二次函数Y=AX2的图象(一) —— 初中数学第五册教案

合集下载

1.2 二次函数y=ax2的图象和性质 一等奖创新教案

1.2 二次函数y=ax2的图象和性质 一等奖创新教案

1.2 二次函数y=ax2的图象和性质一等奖创新教案22.1 二次函数的图象和性质22.1.2 二次函数y=ax2的图象和性质一、教学目标【知识与技能】1.会用描点法画二次函数y=ax2的图象,理解抛物线的有关概念;2.掌握二次函数y=ax2的性质,能确定二次函数y=ax2的表达式.【过程与方法】通过画出简单的二次函数探索出二次函数y=ax2的性质及图象特征.【情感态度与价值观】使学生经历探索二次函数y=ax2图象性质的过程,培养学生观察、思考、归纳的良好思维习惯.二、课型新授课三、课时1课时四、教学重难点【教学重点】1.二次函数y=ax2的图象的画法及性质;2.能确定二次函数y=ax2的解析式.【教学难点】1.用描点法画二次函数y=ax2的图象,探索其性质;2.能依据二次函数y=ax2的有关性质解决问题.五、课前准备课件、三角尺、铅笔等.六、教学过程(一)导入新课1.你们喜欢打篮球吗?(出示课件2)2.你们知道投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?学生自主思考.(二)探索新知探究一:二次函数y=ax2的图象的画法出示课件4:画出二次函数y=x2的图象.学生分组画y=x2的图象,教师巡视,对于不正确的给予指导.⑴列表:在y=x2中自变量x可以是任意实数,列表表示几组对应值:x …-3 -2 -1 0 1 2 3 …y=x2 ……⑵描点:根据表中x,y的数值在坐标平面中描点(x,y)(出示课件5)⑶连线:如图,再用平滑曲线顺次连接各点,就得到y=x2的图象.当取更多个点时,函数y=x2的图象如下:(出示课件6)教师归纳:二次函数y=x2的图象形如物体抛射时所经过的路线,我们把它叫做抛物线.这条抛物线关于y轴对称,y轴就是它的对称轴.对称轴与抛物线的交点叫做抛物线的顶点.出示课件7:画出二次函数y=-x2的图象.学生分组画y=-x2的图象,教师巡视,对于不正确的给予指导.⑴列表:x …-3 -2 -1 0 1 2 3 …y=-x2 ……⑵描点:⑶连线:探究二:二次函数y=ax2的图象性质出示课件8:教师问:根据你以往学习函数图象性质的经验,说说二次函数y=x2的图象有哪些性质,并与同伴交流.学生交流后,师生共同总结如下:1.y=x2的图象是一条抛物线;2.图象开口向上;3.图象关于y轴对称;4.顶点(0 ,0 );5.图象有最低点.出示课件9:教师问:说说二次函数y=-x2的图象有哪些性质,并与同伴交流.学生交流后,师生共同总结如下:1.y=-x2的图象是一条抛物线;2.图象开口向下;3.图象关于y轴对称;4.顶点(0,0);5.图象有最高点.教师归纳:(出示课件10)二次函数y=ax2的图象性质:1.顶点都在原点(0,0);2.图像关于y轴对称;3.当a>0时,开口向上;当a0时,a越大,开口越小.出示课件18:在同一直角坐标系中,画出函数的图象.将全班同学进行适当分组,分别完成两个图象的画图,并结合图象给予恰当的描述.解:分别填表,再画出它们的图象,如图:x ·-4 -3 -2 -1 0 1 2 3 4 ···x ·-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 ···出示课件19:师生共同探究:二次函数的图象开口大小与a的大小有什么关系?教师归纳:当a-1.因此m=1.此时,二次函数为y=2x2.出示课件23:已知是二次函数,且当x>0时,y随x增大而增大,则k= .学生独立思考后,自主解答如下:解:是二次函数,即二次项的系数不为0,x的指数等于2.又因当x>0时,y随x增大而增大,即说明二次项的系数大于0. 因此,,解得k=2.探究四:二次函数y =ax2的实际应用出示课件24:师生共同认知:二次函数y=ax2是刻画客观世界许多现象的一种重要模型.出示课件25:例已知正方形的周长为Ccm,面积为Scm2,(1)求S与C之间的二次函数关系式;(2)画出它的图象;(3)根据图象,求出当S=1cm2时,正方形的周长;(4)根据图象,求出C取何值时,S≥4cm2.学生独立思考后,师生共同解答.(出示课件26)解:(1)∵正方形的周长为Ccm,∴正方形的边长为cm,∴S与C之间的关系式为S=;作图如图:(3)当S=1cm2时,C2=16,即C=4cm;(4)若S≥4cm2,即≥4,解得C≥8,或c≤-8(舍去),因此C ≥8cm.出示课件27:已知二次函数y=2x2.(1)若点(-2,y1)与(3,y2)在此二次函数的图象上,则y1_____y2;(填“>”“=”或“15.开口方向对称轴顶点坐标向上y轴(0,0)向下y轴(0,0)向上y轴(0,0)向下y轴(0,0)6.解:在二次函数y=x2中,a=1>0因此当x=0时,y有最小值.∵当x≥m时,y最小值=0,∴m≤0.7.解:由题意得解得因此两函数的交点坐标为A(4,16)和B(-1,1).∵直线y=3x+4与y轴相交于点C(0,4),即CO=4.两交点与原点所围成的三角形面积S△ABO=S△ACO+S△BOC.在△BOC中,OC边上的高就是B点的横坐标值的绝对值1;在△ACO中,OC边上的高就是A点的横坐标值的绝对值4.因此S△ABO=S△ACO+S△BOC=×4×1+×4×4=10.(四)课堂小结1.画二次函数y=ax2的图象时,有哪些地方是你需关注的?2.你是如何理解并熟记抛物线y=ax2的性质的?3.本节课你还存在哪些疑问?.(五)课前预习预习下节课(22.1.3第1课时)的相关内容.七、课后作业1.教材41页习题22.1第3,4题2.配套练习册内容八、板书设计:九、教学反思:本课时的设计比较注重让学生动手操作,让学生通过画二次函数的图象初步掌握其性质,画图的过程中需注意引导学生与其他函数的图象与性质进行对比.本课的目的是要让学生通过动手操作,经历探索归纳的思维过程,逐步获得图象传达的信息,熟悉图象语言,进而形成函数思想.1 / 15。

