电磁场原理(第二版)6章

合集下载

第六章 微扰理论

第六章  微扰理论

ˆ H ˆ k H ˆ H 0 k
k 1

ˆ k H ˆ ) E (H 0 k n n n
k
( 0) (1) ( 2) (k) n n n 2 n k n
E n E (n0) E (n1) 2 E (n2) k E (nk )
(1) n k n ( 0 )* ˆ (0) H d k 1 n (0) k
E
(0) n
E
(0) k
E
( 2) n

( 0 )* n
ˆ ) ˆ ) (H ˆ ) (H (H (1) ( 0 )* ˆ (0) 1 kn 1 kn 1 nk ˆ H1 n d ( 0 ) H1 k d ( 0) (0) n (0) k n E n E k kn E n E k
0) ( 0 )* (1) ( 0 )* ˆ (1) b m (E (m E (n0 ) ) E (n2 ) mn E (n1) m n d m H 1 n d
现在来求能量的二级修正值。当m=n时,上式就变成
( 0 )* (1) ( 0 )* ˆ (1) 0 E (n2 ) E (n1) n n d n H1 n d
( 0) n (1) n (0) n
k
bm
k n
(E(0) n
ˆ ) (H ˆ ) ˆ ) (H ˆ ) (H (H 1 kn 1 mk 1 nn 1 mn 0) ( 0) 2 E (k0) )(E (n0) E (m ) (E(0) n Em )
(k) n E (nk ) 称为能量的k级校正。 称为波函数的k级校正,
假定级数对于λ=1是收敛的,并希望对于很小的微扰,只要取级数的 头几项,就能得到真实能量和波函数得很好近似。

电磁场复习纲要

电磁场复习纲要

《电磁场理论》知识点第一章 矢量分析一、基本概念、规律矢量微分算子在不同坐标系中的表达,标量场的梯度、矢量场的散度和旋度在不同坐标系中的计算公式,常用的矢量恒等式(见附录一1.和2.)、矢量积分定理(高斯散度定理、斯托克斯旋度定理及亥姆霍兹定理)。

二、基本技能练习1、已知位置矢量z y x e z e y ex r ˆˆˆ++=ρ,r 是它的模。

在直角坐标系中证明 (1)r r r ρ=∇ (2)3=•∇r ρ (3)∇×0=r ρ (4)∇×(0)=∇r (5)03=•∇r rρ2、已知矢量z y e xy e x eA z y x 2ˆˆˆ++=ϖ,求出其散度和旋度。

3、在直角坐标系证明0A ∇⋅∇⨯=r4、已知矢量y x e eA ˆ2ˆ+=ϖ,z x e eB ˆ3ˆ-=ϖ,分别求出矢量A ϖ和B ϖ的大小及B A ϖϖ⋅ 5、证明位置矢量x y z r e x e y e z =++r r r r的散度,并由此说明矢量场的散度与坐标的选择无关。

6、矢量函数z y x e x e y ex A ˆˆˆ2++-=ϖ,试求 (1)A ϖ⋅∇(2)若在xy 平面上有一边长为2的正方形,且正方形的中心在坐标原点,试求该矢量A ϖ穿过此正方形的通量。

第二章 静电场一、基本常数真空中介电常数0ε二、基本概念、规律静电场、库仑定律、电场强度、电位及其微分方程、电荷密度、电偶极子模型、高斯定理、环路定理、极化强度矢量、电位移矢量、场方程(真空中和电介质中)、介质性能方程,边界条件,场能及场能密度。

三、基本技能练习1、设非均匀介质中的自由电荷密度为ρ,试证明其中的束缚电荷密度为)(00εεερεεερ-∇•---=D b ρ。

2、证明极化介质中,极化电荷体密度b ρ与自由电荷体密度ρ的关系为:ρεεερ0--=b 。

3、一半径为a 内部均匀分布着体密度为0ρ的电荷的球体。

求任意点的电场强度及电位。

电磁场与电磁波课后习题答案(杨儒贵编着)(第二版)全套

电磁场与电磁波课后习题答案(杨儒贵编着)(第二版)全套

2-2 已知真空中有三个点电荷,其电量及位置分别为:)0,1,0( ,4 )1,0,1( ,1 )1,0,0( ,1332211P C q P C q P C q === 试求位于)0,1,0(-P 点的电场强度。

