Autolab交流阻抗拟合方法简介(尽力推荐,包你学会)
交流阻抗的研究方法

交流电的概念与基本性质
4.2.1.1交流电压的几种数学表示式 4.2.1.2简单电路的交流阻抗 4.2.1.3等效电路的特点
交流电压的几种数学表示式
正弦波交流电电压随时间作正弦波变化的表示式: V = VmSinωt 式中Vm为交流电压的振幅,ωt为相位,t为时间,ω为角 频率。ω与频率f和周期T的关系为ω=2πf=2π/T。 交流电压作为矢量在复数平面中可以表示为: V = VmCosωt + jVmSinωt Vmcosωt为交流电压矢量在实轴上的投影,Vmsinωt为交 流电压矢量在虚轴上的投影,j表示为虚数单位。 根据欧拉公式用指数形式表示复数时则为: V = Vmexp(jωt)
2 r
混合控制时的复数平面图分析(3)
一般情况(正弦波交流电频率适中) ω→0控制步骤向扩散控制转化 ω→无穷控制步骤向电化学反应控制转化 利用半圆可求R1,Rr和Cd 利用直线可求D
测量电化学反应速度常数的限制
交流阻抗测量电化学反应速度常数的上限 由Rr起主要作用,下限由Cd决定 (Dω/2)1/2 > k > RTωCd/n2F2C0 1cm/s > k > 2×10-5cm/s
简单电路的交流阻抗
由纯电阻R组成电路的交流阻抗 由纯电容C组成电路的交流阻抗 由电阻R与电容C串联组成电路的交流阻抗 由电阻R与电容C并联组成电路的交流阻抗
由纯电阻R组成电路的交流阻抗
交流电压V = Vmexp(jωt) 交流电流i = (Vm/R)exp(jωt)=imexp(jωt) 电流与电压相位相同 阻抗ZR = V/i = R 阻抗ZR为一实数且等于纯电阻R
2Cd σω
−
1 2
+1
Autolab交流阻抗拟合方法简介(尽力推荐,包你学会)

n=1 Q=C
FRA testprocedure with dummy cell:connect WE(c) 1K
1K
1K
0.K
0
0.K
0.K
1K
1K
Z' / ohm
FRA testprocedure with dummy cell:connect WE(c) 3
n1 n = 0.8 QC
60.0
50.0 3
0 -3M 0 3M 5M 8M 10M 13M 15M 18M 20M 23M
Z' / ohm
lo g ( Z) ( o ) - Z'' / o h m
Electrochemical Impedance spectroscopy
R(RC)
R(RC)
3.3
C1 60
50 3.0
R1 40 2.8
30
Nyquist图: Z’ ~ -Z”
FRAtestprocedurewithdummy cel:connect WE(c) 1.0K
lo g ( Z ) ( o ) - Z'' / o h m
50 3.0
0.8K
40
2.8
- p h a se / d e g ( + )
30
0.5K
2.5
20
0.3K 2.3
0
1000
2000
3000
4000
5000
6000
Electrochemical Impedance spectroscopy
Analitycal Corrosion semiconductor
Batteries Fuel cells
电化学交流阻抗拟合原理与方法

电化学交流阻抗拟合原理与方法电化学交流阻抗(Electrochemical impedance spectroscopy,EIS)是用于表征电化学过程的一种重要技术手段。
通过测量交流信号在电化学系统中的响应,可以得到阻抗谱,从而分析电化学界面的电化学过程、电极反应机理、电子传递速率、电荷传递过程等一系列信息。
在进行电化学交流阻抗拟合之前,首先需要进行实验测量,得到频率范围内的电流和电压响应。
然后将被测系统建模为一种基于等效电路的结构,常见的包括Randles电路、Warburg电路等。
接下来,通过适当的拟合算法,将实验数据与模型进行匹配。
在电化学交流阻抗拟合方法中,最常用的是最小二乘法(Least Squares Method)。
该方法通过最小化实验数据与数学模型之间的残差平方和,来确定模型参数的最优估计。
另外,也有一些基于统计学的拟合方法,如贝叶斯方法和蒙特卡洛方法等。
这些方法通过引入先验信息,对模型参数进行推断和估计,具有更高的估计精度和可靠性。
在实际拟合过程中,一般根据具体的电化学系统和问题,选择合适的模型。
常用的电化学反应包括双电层电容、电极材料的电化学反应、离子迁移等。
而常用的拟合模型则包括RC电路、RL电路、Randles电路等。
将实验数据与拟合模型进行匹配,可以得到模型参数,从而获得电化学系统的详细信息。
此外,在进行电化学交流阻抗拟合时,还需要注意选择合适的频率范围和测量条件,以保证测量数据的准确性和可靠性。
同时,也需要注意模型选择的合理性和拟合结果的解释,避免过度拟合或欠拟合的问题。
综上所述,电化学交流阻抗拟合是一种用于分析电化学界面的重要方法。
通过适当的建模和拟合算法,可以得到电化学系统的动力学特性和电荷传递过程等一系列信息,为电化学研究和应用提供有价值的参考。
交流阻抗法测试电极过程动力学参数实验结论和心得

