小学奥数智巧趣题专题--一笔画问题(六年级)竞赛测试.doc
小学奥数 奇妙的一笔画 精选练习例题 含答案解析(附知识点拨及考点)

所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法.什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点. 一笔画问题:(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点; (3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点,以另一个奇点为终点; (4)奇点个数超过两个的图形,一定不能一笔画. 多笔画问题:我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n 个奇点(n 为自然数),那么这个图一定可以用n 笔画成.模块一、判断奇偶点【例 1】 我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点.下图中,哪些点是偶点?哪些点是奇点?J O I H G FED CBA【考点】一笔画问题 【难度】2星 【题型】解答【解析】 奇点: D H J O 偶点:A B C E F G I 【答案】奇点: D H J O 偶点:A B C E F G I【例 2】 同学们野营时建了9个营地,连接营地之间的道路如图所示,贝贝要给每个营地插上一面旗帜,要求相邻营地的旗帜色彩不同,则贝贝最少需要 种颜色的旗子,如果贝贝从某营地出发,不走重复路线就 (填“能”或“不能”)完成任务.【考点】一笔画问题 【难度】2星 【题型】填空例题精讲知识点拨4-1-5.奇妙的一笔画【关键词】华杯赛,六年级,初赛,第10题【解析】最少需要3种颜色的旗子。
因为中间的三点连成一个三角形,要使这三点所代表营地两粮相邻,要使相邻营地没有相同颜色的旗子,必须各插一种与其它两点不同颜色的旗子。
小学奥数教程:奇妙的一笔画_全国通用(含答案)

所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法.什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点. 一笔画问题:(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点; (3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点,以另一个奇点为终点; (4)奇点个数超过两个的图形,一定不能一笔画. 多笔画问题:我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n 个奇点(n 为自然数),那么这个图一定可以用n 笔画成.模块一、判断奇偶点【例 1】 我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点.下图中,哪些点是偶点?哪些点是奇点?J O I H G FED CBA【考点】一笔画问题 【难度】2星 【题型】解答 【解析】 奇点: D H J O 偶点:A B C E F G I 【答案】奇点: D H J O 偶点:A B C E F G I【例 2】 同学们野营时建了9个营地,连接营地之间的道路如图所示,贝贝要给每个营地插上一面旗帜,要求相邻营地的旗帜色彩不同,则贝贝最少需要 种颜色的旗子,如果贝贝从某营地出发,不走重复路线就 (填“能”或“不能”)完成任务.【考点】一笔画问题 【难度】2星 【题型】填空 【关键词】华杯赛,六年级,初赛,第10题 【解析】 最少需要3种颜色的旗子。
因为中间的三点连成一个三角形,要使这三点所代表营地两粮相邻,要使相邻营地没有相同颜色的旗子,必须各插一种与其它两点不同颜色的旗子。
小学奥数奇妙的一笔画题库教师版

所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法.什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点.一笔画问题:(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点; (3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点,以另一个奇点为终点; (4)奇点个数超过两个的图形,一定不能一笔画.多笔画问题:我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n 个奇点(n 为自然数),那么这个图一定可以用n 笔画成.【例 1】 我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点.下图中,哪些点是偶点?哪些点是奇点?【解析】 奇点:J D H F 偶点:A E B C G I【例 2】 判断下列图a 、图b 、图c 能否一笔画.NML KF DECBA 图bODCBA图cGFEDCBA【解析】 图a 能,因为有2个奇点,图b 不能,因为图形不是连通的, 图c 能,因为因为图中全是奇点【例 3】 下面图形能不能一笔画成?若果能,应该怎样画?例题精讲奇妙的一笔画【解析】图1能因为图中全是偶点,图2能因为图中全是偶点,图3不能因为有4个奇点.【例 4】下面的图形,哪些能一笔画出?哪些不能一笔画出?【解析】第1个能,2、3不能【例 5】下图中不能一笔画成,请你在下图中添加最少的线段,将其改成一笔画的图形,并画出路线图.