22.1.2二次函数y=ax2的图象和性质(教案)

22.1.2二次函数y=ax2的图象和性质(教案)
22.1.2二次函数y=ax2的图象和性质(教案)
一、教学内容
本节课选自九年级数学教材《二次函数》章节中的22.1.2节,主要围绕二次函数y=ax^2的图象和性质展开教学。教学内容如下:
1.二次函数y=ax^2的图象特点:了解a的取值对图象开口方向、宽窄的影响;
2.二次函数y=ax^2的顶点:掌握顶点的坐标公式,理解其几何意义;
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“二次函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
5.教学方法的多样化。在本节课中,我主要采用了讲授、讨论和实践等教学方法。但从教学效果来看,部分学生对知识点的掌握程度仍有待提高。为了提高教学效果,我将在今后的教学中尝试更多元化的教学方法,如小组竞赛、游戏互动等,激发学生的学习兴趣和积极性。
举例:通过分析a的取值,让学生理解函数最大值(或最小值)的出现规律,并能应用于实际问题。
2.教学难点
(1)对二次函数图象的直观想象能力,尤其是对顶点、对称轴的理解;
举例:部分学生对顶点的概念理解不深,教师可以通过绘制图象、实际操作等方式,帮助学生建立顶点的直观认识。
(2)理解二次函数y=ax^2增减性的变化规律,尤其是对称轴两侧的增减性;
4.培养学生的数学运算能力,让学生熟练掌握二次函数的性质,运用公式进行计算,提高解题效率;
5.培养学生的数据分析素养,通过研究二次函数的增减性、最值等问题,使学生能够对数据进行分析和判断,为实际问题提供依据。

