电池电动势的测定及其应用讲解

合集下载

电池电动势的测定及应用实验报告

电池电动势的测定及应用实验报告

电池电动势的测定及应用实验报告电池电动势的测定及应用实验报告引言电池是我们日常生活中不可或缺的能源供应装置,它的电动势是衡量电池性能的重要指标。

本实验旨在通过测定电池的电动势,了解电池的工作原理,并探索电池在实际应用中的一些可能性。

实验方法1. 实验仪器与材料本实验使用的仪器有:直流电压表、电流表、可变电阻箱、导线等。

材料包括:干电池、铜片、锌片等。

2. 实验步骤(1)将干电池的正极与铜片连接,负极与锌片连接,形成一个闭合电路。

(2)将直流电压表的正极与铜片连接,负极与锌片连接,测量电池的电动势。

(3)通过调节可变电阻箱的电阻,改变电路中的电流强度,记录电压和电流的变化。

(4)根据测得的数据,绘制电压与电流的关系曲线。

实验结果通过实验,我们得到了以下数据:电流(A) 0.1 0.2 0.3 0.4 0.5电压(V) 1.5 1.3 1.1 0.9 0.7根据实验数据,我们可以绘制出电压与电流的关系曲线。

从图中可以看出,电压随着电流的增大而逐渐降低,呈现出线性的负相关关系。

讨论与分析1. 电池的内阻根据欧姆定律,我们可以通过实验数据计算出电池的内阻。

内阻的大小会影响电池的电动势稳定性和输出能力。

通过实验计算,我们得到电池的内阻为0.8欧姆。

2. 电池的工作原理电池是通过化学反应将化学能转化为电能的装置。

在干电池中,锌片发生氧化反应,释放出电子,形成负极;铜片则接受电子,发生还原反应,形成正极。

这种化学反应产生的电子流动就是电池的电流。

3. 电池的应用电池作为一种便携式能源装置,广泛应用于日常生活和工业领域。

它可以为各种电子设备提供电力,如手机、手提电脑、闹钟等。

此外,电池还可以用于储能系统,如太阳能电池板储存太阳能,以备不时之需。

结论通过本次实验,我们成功测定了电池的电动势,并了解了电池的工作原理。

通过分析实验数据,我们得出了电压与电流之间的关系,并计算出了电池的内阻。

电池作为一种重要的能源装置,具有广泛的应用前景。

电池电动势的测定及应用实验报告

电池电动势的测定及应用实验报告

电池电动势的测定及其应用一、实验目的:1.了解对消法测定电池电动势的原理;2.掌握电动势测定难溶物溶度积(SP K )的方法;3.掌握常用参比电极银一氯化银电极的制备方法。

二、实验原理:电池由两个半电池组成(半电池包括一个电极和相应的电解质溶液),当电池放电时,进行氧化反应的是负极,进行还原反应的是正极。

电池的电动势就是通过电池的电流趋近于零时两极之间的电位差。

它可表示成:-+-=E E E式中+E 、-E 分别表示正、负电极的电位。

当温度、压力恒定时,电池的电动势E (或电极电位+E 、-E )的大小取决于电极的性质和溶液中有关离子的活度。

电极电位与有关离子活度之间的关系可以由Nernst 方程表示:B B B a zFRT E E υθ∏-=ln (16-1) 式中:z 为电池反应的转移电子数,B υ为参加电极反应的物质B 的化学计量数,产物B υ为正,反应物B υ为负。

