土木工程施工技术案例
土木工程施工技术实际案例

标题:土木工程施工技术的实际应用案例随着我国经济的快速发展,土木工程建设在国民经济中的地位日益突出,土木工程施工技术的发展和创新也成为了推动行业发展的重要力量。
本文将以某地铁站主体结构施工为例,介绍土木工程施工技术的实际应用。
一、工程概况某地铁站位于城市中心区域,周边环境复杂,交通繁忙。
地铁站主体结构包括地下三层,总建筑面积约为15000平方米,结构形式为钢筋混凝土框架结构。
施工过程中,需要克服地下水位高、地质条件复杂、施工空间狭小等诸多困难。
二、施工技术应用1. 地下连续墙施工技术由于地铁站地处地下,地下连续墙是保证工程安全的重要措施。
在施工过程中,采用了先进的地下连续墙施工技术。
首先,根据地质条件,选择了合适的泥浆配比,确保地下连续墙的稳定性;其次,采用多功能钻机进行钻孔,钻孔精度高,质量优良;最后,采用直升式钢筋笼施工技术,有效提高了施工效率。
2. 深基坑支护技术由于地铁站周边环境复杂,施工空间狭小,深基坑支护成为施工过程中的关键环节。
针对这一情况,项目团队采用了先进的深基坑支护技术。
首先,根据地质条件和周边环境,设计了合理的支护方案;其次,采用锚喷支护结合内支撑的方式,确保了基坑的稳定性;最后,通过实时监测,对基坑变形进行控制,确保了周边环境的安全。
3. 钢筋混凝土框架结构施工技术在主体结构施工过程中,项目团队严格遵循国家标准和规范,采用了先进的钢筋混凝土框架结构施工技术。
首先,对钢筋加工、焊接、连接等环节进行严格控制,确保钢筋连接的可靠性;其次,采用泵送混凝土施工技术,确保混凝土的均匀性和密实性;最后,通过搭设临时支撑体系,保证施工过程中的结构安全。
4. 施工安全管理与信息化技术为确保施工过程中的安全与顺利进行,项目团队采用了施工安全管理与信息化技术。
首先,制定了一系列安全规章制度,加强安全教育,提高施工现场安全管理水平;其次,利用信息化技术,对施工现场进行实时监控,及时发现和处理安全隐患;最后,通过施工进度管理系统,实现项目进度、资源、成本等方面的精细化管理。
土木工程施工技术案例

土木工程施工技术案例一、引言土木工程施工是一项复杂的过程,涉及到多个环节和技术的综合应用。
本文将通过一个具体的土木工程施工案例,详细介绍施工组织设计、施工工艺选择、施工现场布置、土方开挖与回填、地基处理技术、混凝土结构施工、预应力混凝土技术、钢结构施工、防水与保温工程等方面的技术和实施过程。
二、施工组织设计在本案中,施工组织设计是整个工程项目的关键环节。
根据工程规模、工期和资源需求,对施工流程进行了合理安排,确定了施工队伍、材料、设备等方面的需求。
同时,制定了详细的进度计划、质量保证措施和安全防范措施,确保工程的顺利进行。
三、施工工艺选择针对本工程的特定条件和要求,选择了合适的施工工艺。
在土方开挖与回填方面,采用了机械开挖和人工修整相结合的方式,确保了开挖的准确性和效率。
在地基处理方面,根据地质勘察结果,采用了桩基、换填等处理技术,提高了地基的承载力和稳定性。
四、施工现场布置在施工现场布置方面,对材料堆放区、机械设备停放区、办公区、生活区等功能区进行了合理规划。
同时,对临时道路、排水系统等进行了建设和完善,确保了施工现场的安全和整洁。
五、土方开挖与回填在土方开挖与回填方面,根据施工图纸和开挖深度要求,采用了合适的机械进行开挖。
在开挖过程中,对标高、边坡等进行了实时监测和控制,确保了开挖的准确性和安全性。
回填时,对回填材料进行了检验和控制,确保了回填质量。
六、地基处理技术在地基处理方面,根据地质勘察结果和设计要求,采用了桩基、换填等处理技术。
对于桩基施工,根据桩型和地质条件,选择了合适的施工机械和方法。
在施工过程中,对桩位、垂直度等参数进行了实时监测和控制,确保了桩基施工质量。
换填时,对换填材料进行了选择和控制,确保了换填质量。