二次函数y=ax2的图象_九年级数学教案

二次函数y=ax2的图象_九年级数学教案

二次函数y=ax2的图象_九年级数学教案教学设计示例1课题:二次函数的图象教学目标:1、会用描点法画出二次函数的图象;2、根据图象观察、分析出二次函数的性质;3、进一步理解二次函数和抛物线的有关知识4、渗透由特殊到一般的辩证唯物主义观点;5、渗透数形结合的数学思想方法,培养观察能力和分析问题的能力;6、培养学生勇于探索创创新及实事求是的科学精神.教学重点:根据图象,观察、分析出二次函数的性质教学难点:渗透数形结合的数学思想方法教学用具:直尺、微机教学方法:谈话、探究式教学过程:1、列表、描点画出函数与的图象,引入新课例:画出函数与的图象解:列两个表x-4-3-2-1123484.520.50.524.58x-2-1.5-0.50.511.5284.520.50.524.58分别描点画图2、根据图象发现问题,由学生探索出新知识.提问:你能从图象中发现抛物线是哪些性质?这两个函数图象有何异同?(1)这两个函数的图象都关于y轴对称.这一点可以从刚才的列表中可以看出,时所对应的y值分别相等,如等.这样的两个点关于y轴对称.由这些点构成的抛物线也关于y 轴对称.从解析式中也可以得出这个结论:互为相反数的两个数的平方数相等,因此,这两个函数的图象都是关于y轴对称的.(2)从图中可以看出,x可取x轴上的任意一点,而y对应的是大于、等于零的数.即抛物线有最低点(0,0).这一点可以从解析式中得到很好的解释,可取任意实数. 图象开口向上.这也说明数与形是数学中的两条线索,它们是互相对应的,反映了数形结合的思想.(3)从图中也可以看出抛物线不同于我们以前学过的正比例函数和一次函数,这两个函数的图象都是直线,而抛物线是曲线,有一个拐弯,函数的图象都在最低点拐了一个弯.这样它们的性质几发生了变化.在y轴的左侧,从左向右呈下坡趋势,即y随x的增大而减小;在y轴的右侧,从左向右,呈上坡趋势,即y随x的增大而增大.这一变化趋势也可以从列表中看出.(4)这两个图象除以上相同之处外,还有不同的地方.如:离y轴近,离y轴远.从列表中可以看出:如过点(2,2),而过点(2,8)也就是说,当x=2时,的图象所对应的点高于所对应的点.因此会有上述的结论.3、画出函数的图象与中的a都是正数,当a我们看例2例2、画出函数的图象解:列表:x-3-2123y-9-4-1-1-4-9描点画图:4、从函数图象入手,再次总结二次函数的性质(1)与刚才两个图象不同的是,的图象开口向下.这是因为x是任意实数,,即,因此,开口会向下.图象有最高点(0,0)(2)此图象仍然是关于y轴对称的(3)在y轴的左侧,y随x的增大而增大;在y轴的右侧,y随x的增大而减小5、得出一般的规律一般地,抛物线的对称轴是y轴,顶点是原点,当a>0时,抛物线的开口向上,当a 6、小结:这一节课,从始至中都是结合图象观察、归纳总结出二次函数的性质,体现了数与形的结合.函数图象是解决函数问题的有利工具,希望大家能自觉地应用.7、作业:习题13.6A组1、2B组1、2教学设计示例2课题:二次函数的图象第一课时一、素质教育目标(一)知识教学点1.使学生知道二次函数的意义;2.使学生会用描点法画出二次函数的图像,并结合的图像,初步理解抛物线及其有关概念。