【解析】不能一笔画出,因为图中有E H G F四个奇点,连结EH就可以使图形一笔画出.【例 6】下图中的线段表示小路,请你仔细观察,认真思考,能够不重复的爬遍小路的是甲蚂蚁还是乙蚂蚁?该怎样爬?【解析】要想不重复爬出,需要图形能一笔画出,由于图中有两个奇点,所以应该从奇点出发才能一笔画出图形,所以甲蚂蚁能够.【例 7】能否用剪刀从左下图中一次连续剪下三个正方形和两个三角形?【解析】可以.【例 8】下图是儿童乐园的道路平面图,要使游客走遍每条路并且不重复,那么出、入口应设在哪里?【解析】 要想不重复,需要路线能一笔画出,由于图中有两个奇点,所以入口和出口应该分别放在两个奇点出,即F 和I 点.【例 9】 邮递员叔叔向11个地点送信一次信,不走重复路,怎样走最合适?【解析】 不走重复路,一笔能画出路线图,图中有2个奇点,应该从奇点处出发,下面有一种参考路线:4-1-2-5-8-9-6-10-11-7-4-3【例 10】 观察下面的图,看各至少用几笔画成?【解析】 图(1)有8个奇点,所以要4笔画出,图(2)有12个奇点,所以要一笔画出, 图(3)能一笔画出.【例 11】 判断下列图形能否一笔画.若能,请给出一种画法;若不能,请加一条线或去一条线,将其改成可一笔画的图形.IHG FED CBA 图aH G I KLJ F EDCBA DC HG EFBA图c【解析】 图(1)不能一笔画出,因为图中有4个奇点,连结BD ,或者去掉BF 都可以使图形能一笔画出.图(2)不能一笔画出,因为图中有4个奇点,去掉KL ,或者BK 都可以使图形能一笔画出. 图(3)不能一笔画出,因为图中有4个奇点,去掉AB 可以使图形能一笔画出.一个K (K >1)笔画最少要添加几条连线才能变成一笔画呢?我们知道K 笔画有2K 个奇点,如果在任意两个奇点之间添加一条连线,那么这两个奇点同时变成了偶点.如左下图中的B ,C 两个奇点在右下图中都变成了偶点.所以只要在K 笔画的2K 个奇点间添加(K -1)笔就可以使奇点数目减少为2个,从而变成一笔画.【例 12】 18世纪的哥尼斯堡城是一座美丽的城市,在这座城市中有一条布勒格尔河横贯城区,这条河有两条支流在城市中心汇合,汇合处有一座小岛A 和一座半岛D ,人们在这里建了一座公园,公园中有七座桥把河两岸和两个小岛连接起来(如图a ).如果游人要一次走过这七座桥,而且对每座桥只许走一次,问如何走才能成功?【解析】欧拉解决这个问题的方法非常巧妙.他认为:人们关心的只是一次不重复地走遍这七座桥,而并不关心桥的长短和岛的大小,因此,岛和岸都可以看作一个点,而桥则可以看成是连接这些点的一条线.这样,一个实际问题就转化为一个几何图形(如下图)能否一笔画出的问题了.而图B中有4个奇点显然不能一笔画出.【巩固】如下图所示,两条河流的交汇处有两个岛,有七座桥连接这两个岛及河岸.问:一个散步者能否一次不重复地走遍这七座桥?【解析】能【例 13】右图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一个进口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?【解析】将图形中的6个区域看成6个点,每个门看成连结他们的线段,显然6个点都是偶点,所以有人能一次不重复的走过所有的门.【巩固】右图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由.如果能,应从哪开始走?ECDBA【解析】不能【例 14】一条小虫沿长6分米,宽4分米,高5分米的长方体的棱爬行.如果它只能进不能退,并且同一条棱不能爬两次,那么它最多能爬多少分米?【解析】8个定点都是奇点,所以至少需要4笔.多画长和高能保证总路程最长,为A-B-G-H-A-D-C-F-E-D总长为6×4+5×4 +4×1=48分米.【巩固】一只木箱的长、宽、高分别为5,4,3厘米(见右图),有一只甲虫从A点出发,沿棱爬行,每条棱不允许重复,则甲虫回到A点时,最多能爬行多少厘米?【解析】最多34厘米【例 15】如图是某餐厅的平面图,共有五个小厅,相邻两厅之间有门相通,并且设有入口.请问你能否从入口进入一次不重复地穿过所有的门.如果可以,请指明穿行路线,如果不能,应关闭哪个门就可以办到?【解析】可以将图中的五个小厅以及厅外的部分都抽象成点,为方便解题,给它们分别编号.这时,连通厅与厅之间的门就相当于各点之间的连线.于是题目中餐厅的平面图就抽象成为一个连通的图形,求穿形路线的问题就转化成一笔画的问题.在抽象出的图形中,我们可以找到四个奇点,即①、④、③和厅外,所以图形不能一笔画出也就是说,从入口进入不可能一次不重复的穿过所有的门.但根据一笔画问题的知识,只要关闭门,把③、④变为偶点,就可以办到,可行路线如下图:B【例 16】在3×3的方阵中每个小正方形的边长都是100米.小明沿线段从A点到B 点,不许走重复路,他最多能走多少米?【解析】这道题大多数同学都采用试画的方法,实际上可以用一笔画原理求解.首先,图中有8 个奇点,在8 个奇点之间至少要去掉4 条线段,才能使这8 个奇点变成偶点;其次,从A点出发到B 点,A,B 两点必须是奇点,现在A,B 都是偶点,必须在与A,B 连接的线段中各去掉1 条线段,使A,B 成为奇点.所以至少要去掉6 条线段,也就是最多能走1800 米,走法如图【例 17】一个邮递员投递信件要走的街道如右图所示,图中的数字表示各条街道的千米数,他从邮局出发,要走遍各街道,最后回到邮局.怎样走才能使所走的行程最短?全程多少千米?【解析】图中共有8 个奇点,必须在8 个奇点间添加4 条线,才能消除所有奇点,成为能从邮局出发最后返回邮局的一笔画.在距离最近的两个奇点间添加一条连线,如左下图中虚线所示,共添加4 条连线,这4 条连线表示要重复走的路,显然,这样重复走的路程最短,全程30 千米.走法参考右下图(走法不唯一).。