本实验涉及的两个电池为:(1)(一)Ag (s ),AgCl (s )│KCl (0.0200 mol·L -1)││AgNO 3(0.0100 mol·L -1)│Ag (s )(+)(2)(一)Hg (l ),Hg 2Cl 2(s )│KCl (饱和)││AgNO 3(0.0100 mol·L -1)│Ag (s )(+)在上述电池中用到的三个电极是:(1) 银电极:电极反应:Ag e L mol Ag →+⋅-+)01.0(1(16-2)}{}{++=++Ag a FRT Ag Ag E Ag Ag E ln //θ 其中: }{)25(00097.07991.0/--=+t Ag Ag E θV式中:t 为摄氏温度(下同),(2) 甘汞电极:电极反应:)(2)(22)(2--+→+Cl a Cl l Hg e s HgCl (16-3){}}{--=Cl a F RT Hg s Cl Hg E Hg s Cl Hg E ln /)(/)(2222θ 对于饱和甘汞电极,温度一定时,-Cl a 为定值,因此饱和甘汞电极电位与温度有关,其关系式为:}{)25(00065.02415.0/)(22--=t Hg s Cl Hg E V(3) 银—氯化银电极电极反应)()('--+=+Cl a Cl Ag e s AgCl (16-4)根据溶度积关系式sp Cl Ag K a a =⋅-+''得 'ln }/{}/)({++=+Ag a FRT Ag Ag E Ag s AgCl E θ 'ln }/{-+=+Cl sp a K F RT Ag Ag E θ 'ln ln }/{--+=+Cl sp a FRT K F RT Ag Ag E θ 'ln }/)({--=Cl a FRT Ag s AgCl E θ (16-5) 式中:)25(000645.02224.0ln }/{}/)({--=+=+t K FRT Ag Ag E Ag s AgCl E SP θθ V 由上式可见,利用Nernst 关系式可求得难溶盐的溶度积常数,为此我们将(16-2)、(16-4)两个电极连同盐桥组成电池(Ⅰ),其电动势可表示为:-+-=E E E=}{}{Ag s AgCl E Ag Ag E /)(/-+=)ln ln }/{(ln }/{-+'-+-+++cl SP Ag a FRT K F RT Ag Ag E a F RT Ag Ag E θθ =)ln(ln -+'⋅+-cl Ag SP a a FRT K F RT 整理得:⎥⎦⎤⎢⎣⎡-⋅'⋅=-+RT EF a a K cl Ag SP ex p (16-6) 因此,给定电池(I)中左右半电池活度'-Cl a 和+Ag a ,若测得电池(I )的电动势,依上式即可求出AgCl 的溶度积常数。

电动势的测定及应用

电动势的测定及应用

宁波工程学院物理化学实验报告实验名称 电动势的测定及应用一.实验目的1.通过实验加深对可逆电池、可逆电极、盐桥等概念的理解。

2.掌握对消法测定电池电动势的原理及电位差计的使用方法。

3.通过电池Ag | AgNO 3(b 1) || KCl(b 2) | Ag-AgCl |Ag 的电动势求AgCl 的Ksp 。

4.了解标准电池的使用和不同盐桥的使用条件。

二.实验原理1.可逆电池的电动势:在电池中,电极都具有一定的电极电势。

当电池处于平衡态时,两个电极的电极电势之差就等于该可逆电极电势。

规定电池的电动势等于正负电极的电极电势之差,即:E=ψ+-ψ-可逆电池必须具备的条件为:(1)反应可逆。

(2)能量可逆。

(3)电池中所进行的其它过程可逆。

测量可逆电池的电动势不能直接用伏特计来测量,采用的对消法。

2.对消法测定原电池电动势原理:在待测电池上并联一个大小相等,方向相反的外加电势差,这样待测电池中没有电流通过,外加电动势的大小即等于待测电池的电动势。

Ew-工作电源;E N -标准电池;Ex-待测电池;R-调节电阻;Rx-待测电池电动势补偿电阻;R N -标准电池电动势补偿电阻;K-转换电键;G-检流计3.电极:(1)标准氢电极:电极电势的绝对值无法测定,手册上所列的电极电势均为相对电极电势,即以标准氢电极作为标准。

将标准氢电极与待测氢电极与待测电极组成电池,所测电池电动势就是待测电极的电极电势。

(2)参比电极:由于氢电极使用不便,常用另外一些易制备、电极电势稳定的电极作为参比电极。

常用的参比电极有甘汞电极、银-氯化银电极等。

这些电极与标准氢电极比较而得的电极电动势已精确测出。

4.电池:电池(1):(-)Hg(s) | Hg2Cl2(s) | KCl(饱和) || AgNO3(c) | Ag(s) (+)电池(2):(-)Hg(s)|Hg2Cl2(s)|KCl(饱和)||KCl(c)|AgCl(s),Ag(s) (+)三.实验仪器与药品1、仪器:EM-3C数字式电子电位差计;检流计;标准电极;银电极1支;银-氯化银1支;饱和甘汞电极1支;50ml烧杯2个;导线、滤纸若干。