二次函数y=a2的图象一 —— 初中数学第五册教案

二次函数y=a2的图象一 —— 初中数学第五册教案

二次函数y=a²的图象一——初中数学第五册教案一、教学目标1.理解二次函数y=a²的概念和性质。

2.能够绘制和分析二次函数y=a²的图象。

3.培养学生的观察、分析和解决问题的能力。

二、教学重点与难点1.重点:二次函数y=a²的概念和性质,二次函数y=a²的图象特点。

2.难点:二次函数y=a²的图象绘制和分析。

三、教学准备1.教学课件或黑板。

2.二次函数y=a²的图象示例。

3.练习题。

四、教学过程1.引入新课(1)回顾一次函数的图象特点,引导学生思考二次函数的图象会有什么不同。

(2)介绍二次函数y=a²的概念和性质。

2.二次函数y=a²的概念和性质(1)讲解二次函数y=a²的定义:形如y=a²(a≠0)的函数称为二次函数。

(2)讲解二次函数y=a²的性质:开口方向、顶点坐标、对称轴、单调性等。

3.二次函数y=a²的图象特点(1)展示二次函数y=a²的图象示例,引导学生观察图象的特点。

(2)讲解二次函数y=a²的图象特点:开口方向、顶点、对称轴、单调性等。

4.二次函数y=a²的图象绘制(1)讲解二次函数y=a²的图象绘制方法:选取适当的点,描绘出图象。

(2)示范绘制二次函数y=a²的图象,让学生跟随操作。

5.二次函数y=a²的图象分析(1)引导学生分析二次函数y=a²的图象,讨论图象与函数性质的关系。

(2)讲解二次函数y=a²的图象分析方法:观察开口方向、顶点、对称轴、单调性等。

6.练习与巩固(1)布置练习题,让学生独立完成。

7.课堂小结(2)强调二次函数y=a²在实际生活中的应用。

五、课后作业1.复习二次函数y=a²的概念、性质和图象特点。

2.完成课后练习题,巩固所学知识。

二次函数y=ax2的图像和性质教案

二次函数y=ax2的图像和性质教案

二次函数y=ax2的图像和性质教案篇一:22.1.2二次函数y=ax2图像与性质教案2123篇二:《二次函数y=ax 的图象和性质》参考教案22.1.2二次函数y?ax2的图象和性质教学目标1.知识与技能能够用描点法作出函数y=ax2的图象,并根据图象认识和理解其性质2.过程与方法经历探索二次函数y=ax2的图象和性质的过程,体会数形结合的思想和方法.3.情感、态度与价值观在初步建立二次函数表达式与图象之间的联系中,体会数形结合与转化,体会数学内在的美感.教学重点难点1.重点函数y=ax2的图象的画法,了解抛物线的含义,理解函数y=ax2的图象与性质.2.难点用描点的方法准确地画出函数y=ax2的图象,掌握其性质特征.教与学互动设计(一)创设情境导入新课导语一回忆一次函数和反比例函数的定义,图象特征,思考二次函数的图象又有何特征呢?导语二展示(用课件或幻灯片)具有抛物线的实例让大家欣赏,议一议这与二次函数有何联系呢?导语三用红色的乒乓球作投篮动作,观察乒乓球的运动路线,思考运动路线有何规律?怎样用数学规律来描述呢?(二)合作交流解读探究1.函数y=ax2的图象画法及相关名称【探究l】画y=x2的图象学生动手实践、尝试画y=x2的图象教师分析,画图像的一般步骤:列表→描点→连线教师在学生完成图象后,在黑板上示范性画出y=x2的图象,如图22-1-1.【共同探究】次函数图像有何特征?特征如下:①形状是开口向上的抛物线②图象关于y轴对称③由最低点,没有最高点.结合图象介绍下列名称:①顶点;②对称轴;③开口及开口方向.图22-1-1图22-1-22.函数y=ax2的图象特征及其性质【探究2】在同一坐标系中,画出y=12x,y=2x2的图象.2学生自己完成此题.教师做个别指导,在学生(大部分)完成后,教师可示范性地画出两函数的图象.如图22-1-2比较图中三个抛物线的异同.相同点:①顶点相同,其坐标都为(0,0).②对称轴相同,都为y 轴③开口方向相同,它们的开口方向都向上.不同点:开口大小不同.【练一练】画函数y=-x2,y=-施过程)比较函数y=-x2,y=-12x,y=-2x2的图象.找出它们的异同点.212x,y=-2x2的图象.(分析:仿照探究1的实2相同点:①形状都是抛物线.②顶点相同,其坐标都为(0,0).③对称轴相同,都为y轴④开口方向相同,它们的开口方向都向下.不同点:开口大小不同.【归纳】y=ax2的图象特征:(1)二次函数y=ax2的图象是一条抛物线(2)抛物线y=ax2的对称轴是y轴.