节点导纳矩阵 ppt课件

合集下载

节点导纳矩阵

节点导纳矩阵

z10
I10
3 V3 1 I3 I13
z13
因此a的导纳矩阵为:
1
z12
1 z13
1 z10
1 z12
1 z13
Y
1 z12
1 z12
0
1
z13
1
0
z13
1
2
3
z12
z23
z20
若将节点1与节点2互换,根据图e,按照上述原则可得导纳矩阵为
1
z12
Y
1 z12
0
1 z12
2
I2 I12
1
I1
I13 0
3 I3
z12
z13
z10
I10


I 1 I 21 Y12

I

2 I
21
1 z12
Y22

I 3 0 Y32
同理得第三列元素为:
2
I2


I 1 I 31 Y13
I12 0

1
z12
I 2 0 z12 Y23


I 3 I 31 Y33
1
I1
Y11
1 z12
1 z13
1 z10
y12
y10
y13
节点2的自导纳应为:
Y22
1 z12
y12
(4) 导纳矩阵的非对角元素 等于节点
纳并取负号:
1
Yij
zij
yij
和节点
间的支路导
按照上述原则无论电力系统如何复杂都可以根据输电线路的参数和接线拓 扑,直接求出导纳矩阵。
一下包括变压器、移相器时,导纳矩阵的的形成方法。

电力系统分析第四章

电力系统分析第四章

三 节点导纳矩阵的修改
• (1)从网络的原有节点i引出一条导纳为yik • (2)在网络的原有节点i,j之间增加一条 • (3)在网络的原有节点i,j之间切除一条 的支路,同时增加一个节点k。 导纳为yik的支路。 ij • 由于节点数增加1,导纳矩阵将增加一行一 这种情况可以当做是在i,j节点间增加一条 • 由于只增加支路不增加节点,故导纳矩阵 列。新增的对角线元素Ykk=yik。新增的非对 导纳为-yij的支路来处理,因此,导纳矩阵 的阶次不变。因而只要对与节点i,j有关的 角线元素中,只有Yik=Yki=-yik,其余的元素 中有关元素的修正增量为 元素分别增添以下的修改增量即可 • 都为0.矩阵原有部分,只有节点i的自导纳 ΔYii=ΔYjj=yij,ΔYij=ΔYji=-yij =-yij ΔY =ΔY ji=yij 应增加ΔYii=yik。 • 其余的元素都不必修改。 其他的网络变更情况,可以仿照上述方法 经行处理,或者直接根据导纳矩阵元素的 物理意义,导出相应的修改公式。
ik
Vk
V j 0, j k
二、节点导纳矩阵元素的物理意义
• 节点导纳矩阵的主要特点是:
• (1)导纳矩阵的元素很容易根据网络连接图和支路参数 直观地求得,形成节点导纳矩阵的程序比较简单。 • (2)导纳矩阵是稀疏矩阵。它的对角线元素一般不为0, 但在非对角线元素中则存在不少零元素。在电力系统的接 线图中,一般每个节点同平均不超过3~4个其他节点有直 接的支路连接。因此在导纳矩阵的非对角线元素中每行平 均仅有3~4个非零元素,其余的都是零元素。如果在程序 设计中设法排除零元素的储存和运算,就可以大大地节省 储存单元和提高计算速度。
• 对角元素Yii称为节点i的自导纳,其值等于接于节 点i的所有导纳之和。非对角元素Yij称为节点i、j 间的互导纳,它等于直接连接于节点i、j间的支路 j间的支 导纳的负值。 路导纳的负值。

节点导纳矩阵

节点导纳矩阵
KCL KVL 独立方程个数 支路电流、结点电压法
2019/12/5
电气工程基础-系统篇
3
3.3.1 电力网络方程
对任意节点i,根据KCL
U i
U i
U j
U j
Ii n Iij n yij Ui U j
yij yij
j0
j0
ji
ji
Iij
1
I1
y10
2
y13 y12 y23
I2
3
y30
y34
4
y40
I4
简化等值网络
2019/12/5
电气工程基础-系统篇
11
2019/12/5
电气工程基础-系统篇
I YU
12
3.3.2 功率方程和节点分类 I Y U
以极坐标形式表示节点电压、直角坐标形式表示导纳
Ui Uie ji Ui cosi jsini
13
节点分类
节点 已知变 待求变
类型 量

适用节点
备注
PQ P和Q
PV P和U
平衡节 U和δ 点?
U 和δ Q和δ P和Q
按给定有功、无功功率发电的 P Q 节 点 占
发电厂节点和没有其他电源的 系 统 节 点
变电站接点
总数的大
部分, PV
有一定无功功率储备的发电厂 节 点 占 少
节点和一定无功功率电源的变 部 分 ( 某
G
1)若以同获时2 得给同定时末满端3 足负两荷4个功限率制始条端件电的压YT1结,果必(须Y2l 前反推复回推Y2l 代算算(Y法T迭2 )代
z 1 12 2
z23
z 3
34 4