七、混凝土结构施工在混凝土结构施工中,对模板安装、钢筋绑扎、混凝土浇筑等环节进行了严格控制。
在模板安装时,确保了模板的平整度、刚度和稳定性,确保了混凝土浇筑的质量。
钢筋绑扎时,对钢筋规格、数量、间距等参数进行了控制,确保了钢筋混凝土结构的承载力和稳定性。
经典土木工程项目案例分析与总结

经典土木工程项目案例分析与总结近年来,伴随着城市化进程的快速推进,土木工程的发展也进入了一个高速发展的时代。
许多经典的土木工程项目在他们的完成之后,成为了城市的标志性建筑,对于城市的发展和形象起到了重要的作用。
本文将对几个经典的土木工程项目案例进行分析与总结,以便更好地了解土木工程的发展和应用。
案例一:杭州湾大桥杭州湾大桥是中国的一座悬索桥,全长在世界上也属于大桥之巅。
根据其工程技术特点,我们可以从以下三个方面进行分析。
首先,杭州湾大桥采用了先进的悬索桥技术,利用巨大的主塔和悬索将桥梁悬挑于潮汐湾上,大幅度减轻了桥梁对于海底生物的影响。
其次,杭州湾大桥通过设计合理的防风措施,提高了桥梁的抗风性能。
最后,杭州湾大桥的设计考虑到了海底泥沙的运输和航行的需要,保证了航道通畅。
通过对于杭州湾大桥的案例分析,我们可以得出以下结论:土木工程项目应该充分考虑自然环境和社会需求,运用先进的技术和设计手段来保证项目的稳定性和可持续发展。
案例二:埃菲尔铁塔埃菲尔铁塔是法国巴黎市的地标性建筑,位于塞纳河畔,是一座由铁质构成的雄伟建筑。
通过对其结构和建设工艺的分析,我们可以认识到:首先,埃菲尔铁塔的结构采用了三角形的设计,使其在承受风压和垂直荷载时能够更加稳定。
其次,埃菲尔铁塔的建设过程使用了大量的脚手架和起重设备,这些工具保证了施工的顺利进行。
最后,埃菲尔铁塔通过巧妙设计的楼梯和电梯系统,方便了游客的流动,提高了游览体验。
通过对于埃菲尔铁塔的案例分析,我们可以得出以下结论:土木工程项目应该注重结构的稳定性和设计的实用性,同时考虑到项目的使用需求和环境因素。
案例三:三峡大坝三峡大坝是世界上最大的水能发电工程,位于中国长江上,对于中国的经济发展和能源利用起到了重要的作用。
从项目的建设和运行过程中,我们可以得到以下经验:首先,三峡大坝充分利用了长江的水力资源,实现了对于水能的最大化利用。
其次,三峡大坝通过科学的水电发电系统设计,提高了电站的发电效率。
土木工程施工中事故案例

标题:土木工程施工中事故案例及反思摘要:本文通过分析土木工程施工中发生的典型事故案例,深入剖析事故原因,提出相应的预防措施,以期为土木工程施工安全提供有益的借鉴和启示。
正文:一、事故案例概述1. 案例一:2010年南京高架桥垮塌事故2010年11月26日,南京城市快速内环西线南延工程四标段在B17-B18钢箱梁防撞墙混凝土浇筑施工时,长约50米的钢箱梁发生倾覆。
事故原因主要为:曲线钢箱梁吊装后,未及时对受拉支座锚栓灌浆,造成梁体与桥墩之间无锚固连接,使得拉压支座无法发挥作用;在未对钢箱梁压重的情况下,就进行下一道工序防撞墙混凝土的浇筑;浇筑外侧防撞墙护栏混凝土时,产生了不利的偏心荷载,加之浇筑混凝土时,泵车导管可能撞击梁体及混凝土浇筑产生的冲击力引起主梁偏心受力,从而引发钢箱梁侧翻坠落。
2. 案例二:2020年叙威高速钢箱梁倾覆事故2020年11月10日,四川省叙永县正东镇境内在建的叙威高速公路TJ1标段普占互通发生一起钢箱梁倾覆事故,致3人死亡、5人受伤,直接经济损失870万元。
事故原因认定为:工程技术负责人违章指挥、违章施工。
3. 案例三:某镇道路施工事故某镇村民曹春为同村王洪建造房屋,施工过程中租用张华的吊车进行楼板吊装。
吊车安装时,对横穿道路的固定拉线未设置安全标志,造成路人王克受伤。
二、事故原因分析1. 技术和管理不到位:案例一和案例二中,事故发生的主要原因在于技术和管理不到位,如未及时对受拉支座锚栓灌浆、未对钢箱梁压重、违章指挥、违章施工等。