交流阻抗法测试电极过程动力学参数实验结论和心得简介交流阻抗法测试电极过程动力学参数是一种常见的实验方法,主要用于研究电极在不同条件下的动力学响应特性。
本文将介绍在实验过程中我们所采用的方法、实验结果以及所得到的结论和心得。
实验方法我们采用了交流阻抗法来测试电极的动力学参数,具体步骤如下:1.准备工作在实验开始前,我们需要准备好所需的设备和试剂。
设备包括:交流阻抗仪、电极、相应的电缆和插头等;试剂则根据实验的具体要求而定。
2.样品制备根据实验要求,我们制备了不同的电极样品,涉及到的电极材料包括铂、银等。
3.实验步骤•将电极接入交流阻抗仪,并安装相应的电缆和插头。
•根据实验要求设置相应的测试参数,包括频率、电压等。
•进行测试,并记录测试结果。
实验结果通过以上步骤,我们获得了不同材料电极在不同条件下的测试结果。
这些结果主要包括以下两个方面的数据:1.频率响应我们通过测试不同频率下电极的阻抗值,获得了电极的频率响应特性。
在测试中,我们发现在高频率下,电极阻抗值明显下降,说明高频率下电极响应速度更快。
2.电位响应我们通过测试不同电压下电极的阻抗值,获得了电极的电位响应特性。
在测试中,我们发现在高电压下,电极阻抗值明显上升,说明在高电压下电极响应速度更慢。
结论和心得通过以上实验结果,我们得出了以下几点结论和心得:1.不同材料的电极对频率响应和电位响应有不同的影响。
2.在设计电极实验时需要根据具体测试要求对电极材料选择进行优化。
3.每次实验要不断调整和优化测试方案,以取得更准确的结果。
在今后的实验中,我们将继续探索和优化电极实验,为实验结果的准确性和实用性做出更大的贡献。
拟合阻抗法

拟合阻抗法
拟合阻抗法是一种用于曲线拟合的数学方法,常用于处理电学中的阻抗测量数据。
阻抗测量数据是指电流和电压之间的关系,通常在频域上进行测量。
拟合阻抗法的一般步骤如下:
1. 收集阻抗测量数据:通过实验或测量仪器获取不同频率下的电流和电压数据。
2. 选择模型函数:根据实际情况选择合适的模型函数来描述阻抗测量数据。
常用的模型函数包括等效电路模型和复数等效模型等。
3. 参数估计:根据模型函数,使用拟合算法来估计模型中的参数。
常见的拟合算法有最小二乘法和非线性拟合算法等。
4. 拟合优度评估:使用拟合优度评估指标来评估拟合结果的好坏。
常用的指标有均方根误差(RMSE)和决定系数(R²)等。
5. 参数解释与应用:根据拟合结果,解释模型中的参数,并根据需要进行相关应用,如电路设计、信号处理等。
拟合阻抗法的目的是找到最能描述实际数据的模型函数,并得到模型中的参数。
这样可以更好地理解电路或系统的特性,并在实际应用中提供参考和依据。
交流阻抗的原理与应用

