π8y =sin(2x −)2–√π8D B A f (x)=ln |x|2+cos x x ≠0f (−x)=ln |−x|2+cos(−x)==f(x)ln |x|2+cos x A B f (x)=2−ln |x|sin x {x|x ≠kπ,k ∈Z}B C f (x)=cos x ⋅ln |x|x ≠0f (−x)=cos(−x)⋅ln |−x|=f (x)C D f (x)=sin x ⋅ln |x|x ≠0f (−x)=sin(−x)⋅ln |−x|=−sin x ⋅ln |x|=−f (x)D解:由题意,得,解得.由,,解得,,,,解得,.因为在上单调递增,在上单调递减,所以 解得,所以实数的取值范围是.故选.二、 多选题 (本题共计 2 小题 ,每题 5 分 ,共计10分 )7.【答案】A,B,D【考点】函数y=Asin (ωx+φ)的图象变换【解析】利用三角函数恒等变换的应用化简函数解析式可得=,由题意可求=,可得,利用周期公式可判断;利用三角函数平移变换可求的图象向左平移个单位长度后的函数解析式为=,利用余弦函数的性质可判断;由已知可求范围,利用正弦函数的性质可求的值域即可判断;利用正弦函数的性质,令,即可判断.【解答】=π2πωω=22kπ−≤2x −≤2kπ+π2π3π2k ∈Z kπ−≤x ≤kπ+π125π12k ∈Z 2kπ+≤2x −≤2kπ+π2π33π2k ∈Z kπ+≤x ≤kπ+5π1211π12k ∈Z f (x)[−,]π24m 3[,]m 22π3 ≤,m 35π12≥,m 25π12≤m ≤5π65π4m [π,π]5654B f(x)ω1A f(x)y cos 2x B f(x)C D由题意得,===.因为函数的图象平移后能与函数=的图象完全重合,所以=.因为,所以函数的最小正周期,故正确.将的图象向左平移个单位长度,得到曲线,其图象关于轴对称,故正确.当时,,,即的值域为,故错误.令,解得,所以当取得最值时,,故正确.8.【答案】B,C,D【考点】分段函数的应用函数最值的应用函数单调性的性质与判断函数的零点与方程根的关系【解析】由题设得,逐项讨论函数的单调性,最值,零点.【解答】解:对于,当时,令,,可知函数无最小值,故错误;对于,当时,令,可得,f(x)y sin6xω1f(x)Af(x)y Bf(x)Cf(x)Df(x)={−bx+c,x≥0x2−−bx+c,x<0x2A b>0f(x)={−bx+c,x≥0,x2−−bx+c,x<0,x2b=2c=0AB b<0f(x)={−bx+c,x≥0,x2−−bx+c,x<0,x20<<x1x2f()−f()=−+b(−)x1x2x21x22x2x1−<022b<0f()−f()<0由,,,可知,则在上单调递增,同理可得在上单调递增,且,函数在上是单调递增函数,故正确;对于,由题设将,代入得,故正确;对于,令,,则,解得,,,故正确.故选.三、 填空题 (本题共计 1 小题 ,共计5分 )9.【答案】【考点】函数的零点【解析】此题暂无解析【解答】解:由于定义在上的偶函数 满足 ,所以 的图象关于直线 对称.画出部分的图象如图,在同一坐标系中画出 的图象,当 时,有个交点.∵和 都是偶函数,∴在 上也是有个交点,∴ 的零点个数是.故答案为:.四、 解答题 (本题共计 1 小题 ,共计5分 )10.【答案】−<0x 21x 22−>0x 2x 1b <0f ()−f ()<0x 1x 2f (x)[0,+∞)f (x)(−∞,0)(−bx +c =f(0)=c >(−−bx +c x 2)min x 2)max f (x)R B C x =2020x =−2020f (x)={−bx +c,x ≥0,x 2−−bx +c,x <0,x 2c =1011C D b =2c =0f (x)=|x|x −2x =0x =02−2D BCD 10R y =f(x)f(x)=f(4−x)y =f(x)x =2x ∈[0,+∞)y =lg|x|x ∈(0,+∞)5y =lg|x|y =f(x)x ∈(−∞,0)5g(x)=f(x)−lg|x|1010−,]2π解:∵,在上单调递增,∴解得.∴的取值范围为.令,将函数的图象向左平移个单位长度,可得函数的图象;再向上平移个单位长度,得到函数的图象,令,求得,∴,或 ,,求得 或,,故函数的零点为或,,∴相邻两个零点之间的距离为或.若最小,则和都是零点,此时在区间,,,分别恰有,,,个零点,∴在区间上恰有个零点,从而在区间上至少有一个零点,∴.另一方面,在区间上恰有个零点,∴的最小值为.【考点】正弦函数的单调性函数y=Asin (ωx+φ)的图象变换正弦函数的图象函数的零点【解析】(1)依题意可得,解之即可.(2)由条件根据函数的图象变换规律,可得的解析式,令,即可解出零点的坐标,可得相邻两个零点之间的距离.若最小,则和都是零点,此时在区间恰有个零点,所以在区间是恰有个零点,从而在区间至少有一个零点,即可得到,满足的条件.进一步即可得出的最小值.(1)ω>0y =f(x)=2sin ωx [−,]π42π3−ω≥−,π4π2ω≤,2π3π20<ω≤34ω(0,]34(2)ω=2y =f(x)=2sin 2x π6y =2sin 2(x +)=2sin(2x +)π6π31y =g(x)=2sin(2x +)+1π3g(x)=0sin(2x +)=−π3122x +=2kπ+π37π62x +=2kπ+π311π6k ∈Z x =kπ+5π12x =kπ+3π4k ∈Z g(x)x =kπ+5π12x =kπ+3π4k ∈Z π32π3b −a a b [a,π+a][a,2π+a]⋯[a,mπ+a](m ∈)N ∗35⋯2m +1[a,14π+a]29(14π+a,b]b −a −14π≥π3[,14π++]5π12π35π1230b −a 14π+=π343π3−ω≥−π4π2ω≤2π3π2y =A sin(ωx +φ)g(x)g(x)=0b −a a b [a,mπ+a](m ∈)N ∗2m +1[a,14π+a]29(14π+a,b]a b b −a【解答】解:∵,在上单调递增,∴解得.∴的取值范围为.令,将函数的图象向左平移个单位长度,可得函数的图象;再向上平移个单位长度,得到函数的图象,令,求得,∴,或 ,,求得 或,,故函数的零点为或,,∴相邻两个零点之间的距离为或.若最小,则和都是零点,此时在区间,,,分别恰有,,,个零点,∴在区间上恰有个零点,从而在区间上至少有一个零点,∴.另一方面,在区间上恰有个零点,∴的最小值为.(1)ω>0y =f(x)=2sin ωx [−,]π42π3 −ω≥−,π4π2ω≤,2π3π20<ω≤34ω(0,]34(2)ω=2y =f(x)=2sin 2x π6y =2sin 2(x +)=2sin(2x +)π6π31y =g(x)=2sin(2x +)+1π3g(x)=0sin(2x +)=−π3122x +=2kπ+π37π62x +=2kπ+π311π6k ∈Z x =kπ+5π12x =kπ+3π4k ∈Z g(x)x =kπ+5π12x =kπ+3π4k ∈Z π32π3b −a a b [a,π+a][a,2π+a]⋯[a,mπ+a](m ∈)N ∗35⋯2m +1[a,14π+a]29(14π+a,b]b −a −14π≥π3[,14π++]5π12π35π1230b −a 14π+=π343π3。

