最新七年级数学下册因式分解题型归纳总结

合集下载

(完整版)七年级因式分解

(完整版)七年级因式分解

【因式分解】讲义 知识点1:分解因式的定义1、分解因式:把一个多项式化成几个_整式的乘的积,这种变形叫做分解因式,它与整式的乘法互为逆运算。

例如:判断下列从左边到右边的变形是否为分解因式:①8)3)(3(892+-+=+-x x x x ( ) ② )49)(49(4922y x y x y x -+=- ( )③ 9)3)(3(2-=-+x x x ( ) ④ )2(222y x xy xy xy y x -=+- ( ) 知识点2:公因式公因式: 定义:我们把多项式各项都含有的相同因式,叫做这个多项式各项的公因式。

公因式的确定:(1)符号: 若第一项是负号则先把负号提出来(提出负号后括号里每一项都要变号) (2)系数:取系数的最大公约数; (3)字母:取字母(或多项式)的指数最低的; (4)所有这些因式的乘积即为公因式;例如:1、的公因式是多项式 963ab - aby abx -+_________2、多项式3223281624a b c a b ab c -+-分解因式时,应提取的公因式是3、342)()()(n m m n y n m x +++-+的公因式是__________知识点3:用提公因式法分解因式提公因式法分解因式:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成几个因式的乘积,这种分解因式的方法叫做提公因式法。

例如:1、可以直接提公因式的类型:(1)3442231269b a b a b a +-=_______________ (2)11n n n aa a +--+=____________(3)542)()()(b a b a y b a x -+---=_____________(4)不解方程组23532x y x y +=-=-⎧⎨⎩,求代数式()()()22332x y x y x x y +-++的值 2、式子的第一项为负号的类型:(1)①33222864y x y x y x -+- =_____________②243)(12)(8)(4n m n m n m +++-+-=(2)若被分解的因式只有两项且第一项为负,则直接交换他们的位置再分解(特别是用到平方差公式时)如:22188y x +-=1、多项式:aby abx ab 24186++-的一个因式是ab 6-,那么另一个因式是2、分解因式-5(y -x)3-10y(y -x)33、公因式只相差符号的类型:公因式相差符号的,要先确定取哪个因式为公因式,然后把另外的只相差符号的因式的负号提出来,使其统一于之前确定的那个公因式。

因式分解知识点总结

因式分解知识点总结

因式分解知识点总结一、因式分解的概念。

1. 定义。

- 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。

例如:x^2-4=(x + 2)(x - 2),就是将多项式x^2-4因式分解为两个整式(x + 2)与(x - 2)的积的形式。

2. 与整式乘法的关系。

- 因式分解与整式乘法是互逆的恒等变形。

整式乘法是把几个整式相乘化为一个多项式,如(a + b)(a - b)=a^2-b^2;而因式分解是把一个多项式化为几个整式相乘,如a^2-b^2=(a + b)(a - b)。

二、因式分解的方法。

1. 提公因式法。

- 公因式的确定。

- 系数:取各项系数的最大公因数。

例如,对于多项式6x^2+9x,系数6和9的最大公因数是3。

- 字母:取各项相同的字母。

在6x^2+9x中,相同的字母是x。

- 字母的指数:取相同字母的最低次幂。

对于6x^2+9x,x的最低次幂是1。

所以公因式是3x。

- 提公因式的步骤。

- 找出公因式。

- 用多项式除以公因式,得到另一个因式。

例如,6x^2+9x = 3x(2x+3)。

2. 公式法。

- 平方差公式。

- 公式:a^2-b^2=(a + b)(a - b)。

- 应用条件:多项式必须是两项式,并且这两项都能写成平方的形式,符号相反。

例如,9x^2-16y^2=(3x + 4y)(3x - 4y),这里9x^2=(3x)^2,16y^2=(4y)^2。

- 完全平方公式。

- 公式:a^2+2ab + b^2=(a + b)^2,a^2-2ab + b^2=(a - b)^2。

- 应用条件:多项式是三项式,其中有两项能写成平方的形式,且这两项的符号相同,另一项是这两个数乘积的2倍。

例如,x^2+6x + 9=(x + 3)^2,这里x^2=x^2,9 = 3^2,6x=2× x×3。

3. 十字相乘法(拓展内容,人教版教材部分有涉及)- 对于二次三项式ax^2+bx + c(a≠0),如果能找到两个数m和n,使得m + n=b 且mn = ac,那么ax^2+bx + c=(x + m)(x + n)。

苏教版七年级下期末复习三因式分解

苏教版七年级下期末复习三因式分解

苏教版数学七年级下期中复习三---整式乘法与因式分解一、知识点:1、单项式乘单项式:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