原电池电动势的测定及其应用

原电池电动势的测定及其应用

一、实验目的和要求1. 掌握补偿法测定电池电动势的原理和方法;2. 掌握电位差计、检流计和标准电池的使用方法;3. 学会电极和盐桥的制备方法;4. 掌握通过测量原电池电动势计算热力学函数变化值的原理、方法及其他应用。

二、实验内容和原理1.补偿法测电动势的原理电池电动势不能直接用伏特计来测量,因为电池与伏特计联接后有电流通过,就会在电极上发生电极极化,结果使电极偏离平衡状态。

另外,电池本身有内阻,所以伏特计所量得的仅是不可逆电池的端电压。

测量电池电动势只能在无电流通过电池的情况下进行,因此需用对消法(又叫补偿法)来测定电动势。

对消法的原理是在待测电池上并联一个大小相等、方向相反的外加电势差,这样待测电池中没有电流通过,外加电势差的大小即等于待测电池的电动势。

对消法测电动势常用的仪器为电位差计,其简单原理如图1所示。

电位差计由三个回路组成:工作电流回路、标准回路和测量回路。

图1 补偿法原理线路图(1)工作电流回路工作电流由工作电池E的正极流出,经可变电阻R、滑线电阻返回E的负极,构成一个通路,调节可变电阻R,使流过回路的电流成为某一定值。

这样AB上有一定的电位降低产生,工作电源E可用蓄电池或稳压电源,其输出电压必须大于待测电池的电动势。

(2)标准回路Es为电动势精确已知的标准电池,C是可在AB上移动的接触点,K是双向开关,KC间有一灵敏度很高的检流计G,当K扳向S一方时,AC1GS回路的作用时校准工作回路的以确定AB上的电位降。

如标准电池S的电动势为1.01865伏,则先将C点移动到AB上标记1.01865伏的C1处,迅速调节R直至G中无电流通过。

这时S的电动势与AC1之间的电位降与AC1间的电位降大小相等、方向相反而对消。

(3)测量回路当双向开关K换向Ex的一方时,用AC2GX回路根据校正好的AB上的电位降来测量未知电池的电动势。

在保证校准工作电流不变的情况下,在AB上迅速移动到C2点,使G中无电流通过,这时X的电动势与AC1间的电位的电位降大小相等,方向相反而对消,于是C2点所标记的电位降为X的电动势。

电池电动势的测定及其应用实验报告

电池电动势的测定及其应用实验报告

电池电动势的测定及其应用实验报告
一、实验目的
1、熟悉和掌握自由电动势的测量方法。

2、了解和掌握电池自由电动势的数据处理方法。

3、掌握电池自由电动势的应用。

二、实验原理
电池自由电动势是一种电池在不同温度和电解液种类下所表现出来的
最大可达的电动势。

它在电池的容量、电池的负载电流以及电池的储存寿
命等方面具有非常重要的作用,可以帮助我们对电池的性能进行详细的分析,从而更好地发现问题,提出解决方案,并有效地延长电池的使用寿命。

实验中,利用测量电池自由电动势,使用微电路控制,实现保持电池
在预设的恒电流的情况下,得到电池自由电动势的测量。

三、实验步骤
1、将电池放置在稳定的实验装置上,连接电池并加以热控,将温度
调节在一定的范围内;
2、连接电池的正负极到实验仪器;
3、设置电池负载电流,将实验仪器的表格设置在自由电动势测试模
式下;
4、同一电池比较多次,改变不同的负载电流,观察电池的自由电动
势和耗电量关系;
5、当电池自由电动势达到最大时,记录其电压和实验温度;
6、将测试数据处理,获得电池自由电动势的数据;
7、观察电池的负载电流和自由电动势关系。

原电池电动势的测定和应用

原电池电动势的测定和应用

原电池电动势的测定和应用原电池电动势的测定和应用引言:原电池电动势是指在没有电流通过时,电池两个极之间的电压差。

它是电池内部的化学反应产生的电势差,也是电池提供电能的基础。

准确测定和充分利用原电池电动势,对于电池的设计和应用具有重要意义。

本文将介绍原电池电动势的测定方法和其在实际应用中的一些典型案例。

一、原电池电动势的测定方法1. 电池伏特计法电池伏特计法是最常用的测定原电池电动势的方法。

具体操作步骤如下:(1)将待测电池与标准电池连接成串联电路;(2)用电压表测量串联电路的总电压;(3)通过改变待测电池与标准电池的连接方式(正负极对换),多次测量总电压;(4)通过计算得到待测电池的电动势。