小学奥数奇妙的一笔画题库教师版

所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法.什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点.一笔画问题:(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点; (3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点,以另一个奇点为终点; (4)奇点个数超过两个的图形,一定不能一笔画.多笔画问题:我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n 个奇点(n 为自然数),那么这个图一定可以用n 笔画成.【例 1】 我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点.下图中,哪些点是偶点?哪些点是奇点?奇点:J D H F 偶点:A E B C G I【例 2】 判断下列图a 、图b 、图c 能否一笔画.图aNMKF DECBA 图cGFECA图a 能,因为有2个奇点,图b 不能,因为图形不是连通的, 图c 能,因为因为图中全是奇点【例 3】 下面图形能不能一笔画成?若果能,应该怎样画?例题精讲奇妙的一笔画图1能因为图中全是偶点,图2能因为图中全是偶点,图3不能因为有4个奇点.【例 4】下面的图形,哪些能一笔画出?哪些不能一笔画出?第1个能,2、3不能【例5】下图中不能一笔画成,请你在下图中添加最少的线段,将其改成一笔画的图形,并画出路线图.不能一笔画出,因为图中有E H G F四个奇点,连结EH就可以使图形一笔画出.【例6】下图中的线段表示小路,请你仔细观察,认真思考,能够不重复的爬遍小路的是甲蚂蚁还是乙蚂蚁?该怎样爬?要想不重复爬出,需要图形能一笔画出,由于图中有两个奇点,所以应该从奇点出发才能一笔画出图形,所以甲蚂蚁能够.【例7】能否用剪刀从左下图中一次连续剪下三个正方形和两个三角形?可以.【例8】下图是儿童乐园的道路平面图,要使游客走遍每条路并且不重复,那么出、入口应设在哪里?要想不重复,需要路线能一笔画出,由于图中有两个奇点,所以入口和出口应该分别放在两个奇点出,即F和I点.【例9】邮递员叔叔向11个地点送信一次信,不走重复路,怎样走最合适?不走重复路,一笔能画出路线图,图中有2个奇点,应该从奇点处出发,下面有一种参考路线:4-1-2-5-8-9-6-10-11-7-4-3【例10】观察下面的图,看各至少用几笔画成?图(1)有8个奇点,所以要4笔画出,图(2)有12个奇点,所以要一笔画出,图(3)能一笔画出.【例11】判断下列图形能否一笔画.若能,请给出一种画法;若不能,请加一条线或去一条线,将其改成可一笔画的图形.F 图aFED图bH图c图(1)不能一笔画出,因为图中有4个奇点,连结BD,或者去掉BF都可以使图形能一笔画出.图(2)不能一笔画出,因为图中有4个奇点,去掉KL,或者BK都可以使图形能一笔画出.图(3)不能一笔画出,因为图中有4个奇点,去掉AB可以使图形能一笔画出.一个K(K>1)笔画最少要添加几条连线才能变成一笔画呢?我们知道K笔画有2K个奇点,如果在任意两个奇点之间添加一条连线,那么这两个奇点同时变成了偶点.如左下图中的B,C两个奇点在右下图中都变成了偶点.所以只要在K笔画的2K个奇点间添加(K-1)笔就可以使奇点数目减少为2个,从而变成一笔画.【例12】18世纪的哥尼斯堡城是一座美丽的城市,在这座城市中有一条布勒格尔河横贯城区,这条河有两条支流在城市中心汇合,汇合处有一座小岛A和一座半岛D,人们在这里建了一座公园,公园中有七座桥把河两岸和两个小岛连接起来(如图a).如果游人要一次走过这七座桥,而且对每座桥只许走一次,问如何走才能成功?欧拉解决这个问题的方法非常巧妙.他认为:人们关心的只是一次不重复地走遍这七座桥,而并不关心桥的长短和岛的大小,因此,岛和岸都可以看作一个点,而桥则可以看成是连接这些点的一条线.这样,一个实际问题就转化为一个几何图形(如下图)能否一笔画出的问题了.而图B中有4个奇点显然不能一笔画出.【巩固】如下图所示,两条河流的交汇处有两个岛,有七座桥连接这两个岛及河岸.问:一个散步者能否一次不重复地走遍这七座桥?能【例13】右图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一个进口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?将图形中的6个区域看成6个点,每个门看成连结他们的线段,显然6个点都是偶点,所以有人能一次不重复的走过所有的门.【巩固】右图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由.如果能,应从哪开始走?不能【例14】一条小虫沿长6分米,宽4分米,高5分米的长方体的棱爬行.如果它只能进不能退,并且同一条棱不能爬两次,那么它最多能爬多少分米?8个定点都是奇点,所以至少需要4笔.多画长和高能保证总路程最长,为A-B-G-H-A-D-C-F-E-D总长为6×4+5×4 +4×1=48分米.【巩固】一只木箱的长、宽、高分别为5,4,3厘米(见右图),有一只甲虫从A点出发,沿棱爬行,每条棱不允许重复,则甲虫回到A点时,最多能爬行多少厘米?最多34厘米【例15】如图是某餐厅的平面图,共有五个小厅,相邻两厅之间有门相通,并且设有入口.