《高等数学》同步练习册(下)新答案

《高等数学》同步练习册(下)新答案

参考答案与提示第7章 多元函数微分学及其应用7.1 多元函数的概念1、(1) }1,),{(22y x x y y x -≤>(2)}0,),,({22222≠+≥+y x z y x z y x (3)不存在 (4)连续 3、(1) 0 (2) 07.2 偏导数与全微分1、(1))sin(xy y - (2)yx xyy x x +++)ln( (3))cos()sin(xy ye xy (4) 223yx x + (5) )2(2x y x e xy -- (6) dy xe dx xe y y----2)232( (7) dx 2 (8) 0.25e 2、(1) 11+-=z y x y x f 1ln -+=z y z y y zy x x y x f y y x f z y z ln =(2)xyy xy z yx ++=1)1(2]1)1[l n()1(xy xy xy xy z y y ++++= 3、023=∂∂∂yx z 2231y y x z -=∂∂∂ 7.3 多元复合函数求导法1、(1) z xy xyf 2)(2或 (2) 212f xe f y xy '+'- (3) 12+'ϕx(4) t t t 232423-+ (5) xx e x x e 221)1(++(6) dy xy x dx y xy )2()2(22-+-2、(1) 321f yz f y f u x '+'+'= 32f xz f x u y '+'= 3f xy u z '=(2) 223221111f yx f y f xy f ''-'-''+' (3) f x f ''+'242 f xy ''4 (4) )cos ()(cos sin 333132321y x y x y x e f f x f e f e f x y +++''+''+'+''+''- 7.4 隐函数求导法1、2)cos()cos(2x xy x xy y xy -- 2、z x 2sin 2sin - zy 2s i n 2s i n -3、3232)1(22---z x z z z 4、)(211F F z F x '+'' )(212F F z F y '+'' 5、(1) )31(2)61(z y z x ++- z x31+(2))21)(1()12(21122112g yv f x g f g yv f u g f '-'--''-''+'' )21)(1()1(2112111g yv f x g f f u f x g '-'--'''-'-'7.5 多元函数微分学的几何应用1、(1) 213141-=-=-z y x (2) 422+=++πz y x (3) 223 (4) 12124433-=-=-z y x 2、2164±=++z y x 3、46281272-=-=+z y x 4、2,5-=-=b a7.6 方向导数与梯度1、(1)32 (2) 21(3) 5 (4) }2,2,1{92-2、)(2122b a ab + 3、3 4、}1,4,2{211- 217.7 多元函数极值及其求法1、极小值:2)21,41(21--=--ef2、最大值4)1,2(=z ,最小值64)2,4(-=z 。