2. 安全意识不足:案例三中,施工人员未设置安全标志,导致路人受伤。
这表明施工人员安全意识不足,对潜在安全风险缺乏防范。
3. 应急预案不完善:以上案例中,事故发生后,虽然有关方面进行了调查和处理,但应急预案不完善,未能有效避免事故的发生。
三、预防措施及反思1. 加强技术和管理:施工过程中,要严格按照施工方案和技术规范进行操作,加强对施工现场的巡查和管理,确保施工安全。
土木工程智能化施工典型案例探讨

土木工程智能化施工典型案例探讨在当今科技飞速发展的时代,土木工程领域也迎来了智能化施工的浪潮。
智能化施工不仅提高了施工效率和质量,还降低了成本和风险,为土木工程行业带来了新的发展机遇。
本文将探讨一些典型的土木工程智能化施工案例,深入分析其技术应用和取得的成效。
一、某大型桥梁建设项目在某大型桥梁的建设中,智能化施工技术发挥了关键作用。
首先,在设计阶段,通过 BIM(建筑信息模型)技术对桥梁的结构进行了三维建模和模拟分析。
这使得工程师能够提前发现潜在的设计问题,并进行优化调整,减少了施工中的变更和返工。
在施工过程中,采用了智能化的监控系统。
在桥梁的关键部位安装了传感器,实时监测结构的应力、变形和温度等参数。
这些数据被传输到中央控制系统,进行实时分析和处理。
一旦发现异常,系统会立即发出警报,施工人员能够及时采取措施,保障施工安全和结构质量。
同时,施工中还运用了智能化的预制构件生产技术。
预制构件在工厂中按照标准化的流程进行生产,质量得到了更好的控制。
并且,通过在预制构件中嵌入芯片或二维码,实现了对构件的全生命周期管理,从生产、运输到安装,都能够进行精确追踪和监控。
二、某高层商业建筑施工项目这个高层商业建筑项目在施工中充分融合了智能化技术。
运用了智能化的塔吊系统,塔吊配备了先进的传感器和定位装置,能够实现自动吊运和精准就位,大大提高了吊运效率,减少了人工操作的失误和风险。
在混凝土浇筑方面,采用了智能化的混凝土输送和浇筑设备。
这些设备能够根据预设的参数自动调整浇筑速度和流量,确保混凝土浇筑的质量均匀稳定。
同时,通过在混凝土中添加智能传感器,实时监测混凝土的强度和凝结过程,为后续的施工工序提供了准确的时间依据。
另外,施工现场还部署了智能化的安全管理系统。
通过安装高清摄像头和智能识别软件,能够实时监测施工现场的人员活动和设备运行情况。
一旦发现违规行为或安全隐患,系统会自动发出警示,并通知相关人员进行处理。
三、某地下综合管廊项目在某地下综合管廊的建设中,智能化施工技术有效地解决了施工中的难题。
土木工程师-专业案例(岩土)-基坑工程与地下工程-7.3地下水控制

土木工程师-专业案例(岩土)-基坑工程与地下工程-7.3地下水控制[单选题]1.某基坑开挖深度为8.0m,其基坑形状及场地土层如下图所示,基坑周边无重要构筑物及管线。
粉细砂层渗透系数为1(江南博哥).5×10-2cm/s,在水位观测孔中测得该层地下水水位埋深为0.5m。
为确保基坑开挖过程中不致发生突涌,拟采用完整井降水措施(降水井管井过滤器半径设计为0.15m,过滤器长度与含水层厚度一致),将地下水水位降至基坑开挖面以下0.5m,试问,根据《建筑基坑支护技术规程》(JGJ 120—2012)估算本基坑降水时至少需要布置的降水井数量(口)为下列何项?()[2012年真题]题1图A.2B.3C.4D.5正确答案:B参考解析:根据《建筑基坑支护技术规程》(JGJ 120—2012)第7.3.15条规定,降水井的单井设计流量可按下式计算:q=1.1Q/n。
式中,Q为基坑降水的总涌水量(m3/d);n为降水井数量。
①计算基坑降水的总涌水量(m3/d):根据附录E第E.0.3规定,群井按大井简化的均质含水层承压水完整井的基坑降水总涌水量可按下列公式计算:Q=2πkMsd/ln(1+R/r0)式中,M为承压含水层厚度(m),本场地含水层为承压含水层,故M=12m。