请问你能否从入口进入一次不重复地穿过所有的门.如果可以,请指明穿行路线,如果不能,应关闭哪个门就可以办到?可以将图中的五个小厅以及厅外的部分都抽象成点,为方便解题,给它们分别编号.这时,连通厅与厅之间的门就相当于各点之间的连线.于是题目中餐厅的平面图就抽象成为一个连通的图形,求穿形路线的问题就转化成一笔画的问题.在抽象出的图形中,我们可以找到四个奇点,即①、④、③和厅外,所以图形不能一笔画出也就是说,从入口进入不可能一次不重复的穿过所有的门.但根据一笔画问题的知识,只要关闭门,把③、④变为偶点,就可以办到,可行路线如下图:B【例16】在3×3的方阵中每个小正方形的边长都是100 米.小明沿线段从A点到B 点,不许走重复路,他最多能走多少米?这道题大多数同学都采用试画的方法,实际上可以用一笔画原理求解.首先,图中有8 个奇点,在8 个奇点之间至少要去掉4 条线段,才能使这8 个奇点变成偶点;其次,从A点出发到B 点, A, B 两点必须是奇点,现在A, B 都是偶点,必须在与A,B 连接的线段中各去掉1 条线段,使A,B 成为奇点.所以至少要去掉6 条线段,也就是最多能走1800 米,走法如图【例17】一个邮递员投递信件要走的街道如右图所示,图中的数字表示各条街道的千米数,他从邮局出发,要走遍各街道,最后回到邮局.怎样走才能使所走的行程最短?全程多少千米?图中共有8 个奇点,必须在8 个奇点间添加4 条线,才能消除所有奇点,成为能从邮局出发最后返回邮局的一笔画.在距离最近的两个奇点间添加一条连线,如左下图中虚线所示,共添加4 条连线,这4 条连线表示要重复走的路,显然,这样重复走的路程最短,全程30 千米.走法参考右下图(走法不唯一).。
小学奥数奇妙的一笔画题库教师版

所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法.什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点.一笔画问题:(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点; (3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点,以另一个奇点为终点; (4)奇点个数超过两个的图形,一定不能一笔画.多笔画问题:我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n 个奇点(n 为自然数),那么这个图一定可以用n 笔画成.【例 1】 我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点.下图中,哪些点是偶点?哪些点是奇点?奇点:J D H F 偶点:A E B C G I【例 2】 判断下列图a 、图b 、图c 能否一笔画.例题精讲奇妙的一笔画图a图cE图a 能,因为有2个奇点, 图b 不能,因为图形不是连通的, 图c 能,因为因为图中全是奇点【例 3】 下面图形能不能一笔画成?若果能,应该怎样画?图1能 因为图中全是偶点, 图2能 因为图中全是偶点, 图3不能因为有4个奇点.【例 4】 下面的图形,哪些能一笔画出?哪些不能一笔画出?第1个能,2、3不能【例 5】 下图中不能一笔画成,请你在下图中添加最少的线段,将其改成一笔画的图形,并画出路线图.不能一笔画出,因为图中有E H G F 四个奇点,连结EH 就可以使图形一笔画出.【例 6】 下图中的线段表示小路,请你仔细观察,认真思考,能够不重复的爬遍小路的是甲蚂蚁还是乙蚂蚁?该怎样爬?要想不重复爬出,需要图形能一笔画出,由于图中有两个奇点,所以应该从奇点出发才能一笔画出图形,所以甲蚂蚁能够.【例7】能否用剪刀从左下图中一次连续剪下三个正方形和两个三角形?可以.【例8】下图是儿童乐园的道路平面图,要使游客走遍每条路并且不重复,那么出、入口应设在哪里?要想不重复,需要路线能一笔画出,由于图中有两个奇点,所以入口和出口应该分别放在两个奇点出,即F和I点.【例9】邮递员叔叔向11个地点送信一次信,不走重复路,怎样走最合适?不走重复路,一笔能画出路线图,图中有2个奇点,应该从奇点处出发,下面有一种参考路线:4-1-2-5-8-9-6-10-11-7-4-3【例10】观察下面的图,看各至少用几笔画成?图(1)有8个奇点,所以要4笔画出, 图(2)有12个奇点,所以要一笔画出, 图(3)能一笔画出.【例 11】 判断下列图形能否一笔画.若能,请给出一种画法;若不能,请加一条线或去一条线,将其改成可一笔画的图形.IHG FED CBA 图aH G I KLJ F EDCBA 图bDC HG EFBA图c图(1)不能一笔画出,因为图中有4个奇点,连结BD ,或者去掉BF 都可以使图形能一笔画出. 图(2)不能一笔画出,因为图中有4个奇点,去掉KL ,或者BK 都可以使图形能一笔画出. 图(3)不能一笔画出,因为图中有4个奇点,去掉AB 可以使图形能一笔画出.一个K(K >1)笔画最少要添加几条连线才能变成一笔画呢?我们知道K 笔画有2K 个奇点,如果在任意两个奇点之间添加一条连线,那么这两个奇点同时变成了偶点.如左下图中的B ,C 两个奇点在右下图中都变成了偶点.所以只要在K 笔画的2K 个奇点间添加(K-1)笔就可以使奇点数目减少为2个,从而变成一笔画.【例 12】 18世纪的哥尼斯堡城是一座美丽的城市,在这座城市中有一条布勒格尔河横贯城区,这条河有两条支流在城市中心汇合,汇合处有一座小岛A 和一座半岛D ,人们在这里建了一座公园,公园中有七座桥把河两岸和两个小岛连接起来(如图a).