SAT1数学知识点
2024 SAT考试历年真题数学专题全解

2024 SAT考试历年真题数学专题全解2024年SAT考试数学部分依然是考生们最为担心和重视的科目之一。
为了帮助广大考生更好地应对考试,本文将为大家提供全面的2024 SAT考试历年真题数学专题全解。
通过对历年真题的详细解析,希望能够帮助考生们更好地掌握数学知识和解题技巧。
一、整数与小数整数与小数是SAT数学中一个重要的基础知识点。
在解题过程中,考生需要灵活运用整数与小数之间的转换以及四则运算等概念。
在解题过程中,考生应注意以下几点:1.了解整数与小数之间的转换关系。
2.掌握四则运算的基本规则。
3.注意小数位数计算和精确度问题。
二、代数与方程代数与方程是SAT数学中的核心内容之一。
考生需要熟练掌握代数运算的基本规则,灵活运用代数方程知识解题。
在解题过程中,考生应注意以下几点:1.理解代数方程的含义和定义。
2.熟悉代数运算的基本规则。
3.运用代数方程的性质和解题技巧。
三、几何与三角学几何与三角学是SAT数学中的另一个重要内容。
考生需要掌握几何图形的性质和运算规则,灵活运用三角学知识解题。
在解题过程中,考生应注意以下几点:1.掌握几何图形的基本性质和定义。
2.熟练运用三角学的相关概念和运算规则。
3.注意几何图形的变换和投影等问题。
四、数据与统计数据与统计是SAT数学中的重要内容之一。
考生需要了解数据分析和统计学的基本概念,掌握数据处理和统计方法。
在解题过程中,考生应注意以下几点:1.熟悉数据分析和统计学的基本概念。
2.掌握数据处理和统计方法。
3.灵活运用数据与统计知识解题。
五、概率与排列组合概率与排列组合是SAT数学中的难点之一。
考生需要掌握概率和排列组合的基本概念,灵活运用相关知识解题。
在解题过程中,考生应注意以下几点:1.理解概率和排列组合的基本概念。
2.熟悉概率和排列组合的运算规则。
3.注意概率和排列组合在实际问题中的应用。
通过对以上五个数学专题的全面解析与讲解,相信考生们已经对2024 SAT考试数学部分有了更深入的理解与掌握。
sat数学知识点总结

sat数学知识点总结在SAT数学部分中,主要涉及到初中和高中的数学知识。
以下是一些重要的数学知识点和技巧,用于备考SAT数学部分。
代数1. 代数基本技巧代数基本技巧包括整数运算、分式运算、指数运算、根式运算、代数式的化简、代数式的展开和化简等等。
2. 一元一次方程一元一次方程是代数中最基本的线性方程。
解一元一次方程的方法包括变项消去法、分式消去法、相等法等等。
3. 一元一次不等式一元一次不等式是代数中的基本问题之一,解一元一次不等式的方法与解一元一次方程类似。
4. 一元二次方程一元二次方程也是一种重要的代数方程,其解法包括配方法、配方法与因式分解法等等。
5. 二元一次方程组二元一次方程组是两个未知数的线性方程组。
解二元一次方程组的方法包括代入消元法、加减消元法等。
6. 因式分解因式分解是将多项式化为各个不可再分解的因子之乘积。
因式分解的方法包括分解公因式法、分组因式法、配方法、特殊因式分解法等。
7. 分式方程分式方程是含有分式的代数方程。
解分式方程的方法包括通分法、化简法、移项法等。
8. 根式和指数根式和指数是代数中的重要概念。
总结求根式的基本方法、指数的基本运算规则、指数方程的解法等。
几何1. 基本图形基本图形包括直线、线段、射线、角、三角形、四边形、圆等。
了解基本图形的性质和运用。
2. 相似和全等相似和全等是几何中的重要概念。
了解相似和全等的定义、性质、判定方法等。
3. 勾股定理勾股定理是三角形中的一个重要定理。
了解勾股定理的概念和运用。
4. 圆圆是几何中的一个重要图形。
了解圆的性质、弧长、扇形面积、圆环等相关概念。
5. 平行线和垂直线平行线和垂直线是几何中的基本概念之一。
了解平行线和垂直线的性质、判定方法等。
6. 多边形多边形包括三角形、四边形、五边形、六边形等等。
了解多边形的性质、内角和外角的性质、对角线长度等。
7. 圆锥和圆柱圆锥和圆柱是常见的几何图形。
了解圆锥和圆柱的性质、面积和体积的计算方法等。
SAT数学知识点

SAT 数学知识点一Number and Operations Review 一、Properties of integers知道下列说法表示的内容:1. Integers consist of the whole numbers and their negatives (including zero).2. Integers extend infinitely in both negative and positive directions.3. Integers do not include fractions or decimals.4. Negative integers5. Positive integers6. The integer zero is neither positive nor negative.7. odd numbers(奇数)and even numbers(偶数)8. Consecutive integers9. Addition of integers(奇数偶数的加法规则)10. Multiplication of integers(奇数偶数的乘法规则)二、Arithmetic word problems(算术题)三、Number lines(数轴)四、Square and square roots(平方和平方根)五、Fractions and rational numbers(分数与有理数)六、Elementary number theory☆Factors, multiples, and remainders☆Prime numbers七、Ratios, proportions, and percents八、Sequences九、Sets(union, intersection, elements)十、Counting problems Counting problems involve figuring out how many ways you can select or arrange members of groups, such as letters of the alphabet, numbers or menu selections.☆Fundamental counting problems分步完成事件和分类完成事件发生的可能性☆Permutations and combinations (排列组合)基本排列组合理论十一、Logical reasoningThe SAT doesn’t include1.Tedious or long computations2.Matrix operations1.2.3.4.5. 6.7.8.9.10.11.12.13. 14.SAT数学知识点二Algebra and Functions Review Many math questions require knowledge of algebra. This chapter gives you some further practice. You have to manipulate and solve a simple equation for an unknown, simplify and evaluate algebraic expressions, and use algebraic expressions, and use algebraic concepts in problem-solving situations.For the math questions covering algebra and functions content, you should be familiar with all of the following basic skills and topics:一、Operations on algebraic expressions二、Factoring三、Exponents四、Evaluating expressions with exponents and roots五、Solving equations☆Working with “unsolvable” equations☆Solving for one variable in terms of another☆Solving equations involving radical expressions六、Absolute value 七、Direct translation into mathematical