2、单项式乘多项式:单项式与多项式相乘,用单项式乘多项式的的每一项,再把所得的积相加。

m(a+b-c)=ma+mb-mc3、多项式乘多项式:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

(a+b)(c+d)=ac+ad+bc+bd4、乘法公式:a)完全平方公式:(a+b)2=a2+2ab+b2;(a -b)2=a2-2ab+b2b)平方差公式:(a+b)(a-b)=a2-b25、因式分解:i.把一个多项式写成几个整式的积的形式叫做多项式的因式分解。

ii.多项式的乘法与多项式因式分解的区别简单地说:乘法是积.化和.,因式分解是和.化积.。

(3)因式分解的方法:①提公因式法;②运用公式法。

6、因式分解的应用:(1)提公因式法:如果多项式的各项含有公因式,那么就可以把这个公因式提出来。

把多项式化成公因式与另一个多项式的积的形式,这种分解因式的方法叫做提公因式法。

(2)公因式:多项式ab+ac+ad的各项ab、ac、ad都含有相同的因式a,a称为多项式各项的公因式。

(3)用提公因式法时的注意点:①公因式要提尽,考虑的顺序是,先系数,再单独字母,最后多项式。

如:4a2(a-2b)-18ab(a-2b)=2a(a-2b)(2a-9b);②当多项式的第一项的系数为负数时,把“-”号作为公因式的负号写在括号外,使括号内的第一项的系数为正。

如:-2m3+8m2-12m= -2.m(m2-4m+6);③提公因式后,另一个多项式的求法是用原多项式除以公因式。

(4)运用公式法的公式:①平方差公式:a2-b2=(a+b)(a-b)②完全平方公式:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2(5)因式分解的步骤和要求:把一个多项式分解因式时,应先提公因式...,注意公因式要提尽..,然后再应用公式,如果是二项式考虑用平方差公式,如果是三项式考虑用完全平方公式,直到把每一个因式都分解到不能再分解为止。

七下第九章整式乘法与因式分解知识点归纳小结

七下第九章整式乘法与因式分解知识点归纳小结

七下第九章整式乘法与因式分解知识点归纳小结知识点归纳:一、幂的运算:1、同底数幂的乘法法则:n m n m a a a +=∙(n m ,都是正整数)同底数幂相乘,底数不变,指数相加。

注意底数可以是多项式或单项式。

如:532)()()(b a b a b a +=+∙+2、幂的乘方法则:mn n m a a =)((n m ,都是正整数)幂的乘方,底数不变,指数相乘。

如:10253)3(=-幂的乘方法则可以逆用:即m n n m mn a a a )()(== 如:23326)4()4(4==3、积的乘方法则:n n n b a ab =)((n 是正整数)。

积的乘方,等于各因数乘方的积。

如:(523)2z y x -=5101555253532)()()2(z y x z y x -=∙∙∙-4、同底数幂的除法法则:n m n m a a a -=÷(n m a ,,0≠都是正整数,且)n m同底数幂相除,底数不变,指数相减。

如:3334)()()(b a ab ab ab ==÷5、多项式按字母的升(降)幂排列:1223223--+-y xy y x x按x 的升幂排列: 按x 的降幂排列:按y 的升幂排列: 按y 的降幂排列:例.已知x 2+x -1=0,求x 3+2x 2+3的值.二、单项式、多项式的乘法运算:6、单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

如:=∙-xy z y x 3232 )2()3(22xy xy -⋅= ? 2232)()(b a b a ⋅-=?7、单项式乘以多项式,就是用单项式去乘多项式的每一项,再把所得的积相加,即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式)。

如:)(3)32(2y x y y x x +--= 。

8、多项式与多项式相乘,用多项式的每一项乘以另一个多项式的每一项,再把所的的积相加。

七年级数学下册_整式的乘除与因式分解的常见题型

七年级数学下册_整式的乘除与因式分解的常见题型

整式的乘除与因式分解的常见题型【题型一】、逆用幂的运算性质1.2005200440.25⨯= . 2.( 23)2002×(1.5)2003÷(-1)2004= . 3.若23n x =,则6n x = .4.已知:2,3==n m x x ,求n m x 23+、n m x 23-的值。

5.已知:a m =2,b n =32,则n m 1032+=________。

6、若6422=-a ,则a= ;若8)3(327-=⨯n ,则n= .7、若125512=+x ,求x x +-2009)2(的值。

8、设4x =8y-1,且9y =27x-1,则x-y 等于 。

【题型二】、式子变形求值1.若10m n +=,24mn =,则22m n += .2、设m+n=10,mn=24,求()222m n m n +-和的值。

3.已知9ab =,3a b -=-,求223a ab b ++的值.4.已知0132=+-x x ,求221x x +的值。

5、已知31=+a a ,则221aa +的值是 。

6.已知:()()212-=---y x x x ,则xy y x -+222= . 7.24(21)(21)(21)+++的结果为 .8.如果(2a +2b +1)(2a +2b -1)=63,那么a +b 的值为_______________。

9.已知0258622=+--+b a b a ,则代数式ba ab -的值是_______________。

10.已知:0106222=+++-y y x x ,则=x _________,=y _________。

11、若x 、y 互为相反数,且4)1()2(22=+-+y x ,求x 、y 的值.12、已知2x 5y 30+-=,求x y 432⋅的值.13、当2y —x=5时,()()6023252-+---y x y x = ; 14、若1003x y +=,2x y -=,则代数式22x y -的值是 .15、已知21,122=+-=-y x y x ,求y x -的值; 【题型三】、式子变形判断三角形的形状1.已知:a 、b 、c 是三角形的三边,且满足0222=---++ac bc ab c b a ,则该三角形的形状是_________________.2.若三角形的三边长分别为a 、b 、c ,满足03222=-+-b c b c a b a ,则这个三角形是___________________。

【常考压轴题】因式分解压轴四大类型—2023-2024学年七年级数学下册(苏科版)(解析版)