如果游人要一次走过这七座桥,而且对每座桥只许走一次,问如何走才能成功?欧拉解决这个问题的方法非常巧妙.他认为:人们关心的只是一次不重复地走遍这七座桥,而并不关心桥的长短和岛的大小,因此,岛和岸都可以看作一个点,而桥则可以看成是连接这些点的一条线.这样,一个实际问题就转化为一个几何图形(如下图)能否一笔画出的问题了.而图B 中有4个奇点显然不能一笔画出.【巩固】如下图所示,两条河流的交汇处有两个岛,有七座桥连接这两个岛及河岸.问:一个散步者能否一次不重复地走遍这七座桥?能【例13】右图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一个进口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?将图形中的6个区域看成6个点,每个门看成连结他们的线段,显然6个点都是偶点,所以有人能一次不重复的走过所有的门.【巩固】右图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由.如果能,应从哪开始走?不能【例14】一条小虫沿长6分米,宽4分米,高5分米的长方体的棱爬行.如果它只能进不能退,并且同一条棱不能爬两次,那么它最多能爬多少分米?8个定点都是奇点,所以至少需要4笔.多画长和高能保证总路程最长,为A-B-G-H-A-D-C-F-E-D总长为6×4+5×4 +4×1=48分米.【巩固】一只木箱的长、宽、高分别为5,4,3厘米(见右图),有一只甲虫从A点出发,沿棱爬行,每条棱不允许重复,则甲虫回到A点时,最多能爬行多少厘米?最多34厘米【例15】如图是某餐厅的平面图,共有五个小厅,相邻两厅之间有门相通,并且设有入口.请问你能否从入口进入一次不重复地穿过所有的门.如果可以,请指明穿行路线,如果不能,应关闭哪个门就可以办到?可以将图中的五个小厅以及厅外的部分都抽象成点,为方便解题,给它们分别编号.这时,连通厅与厅之间的门就相当于各点之间的连线.于是题目中餐厅的平面图就抽象成为一个连通的图形,求穿形路线的问题就转化成一笔画的问题.在抽象出的图形中,我们可以找到四个奇点,即①、④、③和厅外,所以图形不能一笔画出也就是说,从入口进入不可能一次不重复的穿过所有的门.但根据一笔画问题的知识,只要关闭门,把③、④变为偶点,就可以办到,可行路线如下图:B【例16】在3×3的方阵中每个小正方形的边长都是100 米.小明沿线段从A点到B 点,不许走重复路,他最多能走多少米?这道题大多数同学都采用试画的方法,实际上可以用一笔画原理求解.首先,图中有8 个奇点,在8 个奇点之间至少要去掉4 条线段,才能使这8 个奇点变成偶点;其次,从A点出发到B 点,A,B 两点必须是奇点,现在A,B 都是偶点,必须在与A,B 连接的线段中各去掉1 条线段,使A,B 成为奇点.所以至少要去掉6 条线段,也就是最多能走1800 米,走法如图【例17】一个邮递员投递信件要走的街道如右图所示,图中的数字表示各条街道的千米数,他从邮局出发,要走遍各街道,最后回到邮局.怎样走才能使所走的行程最短?全程多少千米?图中共有8 个奇点,必须在8 个奇点间添加4 条线,才能消除所有奇点,成为能从邮局出发最后返回邮局的一笔画.在距离最近的两个奇点间添加一条连线,如左下图中虚线所示,共添加4 条连线,这4 条连线表示要重复走的路,显然,这样重复走的路程最短,全程30 千米.走法参考右下图(走法不唯一).。
小学奥数奇妙的一笔画题库教师版

所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法.什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点.一笔画问题:(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点; (3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点,以另一个奇点为终点; (4)奇点个数超过两个的图形,一定不能一笔画.多笔画问题:我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n 个奇点(n 为自然数),那么这个图一定可以用n 笔画成.【例 1】 我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点.下图中,哪些点是偶点?哪些点是奇点?【解析】 奇点:J D H F 偶点:A E B C G I【例 2】 判断下列图a 、图b 、图c 能否一笔画.NML KF DECBA 图bODCBA图cGFEDCBA【解析】 图a 能,因为有2个奇点,例题精讲奇妙的一笔画图b不能,因为图形不是连通的,图c能,因为因为图中全是奇点【例 3】下面图形能不能一笔画成?若果能,应该怎样画?【解析】图1能因为图中全是偶点,图2能因为图中全是偶点,图3不能因为有4个奇点.【例 4】下面的图形,哪些能一笔画出?哪些不能一笔画出?【解析】第1个能,2、3不能【例 5】下图中不能一笔画成,请你在下图中添加最少的线段,将其改成一笔画的图形,并画出路线图.【解析】不能一笔画出,因为图中有E H G F四个奇点,连结EH就可以使图形一笔画出.【例 6】下图中的线段表示小路,请你仔细观察,认真思考,能够不重复的爬遍小路的是甲蚂蚁还是乙蚂蚁?该怎样爬?【解析】要想不重复爬出,需要图形能一笔画出,由于图中有两个奇点,所以应该从奇点出发才能一笔画出图形,所以甲蚂蚁能够.【例 7】能否用剪刀从左下图中一次连续剪下三个正方形和两个三角形?【解析】可以.【例 8】下图是儿童乐园的道路平面图,要使游客走遍每条路并且不重复,那么出、入口应设在哪里?