expressions八、Inequalities九、Systems of linear equations and inequalities十、Solving quadratic equations by factoring 十一、Rational equations and inequalities 十二、Direct and inverse variation十三、Word problems十四、Functions☆Function notation and evaluation☆Domain and range☆Using new definitions☆Functions as models☆Linear functions: their equations and graphs☆Quadratic functions: their equations and graphs☆Qualitative behavior of graphs and functions☆Translations and their effects on graphsand functionsThe SAT doesn’t include:一、Solving quadratic equations thatrequire the use of the quadraticformula二、Complex numbers三、Logarithms1.2.3.4. 5.6.7.8.9.10.SAT 数学知识点三Geometry and Measurement Review Concept you should to knowFor the mathematics questions covering geometry and measurement concepts, you should be familiar with all of the following basic skills, topics, and formulas:一、Geometric notation二、Points and lines三、Angles in the plane四、Triangles(including special triangles)☆Equilateral triangles☆Isosceles triangles☆Right triangles and the Pythagorean theorem ☆30º-60º-90ºtriangles☆45º-45º-90ºtriangles☆3-4-5 triangles☆Congruent triangles☆Similar triangles☆The triangle inequality五、Quadrilaterals☆Parallelograms☆Rectangles☆Squares六、Areas and Perimeters☆Areas of squares and rectangles☆Perimeters of squares and rectangles☆Area of triangles☆Area of Parallelograms七、Other polygons☆Angles in a polygon☆Perimeter☆Area八、Circles☆Diameter☆Radius☆Arc☆Tangent to a circle☆Circumference☆Area九、Solid geometry☆Solid figures and volumes☆Surface area十、Geometric perception十一、Coordinate geometry☆Slopes, parallel lines, and perpendicular lines☆The midpoint formula☆The distance formula十二、TransformationsThe SAT doesn’t include:一、Formal geometric proofs二、Trigonometry三、Radian measure1.2.3.4.5.6. 7.8.9.SAT 数学知识点四Data Analysis, Statistics andProbability ReviewFor the math questions covering data analysis, statistics and probability concepts, you should be familiar with all of the following basic skills and topics:一、Data interpretation二、Statistics☆Arithmetic mean☆Median☆Mode☆Weighted average☆Average of algebraic expression☆Using average to find missing numbers三、Elementary probability四、Geometric probabilityThe SAT doesn’t include:四、Computation of standard deviation 1.2.3.4.5. 6.7.8.Word Problems1.2.3.4. 5-75.6.7.1112。
SAT数学知识点(一)

SAT数学知识点(一)考试,如果一旦知道考点,对于考生就有一种如释重负的感觉。
所以,面对SAT数学,文都国际教育小编将给大家分享一下基本的SAT数学知识点,希望对大家的考试有所帮助。
代数部分(heart of Algebra):核心是线性方程(组)、线性函数、线性不等式。
1.建立、解答或解释单变量的线性方程(create, solve, or interpret linear equations of one variable)学生根据题目背景(context)建立、解答和解释单变量(variable)的线性(linear)表达式(expression)或方程(equation)。
表达式或方程有理因数(rational coefficients)。
学生可能需要多个步骤简化表达式、简化方程或解出方程中的变量。
2.建立、解答或解释单变量的线性不等式(create, solve, or interpret linear inequalities of one variable)学生根据题目背景(context)建立、解答和解释单变量(variable)的线性不等式(linear inequalities)。
含有理分式的不等式(rational coefficients)。
学生可能需要多个步骤简化表达式、简化方程或解出方程中的变量的值。
3.根据两个变量的线性关系建立一个线性函数(build a linear function that models a linear relationship between two quantities)学生使用两个变量的方程(function)或函数记号(function notation)描述一个背景下的线性关系(linear relationship)。
方程(equation)或有理因式函数(function with rational coefficients)。
【独家】Alevel数学Statistic1(S1)考试知识点

Summary of key points in S1Chapter 1: Binomial distribution1. (重点***)计算二项分布的概率:(1)公式法(**),由),(~p n B X ,则有x n x n x p p x X P --==)1()()( (2)查表法(***):利用书中135-139页中的)()(x X P x F ≤=,其中p 是0。
05的倍数、一直到0.50,n 最小是5、最大是50。
2。
(重点**)计算二项分布的期望和方差:),(~p n B X ,则有np X E =)( )1()(p np X Var -=3. (考点*)二项分布的条件:● A fixed number of trials,n .● Each trial should be success or failure 。
● The trials are independent 。
● The probability of success,p , at each trial is constant 。
其中,n 为指数(index ),p 为参数(parameter )。
难点是要求根据题意写出二项分布的条件,如果有题意背景的,要根据题意写。