解 令321,,r r r 分别为三个电电荷的位置321,,P P P 到P 点的距离,则21=r ,32=r ,23=r 。

利用点电荷的场强公式r e E 204rq πε=,其中r e 为点电荷q 指向场点P 的单位矢量。

那么,1q 在P 点的场强大小为021011814πεπε==r q E ,方向为()z yr e ee +-=211。

2q 在P 点的场强大小为0220221214πεπε==r q E ,方向为()z y xr e e ee ++-=312。

3q 在P 点的场强大小为023033414πεπε==r q E ,方向为y r e e -=3则P 点的合成电场强度为⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+++-=++=z e e e E E E E y x 312128141312128131211 0321πε2-4 已知真空中两个点电荷的电量均为6102-⨯C ,相距为2cm , 如习题图2-4所示。

试求:①P 点的电位;②将电量为6102-⨯C 的点电荷由无限远处缓慢地移至P 点时,外力必须作的功。

解 根据叠加原理,P 点的合成电位为()V 105.24260⨯=⨯=rq πεϕ因此,将电量为C 1026-⨯的点电荷由无限远处缓慢地移到P 点,外力必须做的功为()J 5==q W ϕ2-6 已知分布在半径为a 的半圆周上的电荷线密度πφφρρ≤≤=0 ,sin 0l ,试求圆心处的电场强度。

解 建立直角坐标,令线电荷位于xy 平面,且以y 轴为对称,如习题图2-6所示。

那么,点电荷l l d ρ在圆心处产生的电场强度具有两个分量E x 和E y 。

由于电荷分布以y 轴为对称,因此,仅需考虑电场强度的y E 分量,即习题图2-4习题图2-6φπερsin 4d d d 20a lE E l y ==考虑到φρρφsin ,d d 0==l a l ,代入上式求得合成电场强度为y y aa e e E 0002008d sin 4ερφφπερπ==⎰2-12 若带电球的内外区域中的电场强度为⎪⎪⎩⎪⎪⎨⎧<>=a r aqr a r r q, ,2r e E 试求球内外各点的电位。

第六章 面天线

第六章 面天线

s
S b a


z
1 1 kb sin 2 1 2 ka sin 2
(1 cos ) sin 1 FE 2 1 (1 cos ) sin 2 FH 2 2
y ds(xs , ys ) x R r y M(r , , ) x
s
S b a
dEH j
z
1 2 r
(1 cos ) E y e jkr dse
Im I O

4、惠更斯源辐射场
dEE j dEH j
1 2 r 1 2 r
(1 cos ) E y e jkr dse (1 cos ) E y e jkr dse
1 FE ( ) FH ( ) (1 cos ) 2
dse
dEH j
1 2 r
(1 cos ) E y e jkr dse
y ds(xs , ys ) x R r
y
M(r , , ) x
s
S O


z
二、平面口径辐射
当观察点很远时,可认为R与r近似平行,R可表示为
R r s er r xs sin cos ys sin sin
( E y dy )dx 2 r
e jkr ea
4、惠更斯源辐射场
在研究天线的方向性时,通常更关注两个主平面的情况, 所以只讨论面元在两个主平面的辐射。H平面(xOz平面) Il jkr
面内,电基本振子产生的辐射场为 2 r
H j
sin e
I l 1 jkr 60 Il jkr m jkr dse E j dEH j e (1 E E y e sin e sin cos ) j 2 r 2 r r y x H E E 0 Hr I ml1 x 0 jkr jkr r H j j dEe dx E y esin e r dse 2H r 0 J r dE E 2