【常考压轴题】因式分解压轴四大类型—2023-2024学年七年级数学下册(苏科版)(解析版)

因式分解压轴四大类型题型一:运用提公因式法合公式法综合因式分解题型二:十字相乘法因式分解题型三:分组分解法题型四:因式分解的应用题型一:运用提公因式法合公式法综合因式分解【典例1】(2023秋•西城区期末)分解因式:(1)xy3﹣xy;(2)2x2﹣20x+50.【答案】(1)xy(y+1)(y﹣1);(2)2(x﹣5)2.【解答】解:(1)原式=xy(y2﹣1)=xy(y+1)(y﹣1);(2)原式=2(x2﹣10x+25)=2(x﹣5)2.【变式1-1】(2023春•鼓楼区校级期中)因式分解:(1)2mx2﹣4mx+2m;(2)25(m+n)2﹣9(m﹣n)2.【答案】(1)2m(x﹣1)2;(2)4(m+4n)(4m+n).【解答】解:(1)2mx2﹣4mx+2m=2m(x2﹣2x+1)=2m(x﹣1)2;(2)25(m+n)2﹣9(m﹣n)2=[5(m+n)]2﹣[3(m﹣n)]2=[5(m+n)﹣3(m﹣n)][5(m+n)+3(m﹣n)]=(5m+5n﹣3m+3n)(5m+5n+3m﹣3n)=(2m+8n)(8m+2n)=4(m+4n)(4m+n).【变式1-2】(2023春•皇姑区校级期中)因式分解:(1)x2(a﹣b)+4(b﹣a);(2)2x2﹣12xy+18y2.【答案】(1)(a﹣b)(x+2)(x﹣2);(2)2(x﹣3y)2.【解答】解:(1)x2(a﹣b)+4(b﹣a)=x2(a﹣b)﹣4(a﹣b)=(a﹣b)(x2﹣4)=(a﹣b)(x+2)(x﹣2);(2)2x2﹣12xy+18y2=2(x2﹣6xy+9y2)=2(x﹣3y)2.【变式1-3】(2022秋•渑池县期末)因式分解:(1)18a2b﹣12ab2+2b3;(2)x2(x﹣3)+y2(3﹣x).【答案】(1)2b(3a﹣b)2;(2)(x﹣3)(x+y)(x﹣y).【解答】解:(1)18a2b﹣12ab2+2b3=2b(9a2﹣6ab+b2)=2b(3a﹣b)2.(2)x2(x﹣3)+y2(3﹣x)=(x﹣3)(x2﹣y2)=(x﹣3)(x+y)(x﹣y).题型二:十字相乘法因式分解【典例2】(2023秋•普陀区校级期末)因式分解:a2﹣13a+36=.【答案】(a﹣4)(a﹣9).【解答】解:a2﹣13a+36∵﹣4a+(﹣9a)=﹣13a,∴a2﹣13a+36=(a﹣4)(a﹣9).故答案为:(a﹣4)(a﹣9).【变式2-1】(2023秋•璧山区期末)因式分解a2+a﹣6的结果是.【答案】(a﹣2)(a+3).【解答】解:a2+a﹣6=(a﹣2)(a+3).【变式2-2】(2023秋•浦东新区期末)因式分解:x2﹣8x+12=.【答案】(x﹣2)(x﹣6).【解答】解:x2﹣8x+12=x2﹣8x+16﹣4=(x﹣4)2﹣(2)2=(x﹣4+2)(x﹣4﹣2)=(x﹣2)(x﹣6).故答案为:(x﹣2)(x﹣6).(2023秋•河北区校级期末)把多项式x2﹣2x﹣35因式分解为.【变式2-3】【答案】(x+5)(x﹣7).【解答】解:x2﹣2x﹣35=(x+5)(x﹣7).题型三:分组分解法【典例3】(2023秋•临潼区期末)阅读下列材料:数学研究发现常用的因式分解的方法有提取公因式法、公式法,但还有很多的多项式只用上述方法无法分解,如:“m2﹣mn+2m﹣2n”,细心观察这个式子就会发现,前两项可以提取公因式,后两项也可提取公因式,前后两部分分别因式分解后产生了新的公因式,然后再提取公因式就可以完成整个式子的因式分解了,过程为m2﹣mn+2m﹣2n=(m2﹣mn)+(2m﹣2n)=m(m﹣n)+2(m﹣n)=(m﹣n)(m+2).此种因式分解的方法叫做“分组分解法”.请在这种方法的启发下,解决以下问题:(1)因式分解:a3﹣3a2+6a﹣18;(2)因式分解:ax+a2﹣2ab﹣bx+b2.【答案】(1)(a﹣3)(a2+6);(2)(a﹣b)(a﹣b+x).【解答】解:(1)a3﹣3a2+6a﹣18=a2(a﹣3)+6(a﹣3)=(a﹣3)(a2+6);(2)ax+a2﹣2ab﹣bx+b2=(a2﹣2ab+b2)+(ax﹣bx)=(a﹣b)2+x(a﹣b)=(a﹣b)(a﹣b+x).【变式3-1】(2023秋•青浦区校级期中)因式分解:4x3﹣2x2﹣9xy2﹣3xy.【答案】x(2x+3y)(2x﹣3y﹣1).【解答】解:原式=(4x3﹣9xy2)+(﹣2x2﹣3xy)=x(4x2﹣9y2)﹣x(2x+3y)=x(2x+3y)(2x﹣3y)﹣x(2x+3y)=x(2x+3y)(2x﹣3y﹣1).【变式3-2】(2023秋•沙坪坝区校级期末)把下列各式因式分解:(1)﹣3ab3+6a2b2﹣3a3b;(2)x2﹣y2﹣ax+ay.【答案】(1)﹣3ab(b﹣a)2;(2)(x﹣y)(x+y﹣a).【解答】解:(1)原式=﹣3ab(b2﹣2ab+a2)=﹣3ab(b﹣a)2;(2)原式=(x2﹣y2)+(﹣ax+ay)=(x+y)(x﹣y)﹣a(x﹣y)=(x﹣y)(x+y﹣a).