4. (考点*)如果),(~p n B X ,其中5.0>p ,则)1,(~p n B Y -,那么5.01≤-p ;如果p 是0.05的倍数,则可以用查表法求概率.5. 典型例题:例7/8/9*/10/11/12/13(a)/14*6. 复习题:Review Exercise 1: 1/4/87. 练习册部分题目:12-01-2, 10—01-1, 08-01—2Chapter 2: Representation and summary of data – location1、Frequency tables and grouped datacumulative frequency:to add a column to the frequency table showing the running total of the frequencies 。
SAT数学知识点分享(一)

SAT数学知识点分享(一)在新SAT考试数学部分,涉及的知识点范围往往比较固定,再加上中国考生本身比较擅长数学,因此,考到高分并非难事。
接下来,小编将针对新SAT考试数学部分涉及的各个知识点进行汇总,希望帮同学们完胜SAT数学。
1.正整数n有奇数个因子,则n为完全平方数2.因子个数求解公式:将整数n分解为质因子乘积形式,然后将每个质因子的幂分别加一相乘.n=a*a*a*b*b*c则因子个数=(3+1)(2+1)(1+1) eg. 200=2*2*2 * 5*5 因子个数=(3+1)(2+1)=12个3.能被8整除的数后三位的和能被8整除;能被9整除的数各位数的和能被9整除.能被3整除的数,各位的和能被3整除.4.多边形内角和=(n-2)x1805.菱形面积=1/2 x 对角线乘积6.欧拉公式:边数=面数+顶点数-27.三角形余玄定理C2=A2+B2-2ABCOSβ,β为AB两条线间的夹角8.正弦定理:A/SinA=B/SinB=C/SinC=2R(A,B,C是各边及所对应的角,R是三角形外接圆的半径)9.Y=k1X+B1,Y=k2X+B2,两线垂直的条件为K1K2=-110.N的阶乘公式:N!=1*2*3*....(N-2)*(N-1)*N 且规定0!=1 1!=1Eg:8!=1*2*3*4*5*6*7*811. 熟悉一下根号2、3、5的值sqrt(2)=1.414 sqrt(3)=1.732 sqrt(5)=2.23612. ...2/3 as many A as B: A=2/3*B...twice as many... A as B: A=2*B13. 华氏温度与摄氏温度的换算换算公式:(F-32)*5/9=C以上就是部分SAT数学知识点的分享。
可以看出,这次整理的知识点主要是代数和几何基本内容。
希望上面的内容能够帮助大家顺利通过SAT数学考试。
文章来源于文都国际教育:/kaopei/20170727/10895.shtml。
SAT考试数学应用知识点

SAT考试数学应用知识点数学是SAT考试的一项重要内容,而数学应用是数学考试中的核心部分。
本文将介绍SAT数学应用的常见知识点,帮助考生更好地准备数学部分的考试。
1. 代数和函数代数和函数是SAT数学考试中的重要部分。
相关知识点包括:- 等式和不等式:包括线性等式和不等式,二次等式和不等式等。
- 多项式:包括多项式的基本操作,如加减乘除、因式分解等。
- 函数:包括常见的函数类型,如线性函数、二次函数、指数函数、对数函数等。
理解函数的定义域、值域、图像等概念。
- 方程组:包括二元一次方程组和三元一次方程组等。
解方程组的常见方法有代入法、消元法、图像法等。
2. 几何几何是SAT数学考试中另一个重要的知识点。
相关知识点包括:- 平面几何:包括平行线、垂直线、角度、三角形、四边形、多边形等概念。
理解平行线的性质、角度的计算方法、多边形的内角和外角和等。
- 空间几何:包括立体图形的表面积和体积计算,如长方体、圆柱体、球体等。
理解几何体的性质和计算方法。
- 相似和全等:了解相似和全等的概念,以及相似三角形和全等三角形的性质。
掌握相似三角形的比例计算和全等三角形的判定条件。
3. 数据分析和概率数据分析和概率是SAT数学考试中的一项重要内容。
相关知识点包括:- 统计学:包括数据的收集、整理、展示和分析等。
掌握平均值、中位数、众数等统计量的计算方法,理解频率分布、直方图和折线图等统计图表的阅读和分析。
- 概率:了解概率的基本概念和计算方法。
掌握概率的加法原则和乘法原则,理解条件概率和独立事件等概念。
4. 实际问题应用SAT数学考试重点考察数学在实际问题中的应用能力。
相关知识点包括:- 比例和比率:了解比例和比率的概念,掌握比例和比率的计算方法,在实际问题中应用比例和比率解决相应的计算问题。
- 利润和成本:理解利润和成本的概念,掌握利润和成本的计算方法,在实际问题中应用利润和成本解决相应的计算问题。
- 利息和复利:了解利息和复利的概念,掌握利息和复利的计算方法,在实际问题中应用利息和复利解决相应的计算问题。
SAT数学的常见考点总结

SAT数学的常见考点总结SAT数学考试是很多同学们头疼的一门科目,其中包含了各种各样的考点。
为了使大家更好地备考和应对SAT数学考试,下面将对常见的考点进行总结和详细介绍。
1. 代数与函数(Algebra and Functions)1.1 代数表达式求解问题SAT数学考试中经常涉及到解代数表达式的问题,题目可能要求化简、合并同类项、分解因式等。
1.2 方程与不等式方程与不等式也是SAT数学中的重点考察内容,包括一元二次方程的求解、解不等式时的符号方向、绝对值等。
1.3 函数与图像对于函数与图像的考察,题目可能涉及恒等函数、线性函数、二次函数、指数函数、对数函数以及复合函数的求解等。
1.4 概率与统计概率与统计是SAT数学考试中单项选择题和多项选择题中的常见考点,涉及到事件概率、抽样、标准差等。
2. 数据分析与问题解决(Data Analysis and Problem Solving)2.1 数据集合与表示这部分考察了数据集合的表示方法,例如直方图、折线图、饼图等,还包括对数据集合的读图和解读。
2.2 数据解释与分析题目可能涉及数据之间的关系、趋势、规律以及数据的有效性等问题,需要学生根据提供的数据进行分析和解释。
2.3 概率与统计此部分需要掌握各种概率与统计的概念和方法,如期望、标准差、置信区间、相关系数等。
3. 几何与测量(Geometry and Measurement)3.1 平面几何和空间几何几何相关的考点囊括了平面几何和空间几何,包括点、线、面的性质和关系,以及角度、距离、周长、面积、体积等计算。
3.2 相似性和比例这一部分主要考察相似三角形和相似图形之间的比例关系,以及比例的应用,如相似三角形的边长比、面积比等。
3.3 记数与排列组合题目可能涉及用排列组合的方法计数,如从一组数中选取特定数字的不同方式数目等。
4. 其他相关数学概念4.1 数列与数列求和SAT数学考试中常涉及等差数列、等比数列等,需要求解数列的通项公式和求和公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SAT I 数学I. 解题技巧训练1 The units digit of 23333 is how much less than the hundredths digit of1000567(A) 1 (B) 2 (C) 3 (D) 4 (E) 52. What is the units digit of 1597365?3. Bob has a pile of poker chips that he wants to arrange in even stacks. If he stacks them in piles of 10, he has 4 chips left over. If he stacks them in piles of 8, he has 2 chips left over. If Bob finally decides to stack the chips in only 2 stacks, how many chips could be in each stack?A. 14B. 17C. 18D. 24E. 344. If x and y are two different integers and the product 35xy is the square of an integer, which of the following could be equal to xy?A. 5B.70C. 105D. 140E. 3505. If x2=y3 and (x-y)2=2x, then y could equal (A) 64 (B) 16 (C) 8 (D) 