r0为沿基坑周边均匀布置的降水井群所围面积等效圆的半径(m)。
其等效半径r0为:式中,A为降水井群连线所围的面积。
sd为基坑地下水位的设计降深(m),经计算为:sd=8.0-0.5+0.5=8.0m。
R为降水影响半径(m)。
根据式(7.3.7-2),即确定。
式中,sw为井水位降深(m),当井水位降深小于10m时,取sw=10m。
k为含水层的渗透系数(m/d)。
故其中,k=1.5×10-2×60×60×24×10-2=12.96m/d因此,基坑降水的总涌水量为:Q=2πkMsd/ln(1+R/r0)=2π×12.96×12×8/ln(1+360/40)=3395.0m3/d②计算降水井单井流量(m3/d):根据7.3.16条第3款规定,管井的单井出水能力可按下式计算:式中,q0为单井出水能力(m3/d);rs为过滤器半径(m);l为过滤器进水部分长度(m);k为含水层渗透系数(m/d)。
土木工程施工技术案例

土木工程施工技术案例为了满足城市基础设施建设的需求,我公司参与了一项大型土木工程项目的施工。
该项目是一座高速公路的建设,路线全长约10公里,设计最高速度为120公里/小时。
本文将详细介绍我公司在施工过程中采取的技术和措施。
1.地质勘测在项目启动前,我公司对施工区域进行了详细的地质勘测。
通过钻孔、取样等方式,了解了施工区域的土质、地下水位等信息。
根据勘测结果,我们设计了相应的施工方案,并确定了适合的施工工艺。
2.土方开挖在高速公路建设中,土方开挖是施工工程的首要任务之一、我们在施工区域的土质均匀性、稳定性等方面进行了评估,并制定了相应的开挖方案。
在进行挖掘作业时,我们采用了常规的土方开挖机械,如推土机、挖掘机等。
为了确保施工质量,我们还进行了现场监测和质量检验,确保土方开挖达到设计要求。
3.基础工程对于高速公路的基础工程,包括了路基土石方填筑和基础处理。
我们先进行了路基土石方填筑,通过合理的填筑方式,保证了路基的平整度和稳定性。
在基础处理方面,我们对于松散地层进行了加固处理,采用了灌注桩等技术手段,确保了路基的承载力和稳定性。
4.路面铺设在路面铺设阶段,我们首先进行了基层处理,包括破碎、压实等工艺。
然后采用了沥青混凝土铺设工艺,确保了路面的平整度和耐久性。
在铺设过程中,我们进行了现场质量检验和纠正措施,以确保路面的施工质量符合设计要求。
5.排水工程在高速公路建设中,排水工程的建设至关重要。
我们进行了雨水排水的设计和施工,在道路两侧设置了排水沟和雨水收集系统。
同时,还进行了现场检测和监测,确保排水工程的畅通和稳定。
6.桥梁建设在高速公路建设中,桥梁是不可或缺的部分。
我们进行了桥梁的设计和施工,采用了钢筋混凝土梁板结构。
在桥梁施工过程中,我们注意了桥梁的承重性能和稳定性,采取了预应力技术和加固措施,确保了桥梁的安全可靠。
以上是我公司在高速公路建设项目中采取的一些施工技术和措施。
通过合理的工艺和手段,我们确保了施工质量和安全性,为城市基础设施的发展做出了贡献。
土木工程施工案例

土木工程施工案例一、工程概述某市一栋商业大厦的施工项目,占地面积约10,000平方米,总建筑面积约50,000平方米,建筑高度为70米。
该工程包括一栋办公楼、一栋商业楼和一栋地下停车场,设计使用年限为50年。
二、施工过程施工前准备在施工前,进行了现场勘查,确定了施工范围和施工条件。
根据工程特点和施工条件,制定了施工方案和施工组织设计,并进行了安全技术交底。
同时,对施工材料和设备进行了进场验收,确保质量合格。
基础工程施工基础工程施工包括土方开挖、桩基施工、基础垫层和混凝土浇筑等。
在施工过程中,严格控制了土方开挖的深度和范围,确保不超挖、不欠挖。
桩基施工采用了预制桩,经过检测合格后进行了安装。