【变式3-3】(2023秋•武都区期末)常用的因式分解的方法有:提公因式法和公式法,但有的多项式用上述方法无法分解,例如x2﹣4y2﹣2x+4y,我们细心观察就会发现,前两项可以分解,后两项也可以分解,分别分解后会产生公因式,就可以完整分解了,具体分解过程如下:x2﹣4y2﹣2x+4y=(x2﹣4y2)﹣(2x﹣4y)=(x+2y)(x﹣2y)﹣2(x﹣2y)=(x﹣2y)(x+2y﹣2)这种方法叫分组分解法,请利用这种方法对下列多项式进行因式分解:(1)mn2﹣2mn+2n﹣4;(2)x2﹣2xy+y2﹣16;(3)4x2﹣4x﹣y2+4y﹣3.【答案】(1)(n﹣2)(mn+2);(2)(x﹣y﹣4)(x﹣y+4);(3)(2x﹣y+1)(2x+y﹣3).【解答】解:(1)mn2﹣2mn+2n﹣4=(mn2﹣2mn)+(2n﹣4)=mn(n﹣2)+2(n﹣2)=(n﹣2)(mn+2);(2)x2﹣2xy+y2﹣16=(x2﹣2xy+y2)﹣16=(x﹣y)2﹣42=(x﹣y﹣4)(x﹣y+4);(3)4x2﹣4x﹣y2+4y﹣3=4x2﹣4x+1﹣y2+4y﹣4=(4x2﹣4x+1)﹣(y2﹣4y+4)=(2x﹣1)2﹣(y﹣2)2=(2x﹣1﹣y+2)(2x﹣1+y﹣2)=(2x﹣y+1)(2x+y﹣3).题型四:因式分解的应用【典例4】(2023秋•钢城区期末)阅读材料:教科书中提到a2+2ab+b2和a2﹣2ab+b2这样的式子叫做完全平方式.”有些多项式不是完全平方式,我们可以通过添加项,凑成完全平方式,再减去这个添加项,使整个式子的值不变,这样也可以将多项式进行分解,并解决一些最值问题.例如:(1)分解因式:x2﹣2x﹣3.x2﹣2x﹣3=x2﹣2x+1﹣1﹣3=(x﹣1)2﹣4=(x﹣1)2﹣22=(x﹣1+2)(x﹣1﹣2)=(x+1)(x﹣3).(2)求代数式x2﹣2x﹣3的最小值.x2﹣2x﹣3=x2﹣2x+1﹣4=(x﹣1)2﹣4∵(x﹣1)2≥0,∴当x=1时,代数式x2﹣2x﹣3有最小值﹣4.结合以上材料解决下面的问题:(1)若二次三项式x2﹣kx+9恰好是完全平方式,k的值是;(2)分解因式:x2﹣8x+15;(3)当x为何值时,x2﹣8x+15有最小值?最小值是多少?【答案】(1)6或﹣6;(2)(x﹣3)(x﹣5);(3)当x=4时,代数式x2﹣8x+15有最小值﹣1.【解答】解:(1)∵a2+2ab+b2和a2﹣2ab+b2这样的式子叫做完全平方式,而x2﹣kx+9恰好是完全平方式,同时x2﹣kx+9可以整理为x2﹣kx+32,∴k=6或﹣6,故答案为:6或﹣6.(2)x2﹣8x+15=x2﹣8x+42﹣1=(x﹣4)2﹣1=(x﹣4)2﹣12=(x﹣4+1)(x﹣4﹣1)=(x﹣3)(x﹣5);(3)x2﹣8x+15=(x﹣4)2﹣1,∵(x﹣4)2≥0,∴当x=4时,代数式x2﹣8x+15有最小值﹣1.【变式4-1】(2022春•金东区期末)通常情况下,a+b不一定等于ab,观察下列几个式子:第1个:2+2=2×2;第2个:3+=3×;第3个:4+=4×…我们把符合a+b=ab的两个数叫做“和积数对”.(1)写出第4个式子.(2)写出第n个式子,并检验.(3)若m,n是一对“和积数对”,求代数式的值.【答案】(1)第4个式子为5+=5×;(2)第n个式子(n+1)+=(n+1)×;检验过程见解答.(3).【解答】解:(1)第4个式子为5+=5×;(2)第n个式子(n+1)+=(n+1)×;检验:左边=+==右边;(3)∵m,n,∴m+n=mn,设m+n=mn=x,原式===;【变式4-2】(2023秋•哈密市期末)阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知x2﹣2xy+2y2+6y+9=0,求xy的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足a2+b2﹣10a﹣12b+61=0,求△ABC的最大边c的值.【答案】见试题解答内容【解答】解:(1)∵x2﹣2xy+2y2+6y+9=0,∴(x2﹣2xy+y2)+(y2+6y+9)=0,∴(x﹣y)2+(y+3)2=0,∴x﹣y=0,y+3=0,∴x=﹣3,y=﹣3,∴xy=(﹣3)×(﹣3)=9,即xy的值是9.(2)∵a2+b2﹣10a﹣12b+61=0,∴(a2﹣10a+25)+(b2﹣12b+36)=0,∴(a﹣5)2+(b﹣6)2=0,∴a﹣5=0,b﹣6=0,∴a=5,b=6,∵6﹣5<c<6+5,c≥6,∴6≤c<11,∴△ABC的最大边c的值可能是6、7、8、9、10.【变式4-3】(2023春•罗湖区校级期中)阅读材料:要把多项式am+an+bm+bn因式分解,可以先把它进行分组再因式分解:am+an+bm+bn=(am+an)+(bm+bn)=a(m+m)+b(m+n)=(m+n)(a+b)这种因式分解的方法叫做分组分解法.(1)请用上述方法因式分解:x2﹣y2+2x﹣2y;(2)知a、b、c是△ABC三边的长,且满足a2+c2﹣2b(a﹣b+c)=0,试判断△ABC 的形状,并说明理由;(3)若m、n、p为非零实数,且(m﹣n)2=(p﹣n)(m﹣p),求证:2p=m+n.【答案】(1)(x﹣y)(x+y+2);(2)见解答;(3)见解答.