4 (E) 26. For positive integers p, t, x and y, if p x =t y and x-y=3, which of the following CANNOT equal t?A. 1B. 2C. 4D. 9E. 257. If 3t-3>6s+9 and t-5s<12, and s is a positive integer less than 4, then t could be any of the following EXCEPT A. 6 B. 8 C. 10 D.12 E. 238. If n and p are integers greater than 1 and if p is a factor of both n+3 and n+10, what is the value of p?A. 3B. 7C. 10D. 13E. 309. If x is a positive integer greater than 1, and x3-4x is odd, then x must be(A) even (B) odd (C) prime (D) a factor of 8 (E) divisible by 810.If the graph above is that of f(x), which of the following could be f(x) A. f(x)= 3||x B. f(x)=|3|x C. f(x)=/x/+3 D. f(x)=|x+3| E. f(x)=|3x|11. xy=x+y. If y>2, what are all possible values of x that satisfy the equation above?A. x<0,B. 0<x<1C.0<x<2D.1<x<2E. x>2II. 算术 ――对应知识点训练1. 代数题(1). Karl bought x bags of red marbles for y dollars per bag, and z bag of blue marbles for 3y dollars per bag. If he bought twice as many bags of blue marbles as red marbles, then in terms of y, what was the average cost, in dollars, per bag of marbles? (A) 23y (B) 37y (C) 3x-y (D) 2y (E) 6y(2) At this bake sale, Mr. Right sold 30% of his pies to one friend. Mr. Right then sold 60% of the remaining pies to another friend. What percent of his original number of pies did Mr. Right have left?(A) 10% (B) 18% (C) 28% (D) 36% (E) 40%(3) At a track meet, 2/5 of the first-place finishers attended Southport High School, and 1/2 of them were girls. If 2/9 of the first-place finishers who did NOT attend Southport High School were girls, what fractional part of the total number of first-place finishers were boys?(A) 1/9 (B) 2/15 (C) 7/18 (D) 3/5 (E) 2/32. 中位数(4)student joined the class, and the average (arithmetic mean) number of siblings per student became equal to the median number of siblings per student. How many siblings did the new student have?A. 0B. 1C. 2D. 3E. 4(5)In a set of eleven different numbers, which of the following CANNOT affect the value of the median?A. Doubling each numberB. Increasing each number by 10C. Increasing the smallest number onlyD. Decreasing the largest number onlyE. Increasing the largest number only(6). The least and greatest numbers in a list of 7 real numbers are 2 and 20, respectively. The median of the list is 6, and the number 3 occurs most often in the list. Which of the following could be the average (arithmetic mean) of the numbers in the list?I. 7 II. 8.5 III. 10A. I onlyB. I and II onlyC. I and III onlyD. II and III onlyE. I, II and III3. 集合部分(6) Set F consist of all of the prime numbers from 1 to 20 inclusive, and set G consist of all of the odd numbers from 1 to 20 inclusive. If f is the number of values in set F, g is the number of values of in Set G, and j is the number of values in F∪G, which of the following gives the correct value of f(j-g)?A. 4B. 8C. 10D. 11E. 18(7) Set X has x members and set Y has y members. Set Z consists of all members that are in either Set X or Set Y with the exception of the k common members (k>0). Which of the following represents the number of members in set Z?A. x+y+kB. x+y-kC. x+y+2kD. x+y-2kE. 2x+2y-2k(8) Of the 240 campers at a summer camp, 5/6 could swim, if 1/3 of the campers took climbing lessons, what was the least possible number of campers taking climbing lessons who could swim?A. 20B.40C. 80D.120E. 200(9) Set F consist of all of the prime numbers from 1 to 20 inclusive, and set G consist of all of the odd numbers from 1 to 20 inclusive. If f is the number of values in set F, g is the number of values of in Set G, and j is thenumber of values in F∪G, which of the following gives the correct value of f(j-g)?A. 4B. 8C. 10D. 11E. 184. 