交流阻抗的原理与应用
本文介绍了交流阻抗法在电化学研究中的应用,以及如何使用Zsimpwin软件进行数据拟合。
交流阻抗法是一种通过施
加小振幅正弦波电位或电流来测量电极系统频响函数的方法,可以分析电化学系统的反应机理和计算相关参数。
复数阻抗的测量可以给出阻抗的绝对值和相位角,为研究电极提供丰富的信息。
本文还介绍了纯粹电化学控制的电极体系的等效电路和总阻抗的计算方法。
最后,本文给出了复数阻抗曲线的示意图。
执行硫酸预处理实验前,请在“Control”菜单中选择“Run Experiment”命令。
在铂盘电极预处理后,使用双蒸水进行冲洗,然后在不超过60℃的恒温箱中干燥。
待电极表面完全干
燥后,使用苯胺溶液作为电解液,并连接好电路进行电聚合。
通过调整聚合圈数,可以在铂盘电极上制备出不同厚度的聚苯胺。
参数设置如下图所示:Init E(V):-0.2;High E(V):0.8;Low E(V):-0.2;Final E(V):0.8;Initial
将修饰好的铂盘电极放入电解池中,加入5mmol·L-
1[Fe(CN)6]3-/4-/KCl溶液作为电解液,并连接好测量线路。
一般来说,红色夹头应连接到电极上,白色夹头连接到参比电极上,绿色夹头连接到工作电极上。
电化学阻抗谱(autolab

电化学阻抗谱(autolab
电化学阻抗谱(Autolab)是一种通过测量目标系统阻抗随给定正弦波频率的变化来分析和研究该系统电极动力学过程等表面行为的一种电化学表征手段。
在电化学电池处于平衡状态下(开路状态)或者在某一稳定的直流极化条件下,按照正弦规律施加小幅交流激励信号,研究电化学的交流阻抗随频率的变化关系,这种测量方法称为频率域阻抗分析方法。
Autolab是这种电化学阻抗测量技术的一种常用设备或平台。
电化学阻抗谱数据可以有多种展示方法,最常用的为复数阻抗图和阻抗波特图。
由于该技术不损伤目标系统如待测电极表面,因此被广泛应用于腐蚀与防护等研究领域。
【小技巧】电化学交流阻抗数据拟合你会吗?