电力系统网络矩阵

电力系统网络矩阵

i
Yii
+
N
YNi
-
节点导纳矩阵表示短路参数。
在网络中节点i 接单位电压源,其余 节点都短路接地,此时流入节点i 的
电流数值上是Yii,流入节点j的电流
数值上是Yij。
注意:只有和节点i有支路相连的节点才有 电流,因此导纳矩阵是稀疏矩阵。节点导 纳矩阵的元素只包含网络的局部信息。
2011-1-1
高等电力网络分析
C2Z(0)C1
yaa1
zaa
za 0 z01z0a
2011-1-1
高等电力网络分析
14
3、追加树支支路
增加新节点q
部i 分 网
络j
a p
q 前 A0
A
A0 0T
ep 1q
后 y0
Y
A0 0T
ep y0
1
ya
0
y0a A0T
yaa
eTp
0 1
整理后可得
Z
Z(0) C2Z(0)
(Yn YpYpp1YpT )Vn In YpYpp1Ip
Y Yn YpYpp1YpT
i p
2011-1-1
j
i
k
j
消去节点p,只需对Y阵
中和p有支路相连的节
点之间的元素进行修正,
k
其他节点之间的元素不
需要修正。
高等电力网络分析
8
4、节点电压给定的情况
Yn YsT
Ys Yss
Vn Vs
部i

追加前:

a
络j
Y(0) A0z01A0T
追加后: Y A0
辅助矩阵求逆定理
M a
y0

节点导纳矩阵法

节点导纳矩阵法

n
n
节点电压u j 可为任何值 → 各项系数为零
∑y
k =1
n
k1
= ∑ yk 2 = L = ∑ ykn = 0
k =1 k =1
10
n
n
z 性质二:行元素之和为零。
假设各节点电位都相等且不为零(u1 =u2 = L =un ≠ 0)。 由于节点间无电位差,所以各电流都为零。 ik = −∑ u j ykj = 0
18
微波半导体器件
根据基尔霍夫电流定律: I1 + jωC2 (V2 − V1 ) + ( G1 + jωC1 )(V3 − V1 ) = 0 I 2 + jωC2 (V1 − V2 ) + ( G2 + jωC3 )(V3 − V2 ) − g m (V1 − V3 ) = 0 I 3 + ( G1 + jωC1 )(V1 − V3 ) + ( G2 + jωC3 )(V2 − V3 ) + g m (V1 − V3 ) = 0
20
利用S参数求待定导纳矩阵 实际电路中尚有一些微波元器件,它们 的导纳矩阵或等效电路中 Ykj 不可能精确的 从理论分析中导出。对于这类元器件,一般 采用测量方法测出其散射矩阵参数,然后将 它变换成导纳矩阵参数,再求出待定导纳矩 阵。
21
利用S参数求待定导纳矩阵
[S ] → [ y] :
% ] = ([ I ] − [ S ]) ([ I ] + [ S ]) [y ⎤ % ⎡ ⎤ [ y] = ⎡ ⎣ y0 ⎦ [ y ] ⎣ y0 ⎦
7
节点电流方程(基尔霍夫电流定律)
写成向量形式: I = YU Y : 待定导纳矩阵 I : 外电流向量 U : 节点电压向量 其中 − ykk = ∑ ykj

节点导纳矩阵法

节点导纳矩阵法

Y1(23)
Y1(13)
⎥ ⎦
所以:
[ ]y = ⎡⎢⎢YY13((1111))
⎢ ⎢⎣ 0
Y1(31) Y3(31) + Y1(12) + Y2(23)
Y2(12) + Y1(23)
21
利用S参数求待定导纳矩阵
[S] → [ y]:
[ y%] = ([I ] −[S])([I ] + [S])−1
[ y] = ⎡⎣ y0 ⎤⎦[ y%] ⎡⎣ y0 ⎤⎦
其中[ y%]为归一化导纳矩阵,[I ]为单位矩阵,
⎡⎣

y0
⎤⎦
=
⎢ ⎢
y01
O
0
⎤ ⎥

⎢ ⎢⎣
0
y0n
⎥ ⎥⎦
y01, y02 ,L, y0n为n端口元件各端外接传输线特性导纳。
3.2 节点导纳矩阵法(待定导纳矩阵法) Admittance Matrix Method
1
一般电路
端点:元件与外部连线的衔接点; 端口:电路网络的输入与输出口, 一个端口由两个端点构成; 节点:元件与元件的端点互相连接 之处; 支路:两个节点之间的通路; 回路:由一个节点出发,再回到该 节点的一组支路。
k =1
k =1
k =1
10
z 性质二:行Βιβλιοθήκη 素之和为零。假设各节点电位都相等且不为零(u1=u2 =L=un ≠ 0)。 由于节点间无电位差,所以各电流都为零。
n
∑ ik = − u j ykj = 0 j =1
k = 1, 2,L, n
又由于u1=u2 =L=un ≠ 0,所以
n
n
n
∑ ∑ ∑ y1 j = y2 j = L = ynj = 0