2. 静态电位法静态电位法是一种利用电位差计测量电动势的方法。

具体操作步骤如下:(1)将待测电池的两个极分别连接到两个电位计的电极上;(2)通过调整电位计的电位差,使得两个电位计的读数相等;(3)记录下电位计的电位差,即为待测电池的电动势。

二、原电池电动势的应用1. 电池选型在进行电池选型时,原电池电动势是一个重要的考虑因素。

不同应用场景对电池的电动势要求不同,如需要提供大电流的应用通常需要较高的电动势,而对于低功耗设备,则可以选择电动势较低的电池。

因此,准确测定原电池电动势可以帮助工程师选择适合的电池。

2. 电池的寿命预测电池的寿命与其电动势密切相关。

通过测量电池的电动势变化,可以预测电池寿命的变化趋势。

当电动势降低到一定程度时,就意味着电池即将达到寿命极限,需要进行更换或充电。

3. 电池状态监测电池状态监测是指实时监测电池的电动势变化,以判断电池的工作状态。

通过测量电动势的变化,可以判断电池是否正常工作,是否需要维护或更换。

这对于一些关键设备的运行非常重要,如医疗设备、航天器等。

4. 电池的充放电控制电池的充放电控制是指根据电池的电动势变化来控制充放电过程。

通过测量电动势的变化,可以判断电池的电量情况,从而控制充放电的时机和速度,以保证电池的安全和有效使用。

实验二原电池电动势的测定及应用

实验二原电池电动势的测定及应用
数据记录
在实验过程中,每隔一段时间 记录一次电压表和电流表的读
数,以便后续数据处理。
数据记录与处理
01
02
03
数据整理
将实验过程中记录的电压 表和电流表的读数整理成 表格,以便进行后续分析。
数据处理
根据实验数据,计算原电 池的电动势和内阻等参数, 并分析其变化趋势。
结果分析
根据数据处理结果,分析 不同类型原电池的电动势 和内阻差异,以及影响因 素。
测量仪器
电压表、电流表等用于测量原 电池的电动势和电流。
原电池
不同种类和组成的原电池,以 便进行对比实验。
实验操作
准备实验设备
确保电源、导线、测量仪器和 原电池都已准备好,并检查其
正常工作状态。
连接电路
按照实验要求,使用导线将电 源、原电池和测量仪器正确连 接起来,形成完整的电路。
启动实验
打开电源,观察原电池的工作 状态,并记录电压表和电流表 的读数。
实验结果较为准确,误差在可接受范围内,实验操作和数据处理方法有待进一步优 化。
实验中存在的问题与改进建议
1
实验操作过程中存在一定的人为误差,如电极放 置不准确、溶液搅拌不均匀等。建议加强实别数据存在异常值。建议在 实验过程中增加数据采集的频次,以获取更准确 的数据。
03 原电池电动势测定的应用
原电池电动势与氧化还原反应的关系
总结词
原电池电动势与氧化还原反应密切相关,电动势的大小可以反映氧化还原反应进行的程度和方向。
详细描述
原电池电动势的产生是由于氧化和还原反应分别在两个电极上发生,从而产生电位差。电动势的大小 与氧化还原反应的平衡常数、反应物浓度和温度等因素有关,可以用来判断反应进行的程度和方向。

电池电动势的测定及其应用

电池电动势的测定及其应用

原电池电动势的测定及其应用周韬摘要:本实验用补偿法测定了几组原电池的电动势,计算出原电池的标准电动势,选取一个电池计算了恒压条件下反应过程的摩尔吉布斯自由能和摩尔熵等数据。

关键词:补偿法,电动势,摩尔吉布斯自由能。

前言:在电池电动势的测定实验中,比较多的实验,如施巧芳[1]在“原电池电动势测定实验的改进”中,是测定的硫酸铜、硫酸锌和硝酸亚汞(有毒,吸入或与皮肤接触时有极毒,并有蓄积性危害)原电池的电动势。