顶点时原点.a>0时,抛物线开口向上,顶点时抛物形的最低点.a(3)|a|越大,抛物线y==ax2的开口越小(三)应用迁移巩固提高类型之一如何画好二次函数的图象【点拨】画二次函数图象一般是按以下三个步骤进行.①列表、取值;②描点;③连线但初学者对三个步骤,易犯下列错误,注意避免. 【易错点1】表格中,取值过多或过少.画函数y=ax2图象,取对应值时,一般5组或7组有代表性的对应值即可....【易错点2】连线不是光滑曲线,有的用折线,有的画的过渡不自然,不象抛物线.例1下图是甲、乙、丙三人画得二次函数y=2x2的图象.请你帮助修改.解:图甲中有两个错误的地方.①连线不能用直尺作线段,图象中相邻两点时用光滑曲线连接.②抛物线开口应向上无限延伸,不能到两端点为止.修改见图甲中虚线.图乙中有一个错误,其中有一个点(1,-2)的位置画错.(或表格中对应值算错)修改见图乙中虚线.图丙种错误是x的值都是非负数,没有负数,导致出现其图象只是抛物线的一半,没有对称性.修改见图丙中虚线.【点评】此三类错误是初学者应注意的三个方面,以后的练习中,应提醒大家注意.类型之二函数y=ax2的图象特征的应用例2(1)填空:函数y?()2的图象是,顶点坐标是,对称轴是,开口方向是. 1(2)函数y=x2,y=x2,y=-2x2图象如图所示,请指出三条抛物线的名称.2解:(1)y?()2可化为y=2x2.它的图象是抛物线,顶点坐标为(0,0),对称轴为y轴,开口方向向上.【点评】解析式需化为一般式,再根据图象特征解答,避免发生错误.(2)根据抛物线y=ax2中,a的值的作用来判断,最上面的抛物线为y=x2,中间的为y=12x,x轴下方的为y=-2x22【点评】抛物线y=ax2中a>0时,开口向上.a(四)总结反思拓展升华【总结】1.本节所学知识:①二次函数y=ax2的图象的画法.②二次函数y=ax2的图象特征及其性质.2.本节所用的方法:实践比较法【反思】函数y=ax2与y=-ax2的图象之间有何关系?(它们关于x 轴对称)【拓展】已知函数y=ax2经过(1,2).(1)求a的值.(2)当x(2)根据函数y=2x2知x【点评】①通常用待定系数法函数y=ax2中只有一个待定系数a,故知道其图象上一点坐标或x,y的一组对应值就可求出解析式.②结合图象知:x(五)当堂检测反馈1.抛物线y=4x2中的开口方向是向上,顶点坐标是(0,0),对称轴是y轴.抛物线y=-对称轴是y轴.2.二次函数y=ax2与y=2x2,开口大小,形状一样,开口方向相反,则a=2.【分析】a与-2互为相反数13.在同一坐标系中:①y=x2,②y=-x2,③y=2x2这三个函数图象开口最大212x的开口方向是向下,顶点坐标是(0,0),4的是①y?12x2,开口向下的是②y=-x21解:∵||2∵函数y=-x2中,二次项系数为-114.二次函数y=2x2,y=-2x2,y=x22点(0,0);②对称轴相同,都是y轴.5.已知抛物线的顶点在原点,对称轴是y轴,且经过(-3,2).求此抛物线的解析式,并指出x>0时,y随x的变化情况.解:设此抛物线的解析式为y=ax2,∵此抛物线过点(-3,2),∴2=a·(-3)2,。

二次函数y=ax2的图象和性质教案中的案例讲解及教学方法

二次函数y=ax2的图象和性质教案中的案例讲解及教学方法

二次函数y=ax2的图象和性质教案中的案例讲解及教学方法。

案例描述:小明是一名初三学生,他正在学习二次函数的图象和性质。

他很好奇,如果将二次函数中的参数a取不同的值,会对函数其图象造成什么影响。

他请教了数学老师,并得到了以下问题:已知二次函数y=ax^2 的参数 a 的不同取值分别为 1/2、1、2,画出它们的函数图象,并分析它们的性质。

教学方法:1.让学生探究让学生自行根据题目中的要求,搜索资料,画出三个函数的图象,并分析它们的性质。

老师可以引导学生思考如下问题:(1)三个函数的图象有何相似之处,何不同之处?(2)三个函数都有什么最高点或最低点,这个点的坐标分别为多少?这个点对函数有什么影响?(3)三个函数在什么位置上与x轴相交,这对函数有何影响?(4)三个函数在什么位置上与y轴相交,这对函数有何影响?(5)三个函数的开口方向有何不同之处?这对函数有何影响?2.总结性讲解根据学生自己探究的结果,老师可以进行总结性讲解,介绍二次函数 y=ax^2 的图象和性质:(1)二次函数 y=ax^2 的图象都是开口朝上或开口朝下的抛物线。