【解析】 要想不重复,需要路线能一笔画出,由于图中有两个奇点,所以入口和出口应该分别放在两个奇点出,即F 和I 点.【例 9】 邮递员叔叔向11个地点送信一次信,不走重复路,怎样走最合适?【解析】 不走重复路,一笔能画出路线图,图中有2个奇点,应该从奇点处出发,下面有一种参考路线:4-1-2-5-8-9-6-10-11-7-4-3【例 10】 观察下面的图,看各至少用几笔画成?【解析】 图(1)有8个奇点,所以要4笔画出,图(2)有12个奇点,所以要一笔画出, 图(3)能一笔画出.【例 11】 判断下列图形能否一笔画.若能,请给出一种画法;若不能,请加一条线或去一条线,将其改成可一笔画的图形.IFCA 图aH G I KLJ F EDCA DC HG FBA图c【解析】 图(1)不能一笔画出,因为图中有4个奇点,连结BD ,或者去掉BF 都可以使图形能一笔画出.图(2)不能一笔画出,因为图中有4个奇点,去掉KL ,或者BK 都可以使图形能一笔画出. 图(3)不能一笔画出,因为图中有4个奇点,去掉AB 可以使图形能一笔画出.一个K (K >1)笔画最少要添加几条连线才能变成一笔画呢?我们知道K 笔画有2K 个奇点,如果在任意两个奇点之间添加一条连线,那么这两个奇点同时变成了偶点.如左下图中的B ,C 两个奇点在右下图中都变成了偶点.所以只要在K笔画的2K个奇点间添加(K-1)笔就可以使奇点数目减少为2个,从而变成一笔画.【例 12】18世纪的哥尼斯堡城是一座美丽的城市,在这座城市中有一条布勒格尔河横贯城区,这条河有两条支流在城市中心汇合,汇合处有一座小岛A和一座半岛D,人们在这里建了一座公园,公园中有七座桥把河两岸和两个小岛连接起来(如图a).如果游人要一次走过这七座桥,而且对每座桥只许走一次,问如何走才能成功?【解析】欧拉解决这个问题的方法非常巧妙.他认为:人们关心的只是一次不重复地走遍这七座桥,而并不关心桥的长短和岛的大小,因此,岛和岸都可以看作一个点,而桥则可以看成是连接这些点的一条线.这样,一个实际问题就转化为一个几何图形(如下图)能否一笔画出的问题了.而图B中有4个奇点显然不能一笔画出.【巩固】如下图所示,两条河流的交汇处有两个岛,有七座桥连接这两个岛及河岸.问:一个散步者能否一次不重复地走遍这七座桥?【解析】能【例 13】右图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一个进口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?【解析】将图形中的6个区域看成6个点,每个门看成连结他们的线段,显然6个点都是偶点,所以有人能一次不重复的走过所有的门.【巩固】右图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由.如果能,应从哪开始走?ECDBA【解析】不能【例 14】一条小虫沿长6分米,宽4分米,高5分米的长方体的棱爬行.如果它只能进不能退,并且同一条棱不能爬两次,那么它最多能爬多少分米?【解析】8个定点都是奇点,所以至少需要4笔.多画长和高能保证总路程最长,为A-B-G-H-A-D-C-F-E-D总长为6×4+5×4+4×1=48分米.【巩固】一只木箱的长、宽、高分别为5,4,3厘米(见右图),有一只甲虫从A点出发,沿棱爬行,每条棱不允许重复,则甲虫回到A点时,最多能爬行多少厘米?【解析】最多34厘米【例 15】如图是某餐厅的平面图,共有五个小厅,相邻两厅之间有门相通,并且设有入口.请问你能否从入口进入一次不重复地穿过所有的门.如果可以,请指明穿行路线,如果不能,应关闭哪个门就可以办到?【解析】可以将图中的五个小厅以及厅外的部分都抽象成点,为方便解题,给它们分别编号.这时,连通厅与厅之间的门就相当于各点之间的连线.于是题目中餐厅的平面图就抽象成为一个连通的图形,求穿形路线的问题就转化成一笔画的问题.在抽象出的图形中,我们可以找到四个奇点,即①、④、③和厅外,所以图形不能一笔画出也就是说,从入口进入不可能一次不重复的穿过所有的门.但根据一笔画问题的知识,只要关闭门,把③、④变为偶点,就可以办到,可行路线如下图:B【例 16】在3×3的方阵中每个小正方形的边长都是100米.小明沿线段从A点到B点,不许走重复路,他最多能走多少米?【解析】这道题大多数同学都采用试画的方法,实际上可以用一笔画原理求解.首先,图中有8个奇点,在8个奇点之间至少要去掉4条线段,才能使这8个奇点变成偶点;其次,从A点出发到B点,A,B两点必须是奇点,现在A,B都是偶点,必须在与A,B连接的线段中各去掉1条线段,使A,B成为奇点.所以至少要去掉6条线段,也就是最多能走1800米,走法如图【例 17】一个邮递员投递信件要走的街道如右图所示,图中的数字表示各条街道的千米数,他从邮局出发,要走遍各街道,最后回到邮局.怎样走才能使所走的行程最短?全程多少千米?【解析】图中共有8个奇点,必须在8个奇点间添加4条线,才能消除所有奇点,成为能从邮局出发最后返回邮局的一笔画.在距离最近的两个奇点间添加一条连线,如左下图中虚线所示,共添加4条连线,这4条连线表示要重复走的路,显然,这样重复走的路程最短,全程30千米.走法参考右下图(走法不唯一).。
小学奥数奇妙的一笔画题库教师版