电磁场与电磁波课后习题及答案六章习题解答

电磁场与电磁波课后习题及答案六章习题解答

第六章时变电磁场有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场之中,如题图所示。

滑片的位置由确定,轨道终端接有电阻,试求电流i.解穿过导体回路abcda的磁通为故感应电流为一根半径为a的长圆柱形介质棒放入均匀磁场中与z轴平行。

设棒以角速度绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。

解介质棒内距轴线距离为r处的感应电场为故介质棒内的极化强度为极化电荷体密度为极化电荷面密度为则介质体积内和表面上同单位长度的极化电荷分别为平行双线传输线与一矩形回路共面,如题图所示。

设、、,求回路中的感应电动势。

解由题给定的电流方向可知,双线中的电流产生的磁感应强度的方向,在回路中都是垂直于纸面向内的。

故回路中的感应电动势为式中故则有一个环形线圈,导线的长度为l,分别通过以直流电源供应电压U0和时变电源供应电压U(t)。

讨论这两种情况下导线内的电场强度E。

解设导线材料的电导率为,横截面积为S,则导线的电阻为而环形线圈的电感为L,故电压方程为当U=U0时,电流i也为直流,。

故此时导线内的切向电场为当U=U(t)时,,故即求解此微分方程就可得到。

一圆柱形电容器,内导体半径为a,外导体内半径为b,长为l。

设外加电压为,试计算电容器极板间的总位移电流,证明它等于电容器的传导电流。

解当外加电压的频率不是很高时,圆柱形电容器两极板间的电场分布与外加直流电压时的电场分布可视为相同(准静态电场),即故电容器两极板间的位移电流密度为则式中,是长为l的圆柱形电容器的电容。

流过电容器的传导电流为可见由麦克斯韦方程组出发,导出点电荷的电场强度公式和泊松方程。

解点电荷q产生的电场满足麦克斯韦方程和由得据散度定理,上式即为利用球对称性,得故得点电荷的电场表示式由于,可取,则得即得泊松方程试将麦克斯方程的微分形式写成八个标量方程:(1)在直角坐标中;(2)在圆柱坐标中;(3)在球坐标中。

解(1)在直角坐标中(2)在圆柱坐标中(3)在球坐标系中已知在空气中,求和。

电磁场与电磁波第二版答案陈抗生

电磁场与电磁波第二版答案陈抗生

电磁场与电磁波第二版答案陈抗生【篇一:2011版电磁场与电磁波课程标准】xt>课程编号:适用专业:总学时数:学分:07050021 通信工程本科理论32学时 3一、课程目的及性质电磁场与电磁波是通信技术的理论基础,通过本课程的学习,使学生掌握电磁场的有关定理、定律、麦克斯韦方程等的物理意义及数学表达式。

使学生熟悉一些重要的电磁场问题的数学模型(如波动方程、拉氏方程等)的建立过程以及分析方法。

培养学生正确的思维方法和分析问题的能力,使学生学会用场的观点去观察、分析和计算一些简单、典型的场的问题。

为后续课程打下坚实的理论基础。

二、本课程的基本内容第一章矢量分析(一)教学目的与要求1、理解矢量的标积和矢积;2、理解标量场的方向导数与梯度;3、理解矢量场的通量、散度与散度定理;4、理解矢量场旋度的散度,标量场梯度的旋度;5、理解亥姆霍兹定理、正交曲面坐标系。

(二)教学的重点与难点 1、 2、 3、矢量场中的散度定理和斯托克斯定理;无散场、无旋场的含义;格林定理。

(三)课时安排理论6课时(四)主要内容第一节:标量与矢量(1)课时 1、 2、 3、矢量的代数运算矢量的标积与矢积标量场的方向导数与梯度第二节:矢量场(1)课时 1、矢量场的通量、散度与散度定理 2、矢量场的环量、旋度与旋度定理第三节:无散场与无旋场(1)课时1、矢量场旋度的梯度2、标量场梯度的旋度3、格林定理第四节:矢量场的基本定义和坐标系 1、格林定理2、矢量场的唯一性定义3、亥姆霍兹定理4、正交曲面坐标系(3)课时第二章静电场(一)教学目的与要求 1、 2、 3、 4、 5、 6、 7、8、(二)教学的重点与难点 1、 2、 3、 4、电荷分布与电场强度、电位的关系式;静电场边界中:束缚电荷与电场,极化强度的关系;电场能量;虚位移方法在求解电场作用力的应用。