基础垫层和混凝土浇筑采用了商品混凝土,浇筑过程中加强了振捣和养护,确保混凝土质量。
主体工程施工主体工程施工包括钢筋工程、模板工程、混凝土工程和砌筑工程等。
钢筋工程中,钢筋的规格、型号和质量符合设计要求,钢筋的连接方式采用了焊接和机械连接,并进行了焊接试件和机械连接试件的检测。
模板工程中,模板的选材、制作和安装符合规范要求,并加强了模板的固定和支撑。
混凝土工程中,混凝土的配合比、浇筑和养护符合规范要求,加强了混凝土的振捣和养护。
砌筑工程中,选用了合格的砌块材料,并按照规范要求进行了砌筑和抹灰。
装修工程施工装修工程施工包括地面、墙面、顶棚、门窗等部位的装修施工。
地面装修采用了耐磨、防滑、美观的地面材料;墙面装修采用了耐久性好、易于清洁的墙面材料;顶棚装修采用了防火、防潮、防尘的顶棚材料;门窗装修采用了密闭性好、开启灵活的门窗材料。
装修施工时,加强了各部位之间的协调和配合,确保装修效果的整体性和美观性。
机电设备安装机电设备安装包括给排水管道、电气线路、空调设备、消防设备等安装。
在安装过程中,遵循了设计要求和规范标准,确保了设备的质量和安全性能。
同时,加强了与土建施工的协调和配合,确保了工程的顺利进行。
三、施工效果该商业大厦施工项目经过各方的共同努力,顺利完成了各项施工任务,达到了预期的施工效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《土木工程施工技术》案例案例1.某建筑外墙采用砖基础,其断面尺寸如图1所示,已知场地土的类别为二类,土的最初可松性系数为1.25,最终可松性系数为1.04,边坡坡度为1:0.55。
取50m 长基槽进行如下计算。
试求:(1)基槽的挖方量(按原状土计算);(2)若留下回填土后,余土全部运走,计算预留填土量及弃土量(均按松散体积计算)。
图1 某基槽剖面基础示意图解:(1) 求基槽体积,利用公式 12F F V L 2+=,(12F F =)得: ()3V 1.5 1.240.2152 1.50.5550187.125m =⨯+⨯+⨯⨯=⎡⎤⎣⎦(2) 砖基础体积:()31V 1.240.40.740.40.240.75048m =⨯+⨯+⨯⨯=预留填土量:31S 2S (V V )K (187.12548) 1.25V 167.22m K 1.04'--⨯=== 弃土量:313S S V V 187.12548V V K 187.125 1.2566.69m K 1.04'⎛⎫--⎛⎫=-=-⨯= ⎪ ⎪⎝⎭⎝⎭ 案例2.某高校拟建一栋七层框架结构学生公寓楼,其基坑坑底长86m ,宽65m ,深8m ,边坡坡度1:0.35。
由勘察设计单位提供有关数据可知,场地土土质为二类土,其土体最初可松性系数为1.14,最终可松性系数为1.05,试求:(1)土方开挖工程量;(2)若混凝土基础和地下室占有体积为23650m³,则应预留的回填土量; (3)若多余土方用斗容量为3 m³的汽车外运,则需运出多少车? 解:(1) 基坑土方量可按公式()102HV F 4F F 6=++计算,其中, 底部面积为:22 F = 8665 = 5590 m ⨯中部截面积为:20 F = (8680.35)(6580.35) = 6020.64 m +⨯⨯+⨯上口面积为:21F (86280.35)(65280.35) 6466.96 m =+⨯⨯⨯+⨯⨯=挖方量为:348186.03m = 5590)+6020.64×4+(6466.96×68= V(2) 混凝土基础和地下室占有体积V 3=23650 m 3,则应预留回填土量:3S S 3226639.12m 14.105.12365003.48186K K V V V =⨯-='-=(3) 挖出的松散土体积总共有:3S 2m 54932.07=1.14×48186.03= K ×V =V '故需用汽车运车次:22V V 54932.0726639.12N 9431()q 3'--===车 案例3.某综合办公楼工程需进行场地平整,其建筑场地方格网及各方格顶点地面标高如图2所示,方格边长为30m 。