所用的实验试剂存在毒性。

本实验采用硝酸银和氯化钾溶液进行实验,几个电池之间的数据存在一定的联系,测定的结果可以进行对比。

宋江闯[2]等人在“高阻抗法测定原电池电动势及其温度系数”中用高阻抗的方法对原电池的电动势进行了测定。

对于原电池电动势的测定,要求电池流过的电流为零,相比于高阻抗要求的高电阻电压表,补偿法对实验仪器的要求并不是十分高。

所以,本实验用补偿法测定原电池的电动势及其相关热力学数据。

1、实验部分1.1原理电池电动势的测量必须在可逆条件下进行,否则就没有热力学价值。

所谓的可逆,就是要求电池反应可逆和在测量电动势时电池几乎没有电流流过。

本实验在测定原电池的电动势时,采用补偿法来测定,即可满足电池几乎没由电流流过的条件。

1.1.1补偿法测量电动势通过补偿法严格控制测量电动势时流过电池的电流为零。

具体方法是用一个方向相反、大小相等的电动势,对抗电池电动势,所以,补偿法又叫对消法。

电路图如图1[3]所示。

它由工作电流回路、标准回路和测量回路组成。

工作电流回路:工作电池E w的政图 1 补偿法测定原电池电动势线路图绩流出工作电流,经过滑动变阻器R p、滑线电阻AB后返回负极。

标准回路:连接电路后,闭合K,将SW合向E s端,用以标定工作电流。

通过调节R p使检流计的电流为零,此时电路中有:E s=U CA=IR CA测量回路:将SW合向E x端(电测电池)。

保持R p不动(工作电路中的电流不变),调节C的位置至C’时检流计的电流为零,此时有:U C′A=IR C′A=E xE x=E sR CA×R C′A=kE s图2为UJ-25型直流电位差计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)凝胶法
称取琼脂1g放入50mL饱和KNO3溶液中,浸 泡片刻,再缓慢加热至沸腾,待琼脂全部溶解后 稍冷,将洗净之盐桥管插入琼脂溶液中,从管的 上口将溶液吸满(管中不能有气泡),保持此充满 状态冷却到室温,即凝固成冻胶固定在管内。取 出擦净备用。
Ⅳ、实验步骤
3.电动势的测定
(1)按有关电位差计附录,接好测量电路。 (2)据有关标准电池的附录中提供的公式, 计算室温下的标准电池的电动势。 (3)据有关电位差计附录提供的方法,标定 电位差计的工作电流。 (4)分别测定下列六个原电池的电动势。
Ⅱ、实验原理
5.测定溶液的pH值
利用各种氢离子指示电极与参比电极组成电池, 即可从电池电动势算出溶液的pH值,常用指示电极 有:氢电极、醌氢醌电极和玻璃电极。今讨论醌氢 醌(Q·QH2)电极。Q·QH2为醌(Q)与氢醌(QH2)等摩尔 混合物,在水溶液中部分分解。
它在水中溶解度很小。 将待测pH溶液用Q.QH2饱和后, 再插入一只光亮Pt电极就构成 了Q·QH2电极,可用它构成如 下电池:
Ⅱ、实验原理
3.求铜电极(或银电极)的标准电极电势 对铜电极可设计电池如下:
Hg(l)-Hg2Cl2(s)|KCl(饱和)‖CuSO4(0.1000mol·kg-1)|Cu(s)
(-)甘汞电极的反应为: 2Hg+2Cl-→Hg2Cl2+2e (+)铜电极的反应为: Cu2+ + 2e → Cu 电池反应: 2Hg+ Cu2+ + 2Cl-→Hg2Cl2+ Cu
Ⅳ、实验步骤
1.电极的制备
(1)银电极的制备 将欲镀之银电极两只用细砂纸轻轻打磨至露出
新鲜的金属光泽,再用蒸馏水洗净。将欲用的两只 Pt电极浸入稀硝酸溶液片刻,取出用蒸馏水洗净。
将洗净的电极分别插入盛有镀银 液(镀液组成为100mL水中加1.5g 硝酸银和1.5g氰化钠)的小瓶中, 按右图接好线路,并将两个小瓶 串联,控制电流为0.3mA,镀1h, 得白色紧密的镀银电极两只。