理解电通量定理,电场线及电场强度方向;理解真空中静电场的积分和微分形式;理解电荷的面密度和线密度与电位、电场强度的关系;理解束缚电荷与极化强度的关系;理解介质中静电场的微分与积分形式;理解静电场的边界条件;理解电容与电场能量的关系;理解虚位移方法在求解作用力的方法在常电荷,常电位系统中的应用。

电磁场复习提纲(大连海事大学)

电磁场复习提纲(大连海事大学)
③r1>r2,反射系数Γ> 0,透射系数1 < T < 2。分界面反射波与入射波的电场同相,透射波电场振幅大于入射波电场振幅。
五.均匀平面波对导体平面的垂直入射
①入、反射波都是行波,合成波为纯驻波,振幅与位置有关。
②z=0和z为0.5 整数倍处是合成波电场波节、磁场波腹;z为0.25 奇数倍处是合成波电场波腹、磁场波节。合成波磁场与电场存在90°相差。
2.远区场
远区电场与磁场相位相同、相互垂直,复数波印亭矢量无虚部;
平均波印亭矢量不为零,电流元能量转换成电磁波向四周扩散。
瞬时玻印亭矢量的值始终不小于零,说明电磁能量一直向外辐射,因此远区场又称为辐射场。
电基本振子远区场的电气特性:
非均匀球面波横电磁波
E面:电场矢量所在的平面。
H面:磁场矢量所在的平面。
电场强度矢量指向电位Ф减小的方向,即由正电荷指向负电荷的方向,而电位梯度方向是电位Ф增大的方向。
电场能量密度
静电位能
镜像电荷:两个导板夹角为180°/n (n必须为整数)条件下镜像电荷数为2n−1。
电流元的镜像:电流元视为等量异号电荷构成的电偶极子。电流元电流正方向由负电荷指向正电荷。
两个带等量异号电荷导体的电容:
第4章恒定电场与恒定磁场
一.恒定电场【有源场,无旋场】
恒定电场基本方程
恒定电场边界条件
电流密度法向分量在边界上连续
恒定电场切向分量在边界上连续
电流线与 很大的媒质表面垂直。
电导率均匀,体电荷密度为0。换言之,各向同性线性均匀媒质不存在体电荷(媒质内没有净余电荷)。
通常导电媒质分界面上存在面电荷。除非 。
(2)导电媒质均匀平面波是TEM波, 仍成立。

电磁场与电磁波理论(第二版)(徐立勤,曹伟)第6章习题解答

电磁场与电磁波理论(第二版)(徐立勤,曹伟)第6章习题解答

第6章习题解答6.1 已知空气中存在电磁波的电场强度为 ()80cos 6π102πy E e E t z =⨯+V /m试问:此波是否为均匀平面波?传播方向是什么?求此波的频率、波长、相速以及对应的磁场强度H 。

解:均匀平面波是指在与电磁波传播方向相垂直的无限大平面上场强幅度、相位和方向均相同的电磁波。

电场强度瞬时式可以写成复矢量j 0ekzy E e E -=。

该式的电场幅度为0E ,相位和方向均不变,且0z E e ⋅=⇒z E e ⊥,此波为均匀平面波。

传播方向为沿着z -方向。

由时间相位86π10t t ω=⨯ ⇒ 86π10ω=⨯ 波的频率Hz 1038⨯=f 波数2πk =波长2π 1 m k λ== 相速p 310 m/s v kω==⨯ 由于是均匀平面波,因此磁场为j 0w w1() e kz z x E H e E e Z Z -=-⨯= 6.2 有一频率为600MHz 的均匀平面波在无界理想介质(r r 4,1εμ==)中沿x +方向传播。