数学高一全优练习册及答案

数学高一全优练习册及答案

数学高一全优练习册及答案### 数学高一全优练习册及答案#### 第一章:函数与方程练习题 1:已知函数 \( f(x) = 2x^2 - 3x + 1 \),求其定义域和值域。

答案:定义域:\( \mathbb{R} \),因为这是一个多项式函数,对所有实数都有定义。

值域:\( [1, +\infty) \),通过完成平方或求导数找到最小值点,\( f(x) \) 在 \( x = \frac{3}{4} \) 处取得最小值 1。

练习题 2:求函数 \( g(x) = \frac{1}{x} \) 的反函数。

答案:反函数为 \( g^{-1}(x) = \frac{1}{x} \),因为 \( g(x) \) 和\( g^{-1}(x) \) 是互为反函数。

#### 第二章:三角函数练习题 3:已知 \( \sin(\alpha) = \frac{3}{5} \),求\( \cos(\alpha) \) 和 \( \tan(\alpha) \) 的值。

答案:\( \cos(\alpha) = \pm\sqrt{1 - \sin^2(\alpha)} =\pm\frac{4}{5} \),取决于 \( \alpha \) 的象限。

\( \tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} =\pm\frac{3}{4} \),同样取决于 \( \alpha \) 的象限。

练习题 4:求 \( \sin(2\theta) \) 的值,已知 \( \cos(\theta)= \frac{1}{2} \)。

答案:\( \sin(2\theta) = 2\sin(\theta)\cos(\theta) \),首先求\( \sin(\theta) \),由于 \( \cos(\theta) = \frac{1}{2} \),\( \theta \) 可能在第一或第四象限,因此 \( \sin(\theta) \) 可以是 \( \frac{\sqrt{3}}{2} \) 或 \( -\frac{\sqrt{3}}{2} \)。

高一数学全册试题及答案

高一数学全册试题及答案

高一数学全册试题及答案一、选择题(每题5分,共20分)1. 下列函数中,为奇函数的是:A. y = x^2B. y = |x|C. y = x^3D. y = sin(x)2. 若f(x) = 2x + 1,则f(-1)的值为:A. -1B. 1C. 3D. -33. 等差数列{an}的首项为2,公差为3,则a5的值为:A. 17B. 14C. 11D. 84. 以下哪个选项是不等式x^2 - 4x + 3 < 0的解集?A. (1, 3)B. (-∞, 1) ∪ (3, +∞)C. (-∞, 1) ∪ (3, +∞)D. (1, 3)二、填空题(每题5分,共20分)5. 若函数f(x) = x^2 - 2x + 1,求f(1)的值为______。

6. 等比数列{bn}的首项为1,公比为2,则b3的值为______。

7. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},求A∩B的值为______。

8. 已知直线方程为y = 2x + 1,求该直线与x轴的交点坐标为______。

三、解答题(每题10分,共60分)9. 已知函数f(x) = x^2 - 4x + 3,求该函数的最小值。

10. 计算定积分∫(0到1) (2x + 3)dx。

11. 已知数列{an}满足a1 = 1,an+1 = 2an + 1,求a5。

12. 求函数y = ln(x)在区间[1, e]上的值域。

13. 已知直线l:y = 3x + 2与圆C:(x - 2)^2 + (y - 3)^2 = 9相交,求交点坐标。

14. 已知函数f(x) = sin(x) + cos(x),求f(π/4)的值。

答案:一、选择题1. C2. D3. B4. A二、填空题5. 06. 87. {2, 3}8. (-1/2, 0)三、解答题9. 函数f(x) = x^2 - 4x + 3的最小值为f(2) = -1。