【解答】解:(1)x2﹣y2+2x﹣2y=(x2﹣y2)+2(x﹣y)=(x+y)(x﹣y)+2(x﹣y)=(x﹣y)(x+y+2);(2)△ABC的形状是等边三角形,理由如下:a2+c2﹣2b(a﹣b+c)=0,a2+c2﹣2ba+2b2﹣2bc=0,(a2﹣2ba+b2)+(c2+b2﹣2bc)=0,(a﹣b)2+(b﹣c)2=0,∴a﹣b=0,b﹣c=0,∴a=b=c,∴△ABC的形状是等边三角形.(3)证明:(m﹣n)2=(p﹣n)(m﹣p),等式两边展开移项得:﹣mn++mn﹣pm﹣pn+p2=0,整理得:(m2+mn+n2)﹣p(m+n)+p2=0,即[(m+n)﹣p]2=0,∴(m+n)﹣p=0,∴2p=m+n一.选择题(共8小题)1.(2022秋•内江期末)已知d=x4﹣2x3+x2﹣12x﹣5,则当x2﹣2x﹣5=0时,d的值为()A.25B.20C.15D.10【答案】A【解答】解法一:∵x2﹣2x﹣5=0,∴x2=2x+5,∴d=x4﹣2x3+x2﹣12x﹣5,=(2x+5)2﹣2x(2x+5)+x2﹣12x﹣5=4x2+20x+25﹣4x2﹣10x+x2﹣12x﹣5=x2﹣2x﹣5+25=25.解法二:∵x2﹣2x﹣5=0,∴x2﹣2x=5,∴d=x4﹣2x3+x2﹣12x﹣5=x2(x2﹣2x+1)﹣12x﹣5=6x2﹣12x﹣5=6(x2﹣2x)﹣5=6×5﹣5=25.故选:A.2.(2022春•兰西县校级期末)已知长方形的周长为16cm,它两邻边长分别为x cm,y cm,且满足(x﹣y)2﹣2x+2y+1=0,则该长方形的面积为()cm2.A.B.C.15D.16【答案】A【解答】解:∵长方形的周长为16cm,∴2(x+y)=16,∴x+y=8①;∵(x﹣y)2﹣2x+2y+1=0,∴(x﹣y)2﹣2(x﹣y)+1=0,∴(x﹣y﹣1)2=0,∴x﹣y=1②.联立①②,得,解得:,∴长方形的面积S=xy==(cm2),故选:A.3.(2023秋•洪山区期末)已知实数a满足a2﹣2a﹣1=0,则代数式2a3﹣a2﹣8a+4的值为()A.9B.7C.0D.﹣9【解答】解:∵a2﹣2a﹣1=0,,∴a2﹣2a=1,∴2a3﹣a2﹣8a+4=2a•a2﹣a2﹣8a+4=2a(2a+1)﹣a2﹣8a+4=4a2+2a﹣a2﹣8a+4=3a2﹣6a+4=3(a2﹣2a)+4=3×1+4=7.故选:B.4.(2023秋•商水县期末)已知m2+n2=25,mn=12,则m3n﹣mn3的值为()A.±300B.±84C.±48D.±12【答案】B【解答】解:m3n﹣mn3=mn(m2﹣n2)=mn(m+n)(m﹣n).∵m2+n2=25,mn=12,∴(m+n)2=m2+n2+2mn=25+2×12=49;(m﹣n)2=m2+n2﹣2mn=25﹣2×12=1.∴m+n=±7;m﹣n=±1.①m+n=7,m﹣n=1.原式=12×7×1=84;②m+n=7,m﹣n=﹣1.原式=12×7×(﹣1)=﹣84;③m+n=﹣7,m﹣n=1.原式=12×(﹣7)×1=﹣84;④m+n=﹣7,m﹣n=﹣1.原式=12×(﹣7)×(﹣1)=84.故选:B.5.(2023秋•海安市期末)已知xy=4,则x2﹣2x+y2﹣2y的最小值是()A.﹣9B.﹣2C.0D.2【答案】C【解答】解:x2﹣2x+y2﹣2y=(x2+y2)﹣2(x+y)=(x+y)2﹣2(x+y)﹣2xy.∴原式=(x+y)2﹣2(x+y)﹣8=(x+y)2﹣2(x+y)+1﹣9=(x+y﹣1)2﹣9.设x+y=a,则y=a﹣x.∵xy=4,∴x(a﹣x)=4.∴ax﹣x2=4.∴x2﹣ax+4=0.∴Δ=(﹣a)2﹣4×1×4=a2﹣16.∵方程有解,∴a2﹣16≥0.∴a2≥16.∴a≥4或a≤﹣4.当a=4即x+y=4时,原式=0;当a=﹣4即x+y=﹣4时,原式=25﹣9=16.∵0<16,∴x2﹣2x+y2﹣2y的最小值是0.故选:C.6.(2023秋•宣化区期末)小颖利用两种不同的方法计算下面图形的面积,并据此写出了一个因式分解的等式,此等式是()A.a2+2ab+b2=(a+b)(a+b)B.a2+3ab+2b2=(a+2b)(a+b)C.a2﹣b2=(a+b)(a﹣b)D.2a2+3ab+b2=(2a+b)(a+b)【答案】B【解答】解:根据题图可得大长方形是由2个边长为b的正方形,3个长为b宽为a的长方形和1个边长为a的正方形组成,∴大长方形的面积为a2+3ab+2b2,另外大长方形可以看作一般长为(a+2b)宽为(a+b)的长方形组成,∴大长方形的面积为(a+2b)(a+b),∴可以得到一个因式分解的等式为a2+3ab+2b2=(a+2b)(a+b),故B正确.故选:B.7.(2023秋•鲅鱼圈区期末)已知a﹣b=5,ab=﹣6,则a3b﹣2a2b2+ab3的值为()A.57B.120C.﹣39D.﹣150【答案】D【解答】解:a3b﹣2a2b2+ab3=ab(a2﹣2ab+b2)=ab(a﹣b)2,把a﹣b=5,ab=﹣6代入,ab(a﹣b)2=(﹣6)×52=﹣150,故选:D.8.(2023秋•东兴区校级期中)已知,则代数式a2+b2+c2﹣ab﹣bc﹣ac的值是()A.0B.C.2D.3【答案】D【解答】解:∵,∴a﹣b=﹣1,b﹣c=﹣1,a﹣c=﹣2,∴a2+b2+c2﹣ab﹣bc﹣ac=====3.故选:D.二.填空题(共5小题)9.(2023秋•乌兰察布期末)已知a、b是△ABC的两边,且满足a2﹣b2=ac﹣bc,则△ABC 的形状是.