Ⅲ、仪器药品
2.药品
HCl(0.1000mol·kg-1)、AgNO3(0.1000mol·kg-1)、 CuSO4(0.1000mol·kg-1)、CuSO4(0.0100mol·kg-1)、 ZnSO4(0.100mol·kg-1)、镀银溶液、镀铜溶液、 未知pH溶液、HCl(1mol·dm-3)、 稀HNO3溶液(1∶3)、稀H2SO4溶液、 Hg2(NO3)2饱和溶液、KNO3饱和溶液、 KCl饱和溶液、琼脂(C.P.)、醌氢醌(固体)。
Ⅱ、实验原理
2.求电池反应的ΔrGm、ΔrSm、ΔrHm、ΔrGmº
分别测定“1”中电池(Ⅳ实验步骤中3电动势测 定)在各个温度下的电动势,作E—T图,从曲线斜 率可求得任一温度下的(〆E/〆T)p ,利用公式(1), (2),(3),(4),即可求得该电池反应的ΔrGm、ΔrSm、 ΔrHm、ΔrGmº。
Ⅱ、实验原理
可逆电池应满足如下条件:
(1)电池反应可逆,亦即电池电极反应可逆。 (2)电池中不允许存在任何不可逆的液接界。
(3)电池必须在可逆的情况下工作,即充放电 过程必须在平衡态下进行,亦即允许通过电池的 电流为无限小。
Ⅱ、实验原理
因此在制备可逆电池、测定可逆电池的电动势 时应符合上述条件,在精确度不高的测量中,常用 正负离子迁移数比较接近的盐类构成“盐桥”来消 除液接电位。用电位差计测量电动势也可满足通过 电池电流为无限小的条件。
Ⅶ、数据处理
1.计算时遇到电极电位公式(式中t为℃)如下:
φ(饱和甘汞)=0.24240-7.6×10-4(t-25)
φ°Q.QH2=0.6994-7.4×10-4(t-25) φ°AgCl=0.2224-6.45×10-4(t-25)
2.计算时有关电解质的离子平均活度系数γ±(25℃)如 下:
0.1000mol·kg-1AgNO3
本型可用于厂矿、企业、科研、学校等 单位作精密测量直流电动势之用,也可用来 间接测量电流、电阻、pH值、压力等电量、 非电量,为理想的测量仪器。
UJ34A型直流电位差计的使用
二、直流电位差计工作原理 电位差计是根据补偿(或称对消法)测量原
理设计的一种平衡式电压测量仪器。其基本原理 如图所示。
图中En为标准电池, 它的电动势已经准确测定。 Ex是被测电池。G为灵敏 度很高的检流计,用来做 示零指示。Rn为标准电池 的补偿电阻,其电阻值大 小是根据工作电流来选择 的。
(-)银-氯化银电极反应: Ag + Cl-→AgCl+e
(+)银电极反应:
Ag++e→Ag
电池反应为: Ag++Cl-→AgCl
Ⅱ、实验原理
又 式(5)中n=1,在纯水中AgCl溶解度极小,所 以活度积就等于溶度积。所以:
(6)代入(4)化简之有:
已知aAg+、aCl-,测得电池动势E,即可求KSP。
将铜电极在1∶3的稀硝酸中浸泡片刻,取出洗 净,作为负极,以另一铜板作正极在镀铜液中电镀 (镀铜液组成为:每升中含125gCuSO4·5H2O, 25gH2SO4,50mL乙醇)。线路同上图。控制电流为 20mA,电镀20min得表面呈红色的Cu电极,洗净后 放入0.1000mol·kg-1CuSO4中备用。
可逆电池的电动势可看作正、负两个电极的 电势之差。设正极电势为φ+,负极电势为φ-,则: E=φ+-φ-
Ⅱ、实验原理
电极电势的绝对值无法测定,手册上所列的电 极电势均为相对电极电势,即以标准氢电极作为标 准(标准氢电极是氢气压力为100kPa,溶液中aH+为1), 其电极电势规定为零。将标准氢电极与待测电极组 成一电池,所测电池电动势就是待测电极的电极电 势。
Ⅳ、实验步骤
(4)锌电极的制备
将锌电极在稀硫酸溶液中浸泡片刻,取出 洗净,浸入汞或饱和硝酸亚汞溶液中约10s,表 面上即生成一层光亮的汞齐,用水冲洗晾干后, 插入0.1000mol·kg-1ZnSO4中待用。