排列组合题(10)Mr. Jones must choose 4 of the following 5 flavors of jellybean: apple, berry, coconut, kumquat, and lemon, How many different combinations of flavors can Mr. Jones choose?(11)If the 5 cards shown above are placed in a row so that is never at either end, how many different arrangements are possible?(12)As shown above, a certain design is to be painted using 2 different colors. If 5 different colors are available for the design, how many differently painted designs are possible?A. 10B. 20C. 25D. 60E. 120(13)In the integer 3589 the digits are all different and increase from left to right. How many integers between 4000 and 5000 have digits that are all different and that increased from left to right?(14).On the map above, X represents a theater, Y represents Chris’s house, and Z represents Peter’s house. Chris walks from his house to Peter’s house without passing the theater and then walks with Peter to the theater and then walks without walking by his own house again. How many different routs can Chris take?(15)In a certain game, 8 cards are randomly placed face-down on a table. The cards are numbered from 1 to 4 with exactly 2 cards having each number. If a player turns over two of the cards, what is the probability that the cards will have the same number?(16)The Acme Plumbing Company will send a team of 3 plumbers to work on a certain job. The company has 4 experienced plumbers and 4 trainees. If a team consists of 1 experienced plumber and 2 trainees, how many different such teams are possible?(17)If p, r, m, n, t and s are six different prime numbers greater than 2, and n=p*r*s*m*n*t, how many positive factors, including 1 and n, does n have?5.数列部分(14) The least integer of a set of consecutive integers is -25. If the sum of these integers is 26, how many integers are in this set? A. 25 B. 26 C.50 D. 51 E. 52(15) 1,2,2,3,3,3,4,4,4,4….All positive integers appear in the sequence above, and each positive integer k appears in the sequence k times. In the sequence, each term after the first is greater than or equal to each of the terms before it. If the integer 12 first appears in the sequence as the n th term, what is the value of n ?(16) The first term of a sequence of numbers is 2. Subsequently, every even term in the sequence is found by subtracting 3 from the previous term, and every odd term in the sequence is found by adding 7 to the previous term. What is the difference between 77th and 79th terms of this sequence?A. 11B. 7C. 4D. 3E. 26.应用题(16) A positive integer is said to be “tri-factorable ” if it is the product of three consecutive integers. How many positive integers less than 1000 are tri-factorable?(17) Tom and Alison are both salespeople. Tom ’s weekly compensation consists of $300 plus 20 percent of his sale. Alison ’s weekly compensation consists of $200 plus 25 percent of her sales. If they both had the same amount of sales and the same compensation for a particular week, what was that compensation, in dollars? (Disregard dollar sign when gridding your answer)(18) To celebrate a colleague ’s graduation, the m coworkers in an office agreed to contribute equally to a catered lunch that costs a total of y dollars. If p of the coworkers fail to contribute, which of the following represents the additional amount, in dollars, that each of the remaining coworkers must contribute to pay for the lunch? A. m y B. p m y - C. p m py - D. m p m y )(- E. )(p m m py -(19) In a certain store, the regular price of a refrigerator is $600. How much money is saved by buying this refrigerator at 20 percent off the regular price rather than buying it on sale at 10 percent off the regular price with an additional discount of 10 percent off the sale price?(A) $6 (B) $12 (C) $24 (D) $54 (E) $607.