已知电场只有y 分量,初相位为零,且010t t ==s 时,1x =m 处的电场强度值为800kV/m 。

试写出E 和H 的瞬时表达式。

解:根据题意,角频率812π10ω=⨯,r r 0028πk cωωεμεμεμ====,因此 80cos(12π108π)y E e E t x =⨯-由s 10=t ,m 1=x 处的电场强度值为kV /m 800,可以得到kV/m 8000=E8800cos(12π108π) kV/m y E e t x =⨯-根据电场的瞬时表达式可以写出电场的复矢量为j8π800e kV/m x y E e -=波阻抗为()0r w r 060π ΩZ μμμεεε===。

因此磁场强度复矢量为 j8πw 140() e kA/m 3πxx z H e E e Z -=⨯= 因此,磁场的瞬时表达式为840cos(12π108π)3πzH e t x =⨯- 6.3 在无界理想介质中,均匀平面波的电场强度为 ()80sin 2π102πx E e E t z =⨯-V /m已知介质的r 1μ=,试求其r ε,并写出H 的表达式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 式(6.1.5)和式(6.1.6)称为电磁波动方程,它们是波 动方程的一般形式,它们支配着无源、线性、均 匀各向同性导电媒质中电磁场的行为,是研究电 磁波问题的基础。 • 从数学上来看,H和E满足相同形式的方程,在直
角坐标系下,若用ψ(r,t)来表示电场E或磁场H的一 个分量,有方程
• 6.1.2 平面电磁波及基本性质 • 对于电磁波传播过程中的某一时刻 t ,电磁场中 E 或 H 具有相同相位的点构成的空间曲面称为等相 面,又称为波阵面。如果电磁波的等相面或波阵 面为平面,则这种电磁波称为平面电磁波。如果 在平面电磁波波阵面上的每一点处,电场 E 均相 同,磁场 H 也均相同,则这样的平面电磁波称为 均匀平面电磁波。
称为理想介质的波阻抗,单位
为欧姆,上两式均称为波的欧姆定律。 • 4)对于入射波,根据空间任意点在某一时刻 的电磁波电磁场能量密度的假设,再考虑 波的欧姆定律,有 • 相应的坡印延矢量为
• 上式表明,在理想介质中电磁波能量流动 的方向与波传播的方向一致。又坡印廷矢 量的值表示单位时间内穿过与波传播方向 相垂直的单位面积内的电磁能量,即等于 电磁能量密度ω′和能流速率ve的乘积
负方向行进的波的电场分量和磁场分量,称 为反射波。 • 2)波的传播速率 • 是一常数,它仅与媒质参数有关。 • 3)将 代入式(6.1.15)得
• 将上式对时间积分,并略去积分常数,得
• 同理可得 • (6.2.5)和(6.2.6)分别表示了入射波和反射波 中电场和磁场之间的关系。令
• 其中
• 上两式就是无限大理想介质中电磁场随时 间作正弦变化时的稳态解。此时的电场和 磁场既是时间的周期函数,又是空间坐标 的周期函数。 • 相位因子 (ωt-βx+φ) 的物理意义 ( 为方便计, 取φ =0): • 1)t=0 时,相位因子为 -βx , x=0 处的相位为 零,这时电场和磁场都处在零值。 • 2)在t时刻,波的零值点移到ωt-βx=0处,即
• 上述两式为二阶常系数微分方程,它们的 通解分别为