节点导纳矩阵

节点导纳矩阵

节点导纳矩阵
节点导纳矩阵是一种重要的数学模型,它用来描述一个网络由端点和连接组成,其中端点有单个变量,它们之间的关系由算法控制。

它可以用来模拟复杂的系统,如电路、社会网络和计算机网络等。

它由一组可以在任何一个给定的节点上改变的变量组成,这些变量通常是电流或电压。

节点导纳矩阵可以用来模拟电路的行为,因为它能够表达电路中不同组件之间的关系。

可以将这种关系用一个导纳矩阵表示,这个矩阵描述了电路中每一节点之间的变化。

例如,一个两端口电路可以用一个2*2的导纳矩阵表示,它表示了每一端口之间的电流之间的关系。

此外,节点导纳矩阵还可以用来模拟社会网络中的行为。

这样的社会网络包括人与人之间的关系,也可以用导纳矩阵来模拟。

这样的社会网络可以用一个N*N的导纳矩阵来表示,它描述了每一个参与者之间的关系。

这样的社会网络可以用来模拟社会系统,如政治、社会和经济系统。

另一方面,节点导纳矩阵还可以用来模拟计算机网络。

计算机网络是由一系列节点和连接组成的复杂系统,它可以用一个N*N的导纳矩阵表示,用来描述每一节点之间的关系。

这样的网络可以用来模拟计算机系统,如互联网和局域网系统。

在总结,节点导纳矩阵是一种非常有用的数学模型,它可以用来模拟复杂的系统,如电路、社会网络和计算机网络等,用来描述
不同组件之间的关系。

它可以用一个N*N的导纳矩阵来表示,这个矩阵描述了每一个节点之间的变化,从而更好地模拟复杂的系统。

节点导纳矩阵在工程领域有着重要的作用,在未来的研究中有望取得更多有用的结果。

节点导纳矩阵

节点导纳矩阵

I1

3
U3

I2

电气工程基础-系统篇
6
节点电流方程的矩阵形式
用节点导纳矩阵表示的节点电压方程
Y U Y U Y U Y U I 1 11 1 12 2 1i i 1n n Y U Y U Y U Y U I 2 21 1 22 2 2i i 2n n Y U Y U Y U Y U I n n1 1 n2 2 ni i nn n
3
2
I1
y23
I2
y30
y34
4
y40
I4
简化等值网络
2018/12/27
电气工程基础-系统篇
12
I Y U
2018/12/27
电气工程基础-系统篇
13
3.3.2 功率方程和节点分类
U e ji U cos jsin U i i i i i
节点注入功率
I Y U
以极坐标形式表示节点电压、直角坐标形式表示导纳
Yij Gij jBij
P i Ui
U G
j j 1 n j j 1
n
ij
cos δij Bij sin δij
ij
i 1,2,,n i 1,2,,n
14
Qi U i
2018/12/27
U G
k
I i
l
2 U2

例如
1 U1

Y Y Y U I 1 11 12 13 1 U I Y Y Y 2 21 22 23 2 0 Y31 Y32 Y33 U 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2节点导纳矩阵的形成与修改
主要分为三个部分:导纳矩阵的形成、特殊元件的处理与导纳矩阵的修 改。 导纳矩阵的形成可以分为以下几点: (1) 导纳矩阵的阶数等于电力网络的节点数; (2) 导纳矩阵各行的非对角元素中非零元素的个数等于对应节点所连的不
节点导纳矩阵
ppt课件
1
目录
一、节点导纳的基本概念 二、节点导纳矩阵的形成与修改
ppt课件
2
一、节点导纳矩阵的的基本概念
V4
y1
4
i1
2 y4
y3
i3
i4
i5
3 y5
1 V1
i6
y6
y2 5
i2
ppt课件
3






Y11 V 1 Y12 V 2 Y13 V 3 Y14 V 4 Y15 V 5 I1







Y21 V 1 Y22 V 2 Y23 V 3 Y24 V 4 Y25 V 5 I2





Y31 V 1 Y32 V 2 Y33 V 3 Y34 V 4 Y35 V 5


I3







Y41 V 1 Y42 V 2 Y43 V 3 Y44 V 4 Y45 V 5
如图c所示在这种情况下:
2
I2 I12
1
I1
I13 0
3 I3
z12
z13
z10
I10
ppt课件
10