其中参数 a 的正负决定了开口的朝向。

当 a>0 时,开口朝上;当 a<0 时,开口朝下。

(2)二次函数 y=ax^2 的最高点或最低点为抛物线的对称轴上的点,称为抛物线的顶点。

顶点的坐标为(0,a/4)或(0,-a/4)。

(3)二次函数 y=ax^2 与x轴相交的点称为根,也称为零点或解。

当 a>0 时,抛物线与x轴有两个根,分别为x1=(-∞,0)、x2=(0,+∞);当 a<0 时,抛物线与x轴无根。

(4)二次函数 y=ax^2 与y轴相交于点(0,0)。

这表示二次函数总是通过原点。

(5)二次函数 y=ax^2 的参数 a 的变化,会导致抛物线形状的变化。

当参数 a 的值越大,抛物线的开口越宽,曲线愈平缓;当参数a 的值越小,抛物线的开口越窄,曲线愈陡峭。

二次函数y=ax2 的图像与性质教学设计

二次函数y=ax2 的图像与性质教学设计

二次函数y=a x2的图像与性质教学设计定远县郭集学校谢辉一、教材分析:本节是学生学习了二次函数的概念之后,对其图象及性质逐步进行探究的一个内容,在此之前学生已经对正比例函数、一次函数和反比例函数的概念及图象与性质进行了学习,因此在本节课的学习方法上学生已经有了一定的经验。

但二次函数,它是进一步学习函数知识,体现函数知识螺旋发展的一个重要环节。

同时在此节后,我们还将循序渐进,在此基础上由简到繁逐步展开二次函数的研究。

二次函数的图像是抛物线,是人们最为熟悉的曲线之一,同时抛物线形状在建筑上也有着广泛的应用,如抛物线型拱桥、抛物线型隧道等。

可以说这节课既是承上启下,同时本节课的学习也能让学生体会到数学的实用及美感。

其地位及作用不可小看。

二、设计思想1.函数及其图象在初中数学中占有很重要的位置。

如何突破这个既重要又抽象的内容,其实质就是将抽象的符号语言与直观的图象语言有机的结合起来,通过具有一定思考价值的问题,激发学生的求知欲望――持久的好奇心。

我们知道,函数的表示法有三种:列表法、图象法、解析法,初二时的函数的学习大多只关注到图象的作用,这其实只是借助了图象的直观性,只是从一个角度看函数,具有一定的片面性。

本节课,力图让初三学生从不同的角度去研究函数,对函数进行一个全方位的研究,并通过对比总结得到研究的方法,让学生去体会这种研究方法,以便能将其迁移到其他函数的研究中去。