【答案】等腰三角形.【解答】解:∵a2﹣b2=ac﹣bc,∴(a+b)(a﹣b)﹣c(a﹣b)=0.∴(a﹣b)(a+b﹣c)=0.∵在△ABC中,a+b>c,∴a+b﹣c>0.∴a﹣b=0,即a=b.∴△ABC是等腰三角形.故答案为:等腰三角形.10.(2023秋•通山县期末)已知:x2﹣x=1,则x4﹣x3﹣2x2+x+1的值是.【答案】0【解答】解:x4﹣x3﹣2x2+x+1=x2(x2﹣x)﹣2x2+x+1,∵x2﹣x=1,∴原式=x2﹣2x2+x+1=﹣x2+x+1=﹣1+1=0.11.(2023秋•沙坪坝区校级期末)若将多项式2x3﹣x2+m进行因式分解后,有一个因式是x+1,则m的值为.【答案】3.【解答】解:∵多项式2x3﹣x2+m进行因式分解后,有一个因式是x+1,∴当x=﹣1时,2x3﹣x2+m=0,即2×(﹣1)3﹣(﹣1)2+m=0,解得m=3.故答案为:3.12.(2022秋•东莞市校级期末)已知a=x+20,b=x+19,c=x+21,则代数式a2+b2+c2﹣ab﹣bc﹣ca的值是.【答案】见试题解答内容【解答】解:由a=x+20,b=x+19,c=x+21,得(a﹣b)x+20﹣x﹣19=1,同理得:(b﹣c)=﹣2,(c﹣a)=1,∴a2+b2+c2﹣ab﹣bc﹣ac,=(2a2+2b2+2c2﹣2ab﹣2bc﹣2ac),=[(a2﹣2ab+b2)+(a2﹣2ac+c2)+(b2﹣2bc+c2)],=[(a﹣b)2+(a﹣c)2+(b﹣c)2],=×(1+1+4)=3.故答案为3.13.(2022秋•芝罘区期末)计算:20232﹣2023×2022=.【答案】2023.【解答】解:20232﹣2023×2022=2023×(2023﹣2022)=2023×1=2023.故答案为:2023.三.解答题(共3小题)14.(2023秋•梨树县期末)已知a﹣b=7,ab=﹣12.(1)求a2b﹣ab2的值;(2)求a2+b2的值;(3)求a+b的值.【答案】见试题解答内容【解答】解:(1)∵a﹣b=7,ab=﹣12,∴a2b﹣ab2=ab(a﹣b)=﹣12×7=﹣84;(2)∵a﹣b=7,ab=﹣12,∴(a﹣b)2=49,∴a2+b2﹣2ab=49,∴a2+b2=25;(3)∵a2+b2=25,∴(a+b)2=25+2ab=25﹣24=1,∴a+b=±1.15.(2023秋•东辽县期末)先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.(1)分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法.如:①ax+by+bx+ay=(ax+bx)+(ay+by)=x(a+b)+y(a+b)=(a+b)(x+y)②2xy+y2﹣1+x2=x2+2xy+y2﹣1=(x+y)2﹣1=(x+y+1)(x+y﹣1)(2)拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如:x2+2x﹣3=x2+2x+1﹣4=(x+1)2﹣22=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)请你仿照以上方法,探索并解决下列问题:(1)分解因式:a2﹣b2+a﹣b;(2)分解因式:a2+4ab﹣5b2;(3)多项式x2﹣6x+1有最小值吗?如果有,当它取最小值时x的值为多少?【答案】(1)(a﹣b)(a+b+1);(2)(a+5b)(a﹣b);(3)当x=3时,取最小值为﹣8.【解答】解:(1)a2﹣b2+a﹣b=(a+b)(a﹣b)+(a﹣b)=(a﹣b)(a+b+1);(2)a2+4ab﹣5b2=(a+5b)(a﹣b);(3)x2﹣6x+1=x2﹣6x+9﹣8=(x﹣3)2﹣8∵(x﹣3)2≥0,∴(x﹣3)2﹣8≥﹣8,∴当x=3时,取最小值为﹣8.16.(2023春•新吴区期中)阅读材料:利用公式法,可以将一些形如ax2+bx+c(a≠0)的多项式变形为a(x+m)2+n的形式,我们把这样的变形方法叫做多项式ax2+bx+c(a≠0)的配方法,运用多项式的配方法及平方差公式能对一些多项式进行因式分解例如x2+4x﹣5=x2+4x+()2﹣()2﹣5=(x+2)2﹣9=(x+2+3)(x+2﹣3)=(x+3)(x﹣1).根据以上材料,解答下列问题.(1)分解因式(利用公式法):x2+2x﹣8;(2)求多项式x2+4x﹣3的最小值;(3)已知a,b,c是△ABC的三边长,且满足a2+b2+c2+50=6a+8b+10c,求△ABC的周长.【答案】(1)(x﹣2)(x+4);(2)﹣7;(3)12.【解答】解:(1)x2+2x﹣8=x2+2x+1﹣1﹣8=(x+1)2﹣9=(x+1﹣3)(x+1+3)=(x﹣2)(x+4);(2)设y=x2+4x﹣3,y=x2+4x+4﹣4﹣3,y=(x+2)2﹣7,∴多项式x2+4x﹣3的最小值是﹣7.(3)a2+b2+c2+50=6a+8b+10c,即a2+b2+c2+50﹣6a﹣8b﹣10c=0,(a﹣3)2+(b﹣4)2+(c﹣5)2﹣9﹣16﹣25+50=0,(a﹣3)2+(b﹣4)2+(c﹣5)2=0,∴a=3,b=4,c=5,∴△ABC的周长为3+4+5=12.。