都是复常数,它们的大小和 相位由场源及边界条件决定。上两式中等 号右侧第一项表示入射波,第二项表示反 射波。考虑在无限大的均匀理想介质中不 存在抗
• 为常数,表明电场强度和磁场强度同相。 设它们的初相角都为φ,其对应的瞬时表示 式分别为
图6.2 在理想介质中沿x正方向传播的
• 因此sin(ωt-βx) 代表一沿 x 正方向传播的平面波,其 移动速率为
• 称为电磁波的相位传播速度,简称相速。根据前面 波速的讨论可知,在无限大理想介质中,相速和波 速相同,且都与频率无关。
• 6.3 导电媒质中的均匀平面电磁波 • 媒质的电导率不为零,在导电媒质中只要 有电磁波存在,就将出现传导电流。因此, 在导电媒质中的电磁波传播特性必然与理 想介质中的电磁波传播特性不同。 • 6.3.1 导电媒质中正弦均匀平面波的传播 • 在各向同性、线性、均匀导电媒质中, D=εE,B=μH 及 J=γE ,对于正弦均匀平面电 磁波,由式 (6.1.16) 和式 (6.1.17) 分别可得波 动方程的相量形式
• 取
,称k为导电媒质中的波传
播系数,则上两个方程变为
• 令 • 称为等效介电常数。则
• 式中,α,β为实数。 • 这样,导电媒质中的波动方程的复数表达 式与理想介质中的表达式一样,导电媒质 中的波传播常数与理想介质中的波传播常 数也具有一样的形式,只是在导电媒质中 是等效介电系数。那么,只需将导电媒质 的等效介电系数代替理想介质中的介电系 数,便可用与理想介质中均匀平面电磁波 一样的相应表达式来表示导电媒质中均匀 平面电磁波的行为。即
• 6.2 理想介质中的均匀平面电磁波 • 6.2.1 理想介质中均匀平面电磁波的性质 • 在理想介质中,电导率 γ=0 ,波动方程式 (6.1.16)和式(6.1.17)可简化为
• 其形式解分别为
• • 1)由达朗贝尔方程形式解的分析可知, 分别是沿 x 轴正方向 行进的波的电场分量和磁场分量,称为入射 波;而 则分别是沿x轴
图6.1 向x方向传播的均匀平面波
• 在直角坐标系中,由
• 可得
• 由
• 可得
• 1)均匀平面电磁波是一横电磁波。 • 2) 均匀平面电磁波的电场 E 方向、磁场 H 方 向和波的传播方向三者两两相互垂直,并 满足右手螺旋法则。 • 3)分量Ey和Hz构成一组平面波,分量Ez和Hy 构成另一组平面波。 • 对 于 由 分 量 Ey 和 Hz 构 成 的 平 面 电 磁 波 , E=Ey(x,t)ey,H=Hz(x,t)ez ,则一维波动方程式 (6.1.8)和式(6.1.9)变为
• 比较(6.2.10)和(6.2.11),便得 • 因此,在理想介质中,入射波中电磁能量 的传播方向与波行进的方向相同,且移动 速率也相同。
• 6.2.2 理想介质中的正弦均匀平面电磁波 • 对于最简单的时变电磁场 —— 正弦时变电 磁场,电磁波的电场强度和磁场强度都可 用相量形式表示。
• 令 称k为波的传播系数,β为 相位系数。则上面两方程变为
• 在各向同性、线性、均匀媒质空间中,设媒质的 介电常数为ε,磁导率为μ,电导率为γ,考虑不存 在一次场源:ρf=0,Jf=0,由电磁场基本方程组 和媒质的构成方程,麦克斯韦电磁场基本方程组 可写为
• 整上式得
• 对 式 (6.1.2) 两 边 取 旋 度 , 采 取 相 似 的 推 导 方 式 可得
第6章
平面电磁波的传播
• 电磁场基本方程组的微分形式包含了宏观电磁场 场与源的关系,空间中只要有电磁场存在,那么 空间中变化的电场就产生变化的磁场,反过来, 变化的磁场又产生变化的电场,从而形成电磁波, 伴随着电场和磁场的交变是能量的传输。 • 6.1 电磁波动方程与平面电磁波 • 光波、无线电波等都是电磁波,它们在空间不需 借助任何媒质就能传播。 • 6.1.1 电磁波动方程
• 相应的波阻抗 • 不再为常数。这表明电场强度和磁场强度 不再同相。
相关文档
最新文档