2.结合新课程实施的教学理念,在本课的教学中我努力实践以下两点:(1)在课堂活动中通过同伴合作、自主探究尝试培养学生积极主动、勇于探索的学习方式。

(2)在教学过程中努力做到师生的互动,并且在对话之后重视体会、总结、反思,力图在培养和发展学生数学素养的同时让学生掌握一些学习、研究数学的方法。

(3)通过课堂教学活动向学生渗透数学思想方法。

三、教学目标1、知识技能:经历探索二次函数y=x2的图象的作法和性质的过程,获得利用图象研究函数性质的经验。

二次函数y=ax2的图象(一)——初中数学第五册教案

二次函数y=ax2的图象(一)——初中数学第五册教案

二次函数y=ax2的图象(一)——初中
数学第五册教案
课题二次函数y=ax2的图象(一)
一、教学目的
1.使学生初步理解二次函数的概念。

2.使学生会用描点法画二次函数y=ax2的图象。

3.使学生结合y=ax2的图象初步理解抛物线及其有关的概念。

二、教学重点、难点
重点:对二次函数概念的初步理解。

难点:会用描点法画二次函数y=ax2的图象。

三、教学过程
复习提问
1.在下列函数中,哪些是一次函数?哪些是正比例函数?(1)y=x/4;(2)y=4/x;(3)y=2x-5;(4)y=x2-2。

2.什么是一无二次方程?
3.怎样用找点法画函数的图象?
新课
1.由具体问题引出二次函数的定义。

(1)已知圆的面积是Scm2
1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、教学目的
1.使学生初步理解二次函数的概念。

2.使学生会用描点法画二次函数y=ax2的图象。

3.使学生结合y=ax2的图象初步理解抛物线及其有关的概念。

二、教学重点、难点
重点:对二次函数概念的初步理解。

难点:会用描点法画二次函数y=ax2的图象。

三、教学过程
复习提问
1.在下列函数中,哪些是一次函数?哪些是正比例函数?(1)y=x/4;(2)y=4/x;(3)y=2x-5;(4)y=x2 - 2。

2.什么是一无二次方程?
3.怎样用找点法画函数的图象?
新课
1.由具体问题引出二次函数的定义。

(1)已知圆的面积是scm2,圆的半径是rcm,写出空上圆的面积s与半径r之间的函数关系式。

(2)已知一个矩形的周长是60m,一边长是lm,写出这个矩形的面积s(m2)与这个矩形的一边长l之间的函数关系式。

(3)农机厂第一个月水泵的产量为50台,第三个月的产量y(台)与月平均增长率x之间的函数关系如何表示?
解:(1)函数解析式是s=πr2;
(2)函数析式是s=30l—l2;
(3)函数解析式是y=50(1+x)2,即
y=50x2+100x+50。

由以上三例启发学生归纳出:
(1)函数解析式均为整式;
(2)处变量的最高次数是2。

我们说三个式子都表示的是二次函数。

一般地,如果y=ax2+bx+c(a,b,c没有限制而a≠0),那么y叫做x的二次函数,请注意这里b,c没有限制,而a≠0。

2.画二次函数y=x2的图象。

按照描点法分三步画图:
(1)列表∵ x可取任意实数,∴以0为中心选取x值,以1为间距取值,且取整数值,便于计算,又x取相反数时,相应的y值相同;
(2)描点按照表中所列出的函数对应值,在平面直角坐标系中描出相应的7个点;
(3)边线用平滑曲线顺次连接各点,即得所求y=x2的图象。

注意两点:
(1)由于我们只描出了7个点,但自矿业量取值范围是实数,故我们只画出了实际图象的一部分,即画出了在原点附近、自变量在-3到3这个区间的一部分。

而图象在x&3或x&lt;-3的区间是无限延伸的。

(2)所画的图象是近似的。

3.在原点附近较精确地研究二次函数y=x2的图象形状到底如何?——我们–1与1之间每隔0.2的间距取x值表和图13-14。

按课本p118内容讲解。

4.引入抛物线的概念。

关于抛物线的顶点应从两方面分析:一是从图象上看,y=x2的图象的顶点是最低点;一是从解析式y=x2看,当x=0时,y=x2取得最小值0,故抛物线y=x2的顶点是(0,0)。

小结
1.二次函数的定义。

(1)函数解析式关于自变量是整式;(2)函数自变量的最高次数是2。

2.二次函数y=x2的图象。

(1)其图象叫抛物线;(2)抛物线y=x2的对称轴是y轴,开口向上,顶点是原点。

补充例题
下列函数中,哪些是二次函数?哪些不是二次函数?若是二次函数,指出a,b,c?(1)y=2-3x2;(2)y=x (x-4);
(3)y=1/2x2-3x-1;(4)y=1/4x2+3x-8;
(5)y=7x(1-x)+4x2;(6)y=(x-6)(6+x)。