整除,最小公倍数,余数问题(20) When a is divided by 7, the remainder is 4. When b is divided by 3, the remainder is 2. If 0<a <24 and 2<b <8, which of the following could have a remainder of 0 when divided by (A) b a (B) ab (C) a-b (D) a+b (E) ab(21) The alarm of Clock A rings every 4 minutes, the alarm of Clock B rings every 6 minutes, and the alarm of Clock C rings every 7 minutes. If the alarms of all three clocks ring at 12:00 noon, the next time at which all the alarms will ring at exactly the same time isA. 12:28 P.M.B. 12:56 P.M.C. 1:24 P.M.D. 1:36 P.M.E. 2:48 P.M.(22) If a, b, and c are distinct positive integers, and 10% of abc is 5, then a+b could equalA. 1B. 3C. 5D. 6E. 25(23) On 5 math tests, Gloria had an average score of 86. If all test scores are integers, what is the lowest average score average score Gloria can receive on the remaining 3 tests if she wants to finish the semester with an average score of 90 or higher?A. 90B. 92C. 94D. 96E. 97 (24) If ky 4 is the cube of an integer greater than 1, and k2=y, what is the least possible value of y? A. 1 B. 2 C. 4 D. 6 E. 27III 代数问题(1) The height of the steam burst of a certain geyser varies with the length of time since the previous steam burst. The longer the time since the last burst, the greater the height of the steam burst. If t is the time in hours since the previous steam burst and H is the height in meters of the steam burst, which of the following could express the relationship of t and H ?A . H(t)= 21(t-7) B. H(t)= 72 t C. H(t)=2-(t-7) D. H(t)= 7-2t E. H(t)= t72 (2) 4)The above graph could represent which of the following inequalities?A. y ≤x 1B. y< (21)xC. y ≥x 1 D . y ≥(21)x E . y ≥x -1/2 (3)The change in temperature is a function of the change in altitude in such a way that as the altitude increases, so dose the change in the temperature. For example, a gain of 1980 feet causes a 60F, which of the following could be the relationship of a and T?A. T(a)= a/300B. T(a)= a-330C. T(a)=330/aD. T(a)=330-aE. T(a)=330a(4) Let f(x) be defined as the least integer greater than x/5. Let g(x) be defined as the greatest integer less than x/5. What is the value of g(18)+f(102)? A. 21 B. 22 C. 23 D. 24 E. 25(5)Radioactive substance T-36 dose not stay radioactive forever. The time it takes for half of the element to decay is called a half-life. If, before any decay takes place, there is 1 gram of radioactive substance T-36, and the half-life is 7 days, how much remains after 28 days? A. 7-28 B. 2-4 C. 2-2 D. 1-28 E. 22(6) Luke purchased an automobile for $5000, and the value of the automobile decreases by 20 percent each year. The value, in dollars, of the automobile n years from the date of purchase is given by the function V , where V(n)=5000*(0.8)n . how many years from the date of purchase will the value of the automobile be $ 3200? A. 1 B. 1 C. 3 D. 4 E. 5(7) The cost of maintenance on an automobile increases each year by 10 percent, and Andrew paid $300 this year for maintenance on his automobile. If the cost c for maintenance on Andrew ’s automobile n years from now is given by the function c(n)=300x n , what is the value of x ?A. 0.1B. 0.3C. 1.1D. 1.3E. 30(8) h(t)= c- (d-4t)2At time t=0, a ball thrown upward from an initial height of 6 feet. Until the ball hit the ground, its height, in feet, after t seconds was given by the function h above, in which c and d are positive constants. If the ball reached its maximum height of 106 feet at time t=2.5, what was the height, in feet, of the ball at time t=1?