奇妙的一笔画例题精讲所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法.什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点.一笔画问题:(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点;(3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点,以另一个奇点为终点;(4)奇点个数超过两个的图形,一定不能一笔画.多笔画问题:我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n个奇点(n为自然数),那么这个图一定可以用n笔画成.【例 1】我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点.下图中,哪些点是偶点?哪些点是奇点?【解析】奇点:J D H F偶点:A E B C G I【例 2】判断下列图a、图b、图c能否一笔画.E【解析】图a能,因为有2个奇点,图b不能,因为图形不是连通的,图c能,因为因为图中全是奇点【例 3】下面图形能不能一笔画成?若果能,应该怎样画?【解析】图1能因为图中全是偶点,图2能因为图中全是偶点,图3不能因为有4个奇点.【例 4】下面的图形,哪些能一笔画出?哪些不能一笔画出?【解析】第1个能,2、3不能【例 5】下图中不能一笔画成,请你在下图中添加最少的线段,将其改成一笔画的图形,并画出路线图.【解析】不能一笔画出,因为图中有E H G F四个奇点,连结EH就可以使图形一笔画出.【例 6】下图中的线段表示小路,请你仔细观察,认真思考,能够不重复的爬遍小路的是甲蚂蚁还是乙蚂蚁?该怎样爬?【解析】要想不重复爬出,需要图形能一笔画出,由于图中有两个奇点,所以应该从奇点出发才能一笔画出图形,所以甲蚂蚁能够.【例 7】能否用剪刀从左下图中一次连续剪下三个正方形和两个三角形?【解析】可以.【例 8】下图是儿童乐园的道路平面图,要使游客走遍每条路并且不重复,那么出、入口应设在哪里?【解析】要想不重复,需要路线能一笔画出,由于图中有两个奇点,所以入口和出口应该分别放在两个奇点出,即F和I点.【例 9】邮递员叔叔向11个地点送信一次信,不走重复路,怎样走最合适?【解析】 不走重复路,一笔能画出路线图,图中有2个奇点,应该从奇点处出发,下面有一种参考路线:4-1-2-5-8-9-6-10-11-7-4-3【例 10】 观察下面的图,看各至少用几笔画成?【解析】 图(1)有8个奇点,所以要4笔画出,图(2)有12个奇点,所以要一笔画出, 图(3)能一笔画出.【例 11】 判断下列图形能否一笔画.若能,请给出一种画法;若不能,请加一条线或去一条线,将其改成可一笔画的图形.IFD CA 图aH G I KLJ F EDCA C HG FBA图c【解析】 图(1)不能一笔画出,因为图中有4个奇点,连结BD ,或者去掉BF 都可以使图形能一笔画出.图(2)不能一笔画出,因为图中有4个奇点,去掉KL ,或者BK 都可以使图形能一笔画出. 图(3)不能一笔画出,因为图中有4个奇点,去掉AB 可以使图形能一笔画出.一个K (K >1)笔画最少要添加几条连线才能变成一笔画呢?我们知道K 笔画有2K 个奇点,如果在任意两个奇点之间添加一条连线,那么这两个奇点同时变成了偶点.如左下图中的B ,C 两个奇点在右下图中都变成了偶点.所以只要在K 笔画的2K 个奇点间添加(K -1)笔就可以使奇点数目减少为2个,从而变成一笔画.【例 12】18世纪的哥尼斯堡城是一座美丽的城市,在这座城市中有一条布勒格尔河横贯城区,这条河有两条支流在城市中心汇合,汇合处有一座小岛A和一座半岛D,人们在这里建了一座公园,公园中有七座桥把河两岸和两个小岛连接起来(如图a).如果游人要一次走过这七座桥,而且对每座桥只许走一次,问如何走才能成功?【解析】欧拉解决这个问题的方法非常巧妙.他认为:人们关心的只是一次不重复地走遍这七座桥,而并不关心桥的长短和岛的大小,因此,岛和岸都可以看作一个点,而桥则可以看成是连接这些点的一条线.这样,一个实际问题就转化为一个几何图形(如下图)能否一笔画出的问题了.而图B中有4个奇点显然不能一笔画出.【巩固】如下图所示,两条河流的交汇处有两个岛,有七座桥连接这两个岛及河岸.问:一个散步者能否一次不重复地走遍这七座桥?【解析】能【例 13】右图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一个进口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?【解析】将图形中的6个区域看成6个点,每个门看成连结他们的线段,显然6个点都是偶点,所以有人能一次不重复的走过所有的门.【巩固】右图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由.如果能,应从哪开始走?ECDBA【解析】不能【例 14】一条小虫沿长6分米,宽4分米,高5分米的长方体的棱爬行.如果它只能进不能退,并且同一条棱不能爬两次,那么它最多能爬多少分米?【解析】8个定点都是奇点,所以至少需要4笔.多画长和高能保证总路程最长,为A-B-G-H-A-D-C-F-E-D总长为6×4+5×4+4×1=48分米.【巩固】一只木箱的长、宽、高分别为5,4,3厘米(见右图),有一只甲虫从A点出发,沿棱爬行,每条棱不允许重复,则甲虫回到A点时,最多能爬行多少厘米?【解析】最多34厘米【例 15】如图是某餐厅的平面图,共有五个小厅,相邻两厅之间有门相通,并且设有入口.请问你能否从入口进入一次不重复地穿过所有的门.如果可以,请指明穿行路线,如果不能,应关闭哪个门就可以办到?【解析】可以将图中的五个小厅以及厅外的部分都抽象成点,为方便解题,给它们分别编号.这时,连通厅与厅之间的门就相当于各点之间的连线.于是题目中餐厅的平面图就抽象成为一个连通的图形,求穿形路线的问题就转化成一笔画的问题.