I 1 I 21 Y12

I

2 I
21

1 z12
Y22

I 3 0 Y32
同理得第三列元素为:
2
I2


I 1 I 31 Y13
I12 0

1
z12
I 2 0 z12 Y23






I4


Y51 V 1 Y52 V 2 Y53 V 3 Y54 V 4 Y55 V 5

I5

其中:
Y11 y4 y5 y6
Y22 y1 y3 y4
Y33 y2 y3 y5
Y44 y1
Y55 y2
ppt课件
4
这些是各节点的自导纳;


V i 1 V j 0 ( j 1, 2, , n, j i)
在该情况下可得

I1
Y1i



Ii Yii




In

Y1n

ppt课件
7
很明显,导纳矩阵中第 i 列的对角元素 Yii 在数值上等于节点 i 加单位电压, 其他节点都接地时,节点 i向电路 网络注入的电流。导纳矩阵中第 i 列的 对角元素Yij 在数值上等于节点 i 加单位电压,其他节点都接地时,节点 j
节点1加单位电压,将节点2、3接地,如图b所示,不难看出;
2 I2
1
V1=1 I1
I12
I13
z12
z13
z10
I10
3 I3
ppt课件
9

I
1

I

12 I

13 I
10
1 z12

1 z13

1 z10
Y11


1
I 2 I 12 z12 Y21
同样第二列元素I, 3应 在 I节13点 2加z11单3 位Y电31 压,节点1、3接地,
z20
ppt课件
12
若将节点1与节点2互换,根据图e,按照上述原则可得导纳矩阵为
1

z12
Y



1 z12

0

1 z12
111 z12 z23 z20
1 z23
0

1 z23

1
z23
通过比较可以发现,导纳矩阵第一行与第二行交换,第一列与第二 列交换即可以得到上式的导纳矩阵。可得节点编号的顺序是任意的。
为各节点
通过以上的例子,节点方程的阶数等于网络的节点数n,展开一般 形式为:
ppt课件
5




I1 Y11 V 1 Y1i V i Y1n V n





I2 Y21 V 1 Y2i V i Y2n V n





Y12 Y13 Y23 Y24 Y25
Y21 y4 Y31 y5 Y32 y3 Y42 y1 Y52 y2
这些是各节点的互导纳;其余节点互导纳为0;
上注式入反的映电了流各,节除点I1 电I5 外压其与他注都入为电0流的关系,I1
~

I5


I 3 I 31 Y33
1
I1
z10
I10
3 V3 1 I3 I13
z13
ppt课件
11
因此a的导纳矩阵为:
1

z12

1 z13

1 z10
1 z12

1 z13 来自Y
1 z12
1 z12
0


1
z13
1
0

z13
1
2
3
z12
z23
与相应节点的出线数相同,,通常出线数为2-4条,所以导纳矩阵每行
的非对角元素中非零的元素为2—4个非零元素,其余的都为0,导纳
矩阵中的0元素特别多,而且电力网ppt络课件越庞大,该现象越严重。
14
导纳矩阵的对称性和稀疏性对于计算机解算电力系统问题有很大的影 响,如果能充分利用该特点,会大大提高计算机的速度并节约内存。
向电路 网络注入的电流。 通过a图简单说明导纳矩阵各元素的具体意义,这个电力网络有3各节点。因 此导纳矩阵为三阶矩阵
2
1
3
z12
z13
z10
a
ppt课件
8
Y11 Y12 Y13
Y

Y21
Y22
Y23

Y31 Y32 Y33
首先讨论第一列元素 Y11 Y12 Y13 ,根据上面的论述,这种情况应在
ppt课件
13
通过上面的讨论导纳矩阵有以下特点: (1) 当不含移相器时,电力网络的导纳矩阵为对称矩阵。
即:
Y12

Y21


1 z12
Y13

Y31


1 z13
Y23 Y32 0
Yij Yji
(2)导纳矩阵为稀疏矩阵,通过上面讨论当电力网络中两个不相邻的节
点,它们的互导纳为0,导纳矩阵每行非对角元素中非零元素的个数

In Yn1 V 1 Yni V i Ynn V n
节点导纳矩阵为:
Y11 Y12 Y13 Y Yi1 Yi2 Yi3 Yn1 Yn2 Yn3
Y1n

Yin


Ynn
ppt课件
6
它反映了电力网络的参数及接线情况,因此导纳矩阵可以看成是对电力 网络电气特性的一种数学抽象。 如果在一节点i 加以单位电压,把其余节点全部接地即令
相关文档
最新文档