第4章 因式分解(单元小结)-2023-2024学年七年级数学下册同步精品课堂

第4章 因式分解(单元小结)-2023-2024学年七年级数学下册同步精品课堂
(a+b)2= a2+2ab+b2 . (a-b)2= a2-2ab+b2 .
两个数的和(或差)的平方,等于它们的平方和,加上(或减去) 它们的积的2倍.
这两个公式叫做(乘法的)完全平方公式. 简记为: “首平方,尾平方,积的2倍放中间”
单元小结
考点训练一 判断是否是因式分解
【例1】下列各式由左边到右边的变形中,是因式分解的为( )
单元小结
考点训练二 已知因式分解的结果求参数
【例3】多项式2x2-5x-3可因式分解成(ax+1)(x+b),其中a、b均 为整数,则ab的值为( ) A.-5B.-6C.6 D.5
【详解】解:∵(ax+1)(x+b)=ax2+(ab+1)x+b=2x2-5x-3 ∴ab+1=-5,即ab=-6. 故选:B.
单元小结
知识点三、乘法公式进行因式分解 知识要点
平方差公式:(a+b)(a−b)=a2−b2 两数和与这两数差的积,等于这两数的平方差. 公式变形:
(a–b) (a+b) =a2−b2 (b+a)(−b+a )=a2−b2
公式中字母的不仅可代表具体的数字、字母、单项式或多项式等代数式
单元小结 知识概括 完全平方公式
C.-9x2-4y2
D.x2-4y2+4xy
【详解】解:A.x2-2xy-y2无法分解因式,故此选项错误,不符 合题意; B.-9x2+4y2 ,用平方差公式分解,故此选项正确,符合题意; C.-9x2-4y2 无法分解因式,故此选项错误,不符合题意; D. x2-4y2+4xy无法分解因式,故此选项错误,不符合题意; 故选:B.