作业:p122中a组1,2,3。

四、教学注意问题
1.注意渗透局部和全体、有限和无限、近似和精确等矛盾对立统一的观点。

2.注意培养学生观察分析问题的能力。

比如,结合所画二次函数y=x2的图象,要求学生思考:
(1)y=x2的图象的图象有什么特点。

(答:具有对称性。


(2)如何判断y=x2的图象有上面所说的特点?(答:由观察图象看出来;或由列表求值得出来;或由解析式y=x2看出来。


课题二次函数y=ax2的图象(一)
一、教学目的
1.使学生初步理解二次函数的概念。

2.使学生会用描点法画二次函数y=ax2的图象。

3.使学生结合y=ax2的图象初步理解抛物线及其有关的概念。

二、教学重点、难点
重点:对二次函数概念的初步理解。

难点:会用描点法画二次函数y=ax2的图象。

三、教学过程
复习提问
1.在下列函数中,哪些是一次函数?哪些是正比例函数?(1)y=x/4;(2)y=4/x;(3)y=2x-5;(4)y=x2 - 2。

2.什么是一无二次方程?
3.怎样用找点法画函数的图象?
新课
1.由具体问题引出二次函数的定义。

(1)已知圆的面积是scm2,圆的半径是rcm,写出空上圆的面积s与半径r之间的函数关系式。

(2)已知一个矩形的周长是60m,一边长是lm,写出这个矩形的面积s(m2)与这个矩形的一边长l之间的函数关系式。

(3)农机厂第一个月水泵的产量为50台,第三个月的产量y(台)与月平均增长率x之间的函数关系如何表示?
解:(1)函数解析式是s=πr2;
(2)函数析式是s=30l—l2;
(3)函数解析式是y=50(1+x)2,即
y=50x2+100x+50。

由以上三例启发学生归纳出:
(1)函数解析式均为整式;
(2)处变量的最高次数是2。

我们说三个式子都表示的是二次函数。

一般地,如果y=ax2+bx+c(a,b,c没有限制而a≠0),那么y叫做x的二次函数,请注意这里b,c没有限制,而a≠0。

2.画二次函数y=x2的图象。

按照描点法分三步画图:
(1)列表∵ x可取任意实数,∴以0为中心选取x值,以1为间距取值,且取整数值,便于计算,又x取相反数时,相应的y值相同;
(2)描点按照表中所列出的函数对应值,在平面直角坐标系中描出相应的7个点;
(3)边线用平滑曲线顺次连接各点,即得所求y=x2的图象。

注意两点:
(1)由于我们只描出了7个点,但自矿业量取值范围是实数,故我们只画出了实际图象的一部分,即画出了在原点附近、自变量在-3到3这个区间的一部分。

而图象在x&3或x&lt;-3的区间是无限延伸的。

(2)所画的图象是近似的。

3.在原点附近较精确地研究二次函数y=x2的图象形状到底如何?——我们–1与1之间每隔0.2的间距取x值表和图13-14。

按课本p118内容讲解。

4.引入抛物线的概念。

关于抛物线的顶点应从两方面分析:一是从图象上看,y=x2的图象的顶点是最低点;一是从解析式y=x2看,当x=0时,y=x2取得最小值0,故抛物线y=x2的顶点是(0,0)。

小结
1.二次函数的定义。

(1)函数解析式关于自变量是整式;(2)函数自变量的最高次数是2。

2.二次函数y=x2的图象。

(1)其图象叫抛物线;(2)抛物线y=x2的对称轴是y轴,开口向上,顶点是原点。

补充例题
下列函数中,哪些是二次函数?哪些不是二次函数?若是二次函数,指出a,b,c?
(1)y=2-3x2;(2)y=x (x-4);
(3)y=1/2x2-3x-1;(4)y=1/4x2+3x-8;
(5)y=7x(1-x)+4x2;(6)y=(x-6)(6+x)。

作业:p122中a组1,2,3。

四、教学注意问题
1.注意渗透局部和全体、有限和无限、近似和精确等矛盾对立统一的观点。

2.注意培养学生观察分析问题的能力。

比如,结合所画二次函数y=x2的图象,要求学生思考:
(1)y=x2的图象的图象有什么特点。

(答:具有对称性。


(2)如何判断y=x2的图象有上面所说的特点?(答:由观察图象看出来;或由列表求值得出来;或由解析式y=x2看出来。

)。

相关文档
最新文档