10. 定积分∫(0到1) (2x + 3)dx = (x^2 + 3x)|_0^1 = 4。

高一下期数学试题及答案

高一下期数学试题及答案

高一下期数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是实数?A. √2B. -πC. 1/3D. i2. 函数f(x) = 2x^2 + 3x - 5的图像与x轴的交点个数是:A. 0B. 1C. 2D. 无穷多3. 已知等差数列{an}的首项a1=3,公差d=2,该数列的第5项a5等于:A. 13B. 15C. 17D. 194. 以下哪个不等式是正确的?A. |-3| > 3B. -2 < √4C. 1/2 ≤ √1/4D. -1 ≥ -25. 圆的方程为(x-2)^2 + (y-3)^2 = 25,圆心到直线x + y - 5 = 0的距离是:A. 2B. 3C. 4D. 56. 已知集合A={1, 2, 3},B={2, 3, 4},A∪B等于:A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 4}7. 若sinθ + cosθ = √2/2,那么sin2θ的值是:A. 1/2B. -1/2C. 1D. -18. 函数y = ln(x-1)的定义域是:A. (1, +∞)B. (0, +∞)C. (-∞, 1)D. (-∞, 0)9. 根据题目信息,第9题缺失。

10. 已知点A(-1, 2)和点B(2, -1),直线AB的斜率k是:A. 1/3B. -1/3C. -3D. 3二、填空题(每题2分,共10分)11. 已知等比数列{bn}的首项b1=2,公比q=3,该数列的第3项b3等于______。

12. 函数f(x) = x^3 - 3x^2 + 2的极小值点是______。

13. 已知向量a = (3, 2),b = (-1, 2),向量a与b的点积是______。

14. 根据题目信息,第14题缺失。

15. 抛物线y^2 = 4x的准线方程是______。

三、解答题(共60分)16. 解不等式:|x+2| - |x-3| ≤ 5。

《高等数学》同步练习册(下)新答案

《高等数学》同步练习册(下)新答案

参考答案与提示第7章 多元函数微分学及其应用7.1 多元函数的概念1、(1) }1,),{(22y x x y y x -≤>(2)}0,),,({22222≠+≥+y x z y x z y x (3)不存在 (4)连续 3、(1) 0 (2) 07.2 偏导数与全微分1、(1))sin(xy y - (2)yx xyy x x +++)ln( (3))cos()sin(xy ye xy (4) 223yx x + (5) )2(2x y x e xy -- (6) dy xe dx xe y y ----2)232( (7) dx 2 (8) 0.25e 2、(1) 11+-=z y x y x f 1ln -+=z y z y y zy x x y x f y y x f z y z ln =(2)xyy xy z yx ++=1)1(2 ]1)1[l n()1(xy xy xy xy z yy ++++= 3、023=∂∂∂yx z 2231y y x z -=∂∂∂ 7.3 多元复合函数求导法1、(1) z xy xyf 2)(2或 (2) 212f xe f y xy '+'- (3) 12+'ϕx(4) t t t 232423-+ (5) xx ex x e 221)1(++ (6) dy xy x dx y xy )2()2(22-+-2、(1) 321f yz f y f u x '+'+'= 32f xz f x u y '+'= 3f xy u z '=(2) 223221111f yx f y f xy f ''-'-''+' (3) f x f ''+'242 f xy ''4 (4) )cos ()(cos sin 333132321y x y x y x e f f x f e f e f x y +++''+''+'+''+''- 7.4 隐函数求导法1、2)cos()cos(2x xy x xy y xy -- 2、z x 2sin 2sin - zy 2s i n 2s i n -3、3232)1(22---z x z z z 4、)(211F F z F x '+'' )(212F F z F y '+'' 5、(1) )31(2)61(z y z x ++- z x31+(2))21)(1()12(21122112g yv f x g f g yv f u g f '-'--''-''+'' )21)(1()1(2112111g yv f x g f f u f x g '-'--'''-'-'7.5 多元函数微分学的几何应用1、(1) 213141-=-=-z y x (2) 422+=++πz y x (3) 223(4) 12124433-=-=-z y x 2、2164±=++z y x 3、46281272-=-=+z y x 4、2,5-=-=b a7.6 方向导数与梯度1、(1)32 (2) 21(3) 5 (4) }2,2,1{92-2、)(2122b a ab + 3、3 4、}1,4,2{211- 21 7.7 多元函数极值及其求法1、极小值:2)21,41(21--=--ef2、最大值4)1,2(=z ,最小值64)2,4(-=z 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档