场地土土质为亚粘土(普通土),土的最终可松性系数为1.05,地面设计双向泄水坡度均为3‰。
按场地挖填平衡进行计算。
试求:(1)场地各方格顶点的设计标高; (2)计算各角点施工高度并标出零线位置; (3)计算填、挖土方量(不考虑边坡土方量); (4)考虑土的可松性影响调整后的设计标高。
解:(1)初步确定场地设计标高,由公式12340H2H 3H 4H H 4n+++=∑∑∑∑ ,得()7465.5286.5255.53(24.526.5554.495.5548.51H 0⨯+++⨯+++++=()m 55.5205.5296.52477.533)69.5284.5013.50=+⨯+⨯+++0.3‰0.3‰图2 场地方格网图由公式 n 0x x y y H H l i l i =±± ,得:00000011000000120001300000014H 52.55600.3300.352.54mH 52.55300.3300.352.55m H 52.550300.352.56m H 52.55300.3300.352.57m=-⨯+⨯==-⨯+⨯==++⨯==+⨯+⨯=同理 21H 52.53m = 22H 52.54m =23H 52.55m = 24H 52.56m = 25H 52.57m =31H 52.52m =32H 52.53m = 33H 52.54m = 34H 52.55m = 35H 52.56m =(2) 计算各角点施工高度,由公式 n n n h H H '=- 可求得:111111h H H 52.5451.48 1.06m '=-=-=+其他各角点的施工高度如下图3所示: 由公式 X i,j =ah A /(h A +h B ) ,确定零点为:1111,121112ah 30 1.06x 15.44m h h 1.06 1.00⨯===++同理求出各零点,把各零点连接起来,形成零线,如图3所示。
图3 场地平整方格网法计算图(3) 计算场地挖填方量:3322wI m 50.313)00.106.1()12.006.1(06.1630)06.112.0242.000.12(630V =+⨯+⨯+-⨯++⨯⨯=3322wII m 48.316)30.050.0()42.050.0(50.0630)50.042.0200.130.02(630V =+⨯+⨯+-⨯++⨯⨯=3322wIII m 21.831)21.150.0()30.050.0(50.0630)50.021.1293.230.02(630V =+⨯+⨯+-⨯++⨯⨯=2223wIV300.120.42V ()15.12m 40.12 2.980.42 2.4=⨯+=++ 332wVm 28.4)4.242.0()5.042.0(42.0630V =+⨯+⨯= 3222wVIm 00.195)14.07.114.0)5.021.1(21.1(430V =+++⨯= 32WVII m 50.1021)14.016.003.321.1(430V =+++⨯=总挖方量:3wi W m 09.269750.102100.19528.412.1521.83148.3165.313V V ∑=++++++==233tI 30 1.06V 73.50m 6(1.060.12)(1.06 1.00)=⨯=+⨯+332tII m 48.25)30.050.0()42.050.0(50.0630V =+⨯+⨯=233tIII 300.50V 13.71m 6(0.500.30)(0.50 1.21)=⨯=+⨯+3222tIVm 