(9) If k, n, x and y are positive numbers satisfying x -4/3 = k -2 and y 4/3 =n 2, what is (xy ) -2/3 in terms of n and k ? A. nk 1 B. k n C. nk D. nk E. 1(10)The figures above show the graphs of the function f and g . The function f is defined by f(x)=x 3-4x . the function g is defined by g(x)=f(x+h)+k , where h and k are constants. What is the value of hk ?A. -6B. -3C. -2D.3E. 6(11) Let [x] be defined as [x]=x 2-x for all values of x. if [a]= [a-2]. What is the value of a?A. 1B. 0.5C. 1.5D. 1.125E. 3(12) If k and h are constants and x 2+kx+7 is equivalent to (x+1)(x+h), what is the value of k ?A. 0B. 1C. 7D. 8E. cannot be determined(13) For all numbers a and b, let a^b be defined by a^b= ab+ a +b. For all numbers x, y, and z, which of the following must be true?I. x^y= y^xII. (x-1)^ (x+1)= (x^x) -1III. x^ (y+z) = (x^y) + (x ^ z)A. I onlyB. II onlyC. III onlyD. I and II onlyE. I, II and III(14)The graph above shows the function g, where g(x)= k(x+3)(x-3) for some constant k. If g(a- 1.2)= 0 and a>0, what is the value of a?(15) (x-8)(x-k)= x2-5kx+mIn the equation above, k and m are constants. If the equation is true for all value of x, what is the value of m?A. 8B. 16C. 24D. 32E. 40(16) A certain function f has the property that f(x+y)=f(x)+f(y) for all values of x and y. which of the following statements must be true when a=b?I. f(a+b)= 2f(a) II. f(a+b)=[f(a)]2 III. f(a)+f(b)=f(2a)A. NoneB. I onlyC. I and III onlyD. II and III onlyE. I, II and III(17).The shaded region in the figure above is bounded by the x-axis, the line x=4, and the graph of y=f(x). if the point (a, b) lies in the shaded region, which of the following must be true?I. a≤4 II. b≤a III. b≤f(a)(A) I only(B) III only(C) I and II only(D) I and III only(E) I, and II and III(18)The figure above shows the graphs of y=x2 and y=a-x2 for some constant a. if the length of PQ is equal to 6, what is the value of a? A. 6 B. 9 C. 12 D. 15 E. 18(19)In the figure above, ABCD is a rectangle. Points A and C lie on the graph of y=px3, where p is a constant,. If the area of ABCD is 4, what is the value of p?IV 几何部分(1)Each of the small squares in the figure above has an area of 4. If the shortest side of the triangle is equal in length to 2 sides of a small square, what is the area of the shaded triangle?A. 160B. 40C. 24D. 20E. 16(2).In the figure above, a shaded polygon which has equal sides and angles is partially covered with a sheet of blank paper. If x+y=80, how many sides does the polygon have?A. 10B. 9C. 8D. 7E. 6(3)The area of rectangle ABCD is 96, and AD=2/3(AB). Points X and Y are midpoints of AD and BC, respectively. If the 4 shaded triangles are isosceles, what is the perimeter of the unshaded hexagon? A. 16 B.8+62 C. 24 D. 8+162 E. 16+242(4)In the figure above, what is the value of c in terms of a and b?A. a+3b-180B. 2a+2b-180C. 180-a-bD. 360-a-bE. 360-2a-3b(5)The figure above shows an arrangement of 10 squares, each with side of length k inches. The perimeter of the figure is p inches. The area of the figure is a square inches. If p=a, what is the value of k?(6).One end of an 80-inch-long paper strip is shown in the figure above. The notched edge, shown in bold, was formed by removing an equilateral triangle from the end of each 4-inch length on one edge of the paper strip. What is the total length, in inches, of the bold notched edge on the 80-inch paper strip?(7).At a beach, a rectangular swimming area with dimensions x and y meters and a total area of 4000 square meters is marked off on three sides with rope, as shown above, and bounded on the fourth side by the beach. Additionally, rope is used to divide the area into three smaller rectangular sections. In terms of y, what is the total length, in meters, of the rope that is need both to bound the three sides of the area and to divide it into sections?A. y+ 4000/yB. y+16000/yC. y+16000/(3y)D. 3y+ 8000/(3y)E. 3y+ 16000/(3y)(8)If a triangle ABC has AB=7 and