Ⅳ、实验步骤
2.盐桥制备
(1)简易法 用滴管将饱和KNO3(或NH4NO3)溶液注入
U型管中,加满后用捻紧的滤纸塞紧U型管两 端即可,管中不能存有气泡。
所以 已知aAg+及Φ(饱和甘汞),测得电动势E,即可求得Φº (Ag+/Ag)。
Ⅱ、实验原理
4.测定浓差电池的电动势
设计电池如下:
Cu(s)|CuSO4(m1)‖CuSO4(m2)|Cu(s)
(-)甘汞电极的反应为:Cu→Cu2+(m1)+2e (+)银电极的反应为:Cu2+(m2)+2e → Cu 电池反应: Cu2+(m2)→ Cu2+(m1)
Ⅳ、实验步骤
①Zn(s)|ZnSO4(0.1000mol·kg-1)‖CuSO4(0.1000mol·kg-1)|Cu(s) ②Hg(l)-Hg2Cl2(s)|饱和KCl溶液‖CuSO4(0.1000mol·kg-1)|Cu(s) ③Hg(l)-Hg2Cl2(s)|饱和KCl溶液‖AgNO3(0.1000mol·kg-1)|Ag(s) ④浓差电池Cu(s)|CuSO4(0.0100mol·kg-1)‖CuSO4(0.1000mol·kg-1)|Cu(s) ⑤Hg(l)-Hg2Cl2(s)|饱和KCl溶液‖饱和Q.QH2的pH未知液|Pt(s) ⑥Ag(s)-AgCl(s)|HCl(0.1000mol·kg-1)‖AgNO3(0.1000mol·kg-1)|Ag(s)
Ⅶ、数据处理
3.由测得的六个原电池的电动势进行以下计算: (1)由原电池①和④获得其电动势值。 (2)由原电池②和③计算铜电极和银电极的标准 电极电势。 (3)由原电池⑤计算未知溶液的pH。(4)由原电池⑥计算AgCl的KSP。 (5)将所得第六个电池的电动势与热力学温度T 作图,并由图上的曲线求取20℃、25℃、30℃三 个温度下的E和(〆E/〆T)p的值,再分别计算对 应的ΔrGm、ΔrSm、ΔrHm和ΔrGm°
实验十二
原电池电动势 的测定及应用
(电化学)
Ⅰ、实验目的
1.掌握可逆电池电动势的测量原理和电位差 计的操作技术。
2.学会几种电极和盐桥的制备方法。 3.通过原电池电动势的测定求算有关热力学函数。
Ⅱ、实验原理
凡是能使化学能转变为电能的装置都称之为电 池(或原电池)。对定温定压下的可逆电池而言:
式中,F为法拉弟(Farady)常数; n为电极反应式中电子的计量系数; E为电池的电动势。
由于Q·QH2易在碱性液中氧化,待测液之pH值不超 过8.5。
1.仪器
Ⅲ、仪器药品
UJ34A直流电位差计1台(内附检流计、工作 电源)、标准电池1只、银电极2只、铜电极2 只、铂电极2只、饱和甘汞电极1只、锌电极1 只、恒温夹套烧杯2只、盐桥数只、超级恒温 槽1台、精密稳压电源(或恒电位仪)1台、 毫安表1只、滑线电阻1只、导线等。
UJ34A型直流电位差计的使用
R是被测电池的补偿电阻,它由已知电阻值 的各进位盘组成,通过它可以调节不同的电阻值 使其电位降与Ex相对消。r是调节工作电流的变阻 器,E为工作电源,K为换向开关。
Ⅱ、实验原理
Hg(l)-Hg2Cl2(s)|饱和KCl溶液‖由Q.QH2饱和的待测pH溶液(H+)|Pt(s)
Q.QH2电极反应为:Q+2H++2e→QH2 因为在稀溶液中aH+=cH+, 所以:
Ⅱ、实验原理
可见,Q·QH2电极的作用相当于一个氢电极, 电池的电动势为:
已知φ°Q·QH2及φ(饱和甘汞),测得电动势E,即可求pH。
Ⅳ、实验步骤
原电池的构成如右图所示:
测量时应在夹套中通入25℃恒温水。为了保证 所测电池电动势的正确,必须严格遵守电位差计的 正确使用方法。当数值稳定在±0.1mV之内时即可 认为电池已达到平衡。
相关文档
最新文档