07.1103)42.040.240.212.098.298.2(430V =+++⨯= 3322tV m 28.1066)40.242.0()50.042.0(42.0630)42.040.2270.150.02(630V =+⨯+⨯+-⨯++⨯⨯=3222tVIm 27.386)14.070.170.121.150.050.0(430V =+++⨯= 总填方量:3ti t m 31.266827.38628.106607.110371.1348.255.73V V ∑=+++++==(4)调整后的设计标高:2tI 2tII 2tIII 1F 26.9515.44208.05m 21F 16.3018.75152.81m 21F 18.758.7782.22m 2=⨯⨯==⨯⨯==⨯⨯=2tIV 2tV 2tVI 1F (28.8425.53)30815.55m 21F 3030 4.4713.7869.38m 21F (8.7727.72)30547.35m 2=⨯+⨯==⨯-⨯⨯==⨯+⨯=2w 2ti t m64.362436.267573030F m 36.267535.54738.86955.81522.8281.15205.208F F =-⨯⨯==+++++==∑由公式'w s 't w sV (K 1)Δh F F K --=+ ,得 m 42.005.164.362436.2675)105.1(09.2697Δh =⨯+--=因此,考虑土的可松性影响调整后的设计标高为:m 97.5242.055.52Δh h h 00'=+=+=案例4.某工业厂房基坑土方开挖,土方量11500m³,现有型正铲挖土机可租用,其斗容量q=1m 3,为减少基坑暴露时间挖土工期限制在10天。
挖土采用载重量4t 的自卸汽车配合运土,要求运土车辆数能保证挖土机连续作业。
已知C K 0.9=,S K 1.15=,B K K 0.85==,c v 20km /h =,31.73t /m ρ=(土密度),t=40s ,L=1.5km 。
试求:(1)试选择w 1-100正铲挖土机数量N ; (2)运土车辆数'N ;(3)若现只有一台w 1-100液压正铲挖土机且无挖土工期限制,准备采取两班制作业,要求运土车辆数能保证挖土机连续作业,其它条件不变。
试求:① 挖土工期T ; ② 运土车辆数'N 。
解:(1) 计算挖土机生产率:C B S K 83600P q K t K ⨯=3836000.910.85=478.96m /()40 1.15⨯=⨯⨯⨯台班 取每天工作班数C=1,则挖土机数量由公式可知:Q 1115001N 2.8P TCK 478.961010.85=⨯=⨯=⨯⨯ 取N=3,故需3辆 W1-100型反铲挖土机。
(2) 汽车每车装土次数,由公式计算知,C Q 4n 2.95K 0.91 1.73q 1.15Ks'===⨯⨯ρ (取3次) 则汽车每次装车时间:1t =n * t=32/3=2min ⨯; 取卸车时间:1m in t 2=; 操纵时间:2min t 3=; 则汽车每一工作循环延续时间:123c 2L 2 1.5T t t t 2601214min v 20⨯'=+++=+⨯++= 则运土车辆的数量:1T 14N 7t 2''=== (辆) 由于三台挖土机同时作业,每台都需要连续作业,故需21辆运土车。
(3)① 由公式可知,挖土工期:Q 11500T 14NPCK 1478.9620.85===⨯⨯⨯(天)② 除挖土机数量外,由于影响运土车数的条件均未变,为保证1台挖土机连续作业,故只需7辆运土车。
案例5.某建筑基坑底面积为20m×32m ,基坑深4m ,天然地面标高为±0.000,四边放坡,基坑边坡坡度为1:0.5。
基坑土质为:地面至-1.0m 为杂填土,-1.0m 至-10.0m 为细砂层,细砂层以下为不透水层。