BC=7, then the difference between the greatest and least possible integer values of AC is A. 11 B. 12 C. 13 D. 14 E. 15(9)In a triangle PQR, the length of side QR is 12 and the length of side PR is 20. What is the greatest possible integer length of side PQ?A. 9B. 16C. 25D. 27E. 31(10).In the figure above, arc SBT is one quarter of a circle with center R and radius 6. If the length plus the width of rectangle ABCR is 8, then the perimeter of the shaded region isA. 8+3πB. 10+3πC. 14+ 3πD. 1+6πE. 12+6π(11)In the figure above, QR is the arc of a circle with center P. If the length of the arc QR is 6π,what is the area of sector PQR?A. 108πB. 72πC. 54πD. 36πE. 9π(12).The figure above consists of two circles that have the same center. If the shaded area is 64π square inches and the smaller circle has a radius of 6 inches, what is the radius, in inches, of the larger circle?(13).The figure above shows part of a circle whose circumference is 45. If arcs of length 2 and length b continue to alternate around the entire circle so that there are 18 arcs of each length, what is the degree measure of each of the arcs of length b?A. 40B. 60C. 100D. 160E. 20o(14)In a certain machine, a gear makes 12 revolutions per minute. If the circumference of the gear is 3πinches, approximately how many feet will the gear turn in an hour?A. 6782B. 565C. 113D. 108E. 9(15)In the xy-coordinate plane, the graph of x=y2-4 intersects line l at (0, p) and (5, t). what is the greatest possible value of the slope of line l?(16)The coordinates for point A are (-2, 2) and the coordinates for point B are (4, 8). If line CD is parallel to the line AB, what is the slope of line CD?A. -1B. 0C. 1D. 2E. 4(17)Rectangle ABCD lies in the xy-coordinate plane so that its sides are not parallel to the axes. What is the product of the slopes of all four sides of rectangle ABCD?A. -2B. -1C. 0D. 1E. 2(18)Alice and Corinne stand back-to-back. They each take 10 steps in opposite directions away from each other and stop. Alice then turns around, walks toward Corinne, and reaches her in 17 steps. The length of one of Alice’s steps is how many times the length of one of Corinne’s steps? (All of Alice’s steps are the same length and all of Corinne’s steps are the same length.)(19).Line m (not shown) passes through O and intersects AB between A and B. what is one possible value of the slope of line m?立体几何部分:(1)In figure above, S is the midpoint of RT. What is the area of the shaded triangle?A. 14B. 16C. 265D. 18E. 46(2)A ball with a volume of 18 cubic inches is dropped into an aquarium that is partially filled with water. If the base of the aquarium measures 12 inches by 6 inches, how many inches will the level of water rise after the ball is submerged?A. 0.25 inchesB. 0.5 inchesC. 1 inchesD. 4 inchesE. 6 inches.(3)In the cube shown above, point B, C, and E are midpoints of three of the edges. Which of the following angles has the least measure?A.∠ XAYB. ∠ XBYC. ∠ XCYD.∠ XDYE. ∠ XEY(4).The pyramid shown above has altitude h and a square base of side m. The four edges that meet at V , the vertex of the pyramid, each have length e. If e=m, what is the value of h in terms of m? A. 2m B. 23m C. m D. 32m E. 2m(5).The cube shown above has edges of length 2, and A and B are midpoints of two of the edges. What is the length of AB? A. 2 B. 3 C. 5 D. 6 E. 10(6)A sphere of radius r inside a cube touches each one of the six sides of the cube. What is the volume of the cube, in terms of r?A. r 3B. 2 r 3C. 4 r 3D. 34πr 3 E. 8 r 3(7)A cube with volume 8 cubic centimeters is inscribed in a sphere so that each vertex of the cube touches the sphere. What is the length of the diameter, in centimeters of the sphere? A. 2 B. 6 C. 2.5 D. 23 E. 4。