因式分解常见题型

因式分解常见题型

因式分解常见题型因式分解是代数学中的重要内容,常见于中学数学课程中。

在因式分解中,我们将一个多项式表达式分解成几个较简单的乘积形式,这样可以更容易地进行运算和研究。

常见的因式分解题型包括以下几种:1. 提取公因式:这是最基本的因式分解题型,通过提取多项式中的公因子,将其分解为一个公因子与剩余部分的乘积形式。

例如,对于多项式3x + 6y,我们可以提取公因子3,得到3(x + 2y)。

2. 完全平方差公式:这个公式常用于分解二次多项式。

根据公式a^2 - b^2 = (a + b)(a - b),我们可以将一个二次多项式分解成两个一次多项式的乘积形式。

例如,对于多项式x^2 - 4,可以分解为(x + 2)(x - 2)。

3. 三项式的平方差公式:类似于完全平方差公式,这个公式适用于分解三项式。

根据公式a^3 - b^3 = (a - b)(a^2 + ab + b^2),我们可以将一个立方多项式分解成一个一次多项式和一个二次多项式的乘积形式。

4. 分组分解法:当一个多项式无法通过提取公因式或应用常见公式进行因式分解时,可以尝试使用分组分解法。

这种方法通常适用于多项式含有四个或更多项的情况。

通过将多项式中的项进行分组,然后将每个组的项分别因式分解,并尝试得到一个公因子,最后将各个组的公因子相乘即可得到多项式的因式分解。

5. 二次三项式分解:对于一个二次三项式,也可以通过配方法进行因式分解。

配方法即将多项式中的第一项与最后一项相乘,然后找出一个合适的常数将其分解成两个一次多项式的乘积形式。

除了上述常见的因式分解题型,还有一些特殊的因式分解方法,如欧拉恒等式、差平方公式等,可以根据具体情况进行运用。

因式分解在代数学中扮演着重要的角色,不仅可以简化多项式的表达形式,还可以帮助我们更好地理解多项式的性质和特点。

因此,对于学生来说,掌握因式分解的方法和技巧是非常重要的。

在解题时,要善于观察多项式的结构和特征,并选择合适的方法进行因式分解,从而解决问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8.4 因式分解
一、知识梳理
1. 因式分解
把一个多项式化成几个整式的积的形式的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.
2. 提公因式法
多项式ma +mb +mc ,各项都有一个公共的因式m ,我们把因式m 叫做这个多项式各项的公因式.
由m (a +b +c )=ma +mb +mc 可得ma +mb +mc =m (a +b +c ).这样就把ma +mb +mc 分解成两个因式乘积的形式,其中一个因式是各项的公因式m ,另一个因式(a +b +c )是ma +mb +mc 除以m 所得的商.像这种分解因式的方法叫做提公因式法.
3. 公式法
(1)分解因式的平方差公式:
))((22b a b a b a -+=-
(2)分解因式的完全平方公式法:
222)(2b a b ab a ±=+±
二、例题精讲
题型一:提公因式法
【例1】分解因式
(1)c ab b a 323128+-; (2))()()(y x c x y b y x a -+---;
【变式1】分解因式
(1)y x xy x 2221239-+- (2))2()2(x y y x x ---
题型二:公式法
【例2】下列各式:①22y xy x -+-;②222
121b ab a ++;③2244b a ab +--;④xy y x 129422-+;
⑤22363y xy x +-,能用完全平方公式分解的有 .(填序号)
【变式2】因式分解.
(1) 224
1b ab a +- (2) 222y x xy ---
(2) 9)(6)(2++++b a b a (4)22)(9)(25b a b a --+
(5)22)()(y x y x --+ (6)14-x
【例3】若多项式42++mx x 能用完全平方公式分解因式,则m 的值为 .
【变式3】若222)32(924y x y kxy x +=+-,则k 的值是 .
题型三:分组分解法
【例4】因式分解.
(1)b a b a 24422-+- (2)1222-+-y xy x
(3)22269y y x x -++ (4)by ax b a y x 222222++-+-
【变式4】因式分解.。

(1)nx mx mn m -+-2 (2)2222444z z y xyz x -+-
题型四:利用因式分解求值
【例5】填空:
(1)已知2,3=-=+ab b a ,则22ab b a +的值为 .
(2)已知1=+y x ,则222
121y xy x ++的值为 . (3)若0106222=+-++b b a a ,则a = ,b = .
(4)已知6=-b a ,16=ab ,则32232ab b a b a +-的值为 .
【变式5】填空:
(1)已知5=-b a ,3=ab ,则32232ab b a b a +-的值为 .
(2)若01296222=+-++a b ab a ,则223ab b a +的值为 .
三、课后作业
1.因式分解。

(1)2224182xy y x x -+- (2))1()1(2a x a x -+-
(3)9)6(6)6(222+---x x (4)22216)4(m m -+
(5)
4222221y xy x ++ (6)22222)(4c b c b +-
(7)1)1(22+--a a a (8)8)1)(1(--+a a
(9)4-16a
(10)2292y x xy --+
2.已知3-=xy ,满足2=+y x ,求代数式22xy y x +的值.
3.已知1-=-y x ,3=xy ,求32232xy y x y x +-的值.
4.已知0136422=++-+y x y x ,求2296y xy x +-的值.。

相关文档
最新文档