【小技巧】电化学交流阻抗数据拟合你会吗?
交流阻抗是电化学中很重要的一种测试方法,对电化学反应机理的探索和研究有很多帮助。
很多人虽然会测试,但是对交流阻抗数据的处理尤其是对数据拟合不是很清楚,今天小编为大家推荐的是用Nova2.1软件拟合交流阻抗数据,希望可以帮助大家。
教程由AOTOLAB的王岩工程师提供,感谢他对萤火的支持。
让我们一起开始今天的学习吧。
交流阻抗拟合的技巧介绍到这里,再次感谢王岩工程师的精彩内容,期待更多优质的内容。
技巧虽小,却能帮助很多科研人,解决一时之需;荧光虽弱,慢慢汇聚亦能照亮科研之路。
如果你也有一些小技巧,小经验,请积极给我们投稿,我们会第一时间向大家推送的。
爱分享,爱科研的小伙伴可以加入萤火科研资源共享群,群号:583538165。
汇聚萤火之光,照亮科研之路。
这一期的数据是由aotolab测试得到的数据,其实其他工作站测试得到的数据同样可以经过转化后用Nova软件进行拟合,下一期小编带您学习如何转换数据,敬请期待。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Nyquist图: Z’ ~ -Z”
FRAtestprocedurewithdummy cel:connect WE(c) 1.0K
lo g ( Z ) ( o ) - Z'' / o h m
50 3.0
8K
40
2.8
- p h a se / d e g ( + )
30
0.5K
2.5
20
0.3K 2.3
模块式仪器
PGSTAT12/FRA2 PGSTAT302/FRA2 PGSTAT100/FRA2
Electrochemical Impedance spectroscopy
为什么用EIS?
原位 非破坏性
应用
性能 研究
涂料,腐蚀,电池,燃料电池,半导体界面 腐蚀,钝化,电扩散,电沉积
限制
不能单独使用 数据解释有时比较困难
40.0 3
30.0
3 20.0
2 10.0
2
0
1K
-2
-1
1
2
3
4
log(f)
-- Z Z'''' // o oh hm m lo g ( Z) ( o )
- p h a se / d e g ( + ) - p h a se / d e g ( + )
Electrochemical Impedance spectroscopy
Electrochemical Impedance spectroscopy
所有复杂的曲线,均可由以上的基础图形分段得到。
R(RQ)(RQ)
lo g ( Z) ( o ) - Z'' / o h m
Measurementduring 1 mA discharge
ofa Duracell Alkaline Battery 0
Electrochemical Impedance spectroscopy
电化学仪器
电化学仪器和附件来自:
ECO CHEMIE, BV
Utrecht, The Netherlands
Electrochemical Impedance spectroscopy
非模块式仪器
Autolab III / FRA2
n=1 Q=C
FRA testprocedure with dummy cell:connect WE(c) 1K
1K
1K
0.K
0
0.K
0.K
1K
1K
Z' / ohm
FRA testprocedure with dummy cell:connect WE(c) 3
n1 n = 0.8 QC
60.0
50.0 3
100 10G
Sample 0685.3291 from Brazil,small sheets
10 75
10
8G
- p h a se / d e g ( + )
9
50
9
5G
9
9
25
3G
8
8
0
0
-2
-2
-2
-1
-1
-1
-1
-0.
0
0.
0
log(f)
3G
5G
8G
10G
Z' / ohm
lo g ( Z) ( o ) - Z'' / o h m
Capacitor double layer
Solution Resistance
D
E
+-
+ - + +-
+ - + ++-
+-
+-
Polarization Resistance
Electrochemical Impedance spectroscopy
INSIDE AND OUTSIDE CIRCUIT
5.0
不管高、低频,均呈 现出相位角为零的状态
90
4.5 65
4.0
log(Z )(o)
-phase / deg(+)
3.5
40
3.0 15
2.5
2.0
-10
-2
-1
1
2
3
4
log(f)
Electrochemical Impedance spectroscopy
单纯电容: C
C 8
不管高、低频, 均呈现出90度 相位角。
Electrochemical Impedance spectroscopy
高频时,电容可导通
D
Rsol
E Cdl
F
Rct 低频时,电阻可导通
Electrochemical Impedance spectroscopy
lo g ( Z ) ( o ) - Z'' / o h m
FRAtestprocedure with dummy cel:connect WE(c)
0 -3M 0 3M 5M 8M 10M 13M 15M 18M 20M 23M
Z' / ohm
lo g ( Z) ( o ) - Z'' / o h m
Electrochemical Impedance spectroscopy
R(RC)
R(RC)
3.3
C1 60
50 3.0
R1 40 2.8
30
Electrochemical Impedance spectroscopy
高频可认为是交流信号 低频可认为是直流信号
ElAevcetrroacghinegminicFaRl IAmpedance spectroscopy
High Frequency
1 23
n
Low Frequency
Mid Frequency
常用元件: 电阻 R
电位与电流同相, 相位角: 00
Electrochemical Impedance spectroscopy
常用元件: 电容 C
电位与电流异相, 相位角: 900
Electrochemical Impedance spectroscopy
CPE 常相元素
Q = CONSTANT PHASE
RS Electrolyte resistance CP Paint capacitance, measure of the water uptake by paint RP Paint resistance, measure of paint porosity CDL Double layer capacity, measure of the delamination of paint RCT Charge transfer resistance, corrosion rate of the substrate ZWAR Warburg impedance, measure of the diffusion resistance
2.5 20
2.3 10
R2
2.0
0
-2
-1
1
2
3
4
log(f)
- p h a se / d e g ( +)
R1
高频
C1
R2
低频
R(RC) 1.0K
0.8K
0.5K
0.3K
R1
0
0.1K
0.4K
0.6K Z' / ohm
R1+R2
0.9K
1.1K
lo g ( Z) ( o ) - Z'' / o h m
Electrochemical Impedance spectroscopy
Analitycal Corrosion semiconductor
Batteries Fuel cells
Electrochemical Impedance spectroscopy
单纯电阻: R
FRA testprocedurewithdummycell:connect WE(e) R
10
1
Measurementduring 1 mA discharge ofa Duracell Alkaline Battery
-0
9
1
-0
8
-0.
7
0.
- p h a se / d e g ( + )
-0.
6
0.
-0.
5
-0.
4
0.
-0.
3
0.
-0.
2
-0.
1
0
-2
-1
1
2
3
4
0.
0.
1
1
1
1
1
Electrochemical Impedance spectroscopy
电阻与电容串联 [RC]
R and C in serials [RC]
7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0
高频时,由于ω很大,RsCsω>>1,于是,Z≈Rs, θ≈0,电流与电压 的相位接管相等。整个电路相当于仅由电阻Rs组成。
6.0 50
5.5
5.0 25
4.5
4.0
0
-2
-1
0
1
2
3
4
5
6
log(f)
- p h a se / d e g ( +)