在抽象出的图形中,我们可以找到四个奇点,即①、④、③和厅外,所以图形不能一笔画出也就是说,从入口进入不可能一次不重复的穿过所有的门.但根据一笔画问题的知识,只要关闭门,把③、④变为偶点,就可以办到,可行路线如下图:B【例 16】在3×3的方阵中每个小正方形的边长都是100米.小明沿线段从A点到B点,不许走重复路,他最多能走多少米?【解析】这道题大多数同学都采用试画的方法,实际上可以用一笔画原理求解.首先,图中有8个奇点,在8个奇点之间至少要去掉4条线段,才能使这8个奇点变成偶点;其次,从A点出发到B点,A,B两点必须是奇点,现在A,B都是偶点,必须在与A,B连接的线段中各去掉1条线段,使A,B成为奇点.所以至少要去掉6条线段,也就是最多能走1800米,走法如图【例 17】一个邮递员投递信件要走的街道如右图所示,图中的数字表示各条街道的千米数,他从邮局出发,要走遍各街道,最后回到邮局.怎样走才能使所走的行程最短?全程多少千米?【解析】图中共有8个奇点,必须在8个奇点间添加4条线,才能消除所有奇点,成为能从邮局出发最后返回邮局的一笔画.在距离最近的两个奇点间添加一条连线,如左下图中虚线所示,共添加4条连线,这4条连线表示要重复走的路,显然,这样重复走的路程最短,全程30千米.走法参考右下图(走法不唯一).。
小学奥数:奇妙的一笔画.专项练习

所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法.什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏. 我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点.一笔画问题:(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点;(3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点,以另一个奇点为终点;(4)奇点个数超过两个的图形,一定不能一笔画. 多笔画问题:我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n 个奇点(n 为自然数),那么这个图一定可以用n 笔画成.模块一、判断奇偶点【例 1】 我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点.下图中,哪些点是偶点?哪些点是奇点?J O I H G FED CBA【例 2】 同学们野营时建了9个营地,连接营地之间的道路如图所示,贝贝要给每个营地插上一面旗帜,要求相邻营地的旗帜色彩不同,则贝贝最少需要 种颜色的旗子,如果贝贝从某营地出发,不走重复路线就 (填“能”或“不能”)完成任务.例题精讲知识点拨4-1-5.奇妙的一笔画【例 3】 判断下列图a 、图b 、图c 能否一笔画.图aNML KF DECBA 图bODCBA图cGFEDCBA【例 4】 下面图形能不能一笔画成?若果能,应该怎样画?(1)(2)(3)【例 5】 下面的图形,哪些能一笔画出?哪些不能一笔画出?【例 6】 右图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一个进口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?【巩固】右图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由.如果能,应从哪开始走?E CDB A【例 7】 下图中的线段表示小路,请你仔细观察,认真思考,能够不重复的爬遍小路的是甲蚂蚁还是乙蚂蚁?该怎样爬?乙甲【例 8】 能否用剪刀从左下图中一次连续剪下三个正方形和两个三角形?【例 9】 下图是儿童乐园的道路平面图,要使游客走遍每条路并且不重复,那么出、入口应设在哪里?IHGFEDC BA【例 10】 邮递员叔叔向11个地点送信一次信,不走重复路,怎样走最合适?【例 11】 观察下面的图,看各至少用几笔画成?(1)A ED HCF GB (2)(3)【例 12】 在3×3的方阵中每个小正方形的边长都是100 米.小明沿线段从A 点到B 点,不许走重复路,他最多能走多少米?【例 13】 有16个点排成的44 方阵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学奥数智巧趣题专题
--一笔画问题(六年级)竞赛测试
姓名:_____________ 年级:____________ 学号:______________
题型选择题填空题简答题xx题xx题xx题总分
得分
一、xx题
(每空xx 分,共xx分)
【题文】判断下列图a、图b、图c能否一笔画.
【答案】图a和图c能,图b不能。
【解析】图a能,因为有2个奇点,
图b不能,因为图形不是连通的,
图c能,因为图中全是奇点。
【题文】邮递员叔叔向11个地点送信一次信,不走重复路,怎样走最合适?
【答案】4-1-2-5-8-9-6-10-11-7-4-3
【解析】不走重复路,一笔能画出路线图,图中有2个奇点,应该从奇点处出发,下面有一种参考路线:4-1-2-5-8-9-6-10-11-7-4-3。
【题文】判断下列图形能否一笔画.若能,请给出一种画法;若不能,请加一条线或去一条线,将其改成可一笔画的图形.
评卷人得分
【答案】图(1)不能一笔画出,因为图中有4个奇点,连结BD,或者去掉BF都可以使图形能一笔画出。
图(2)不能一笔画出,因为图中有4个奇点,去掉KL,或者BK都可以使图形能一笔画出。
图(3)不能一笔画出,因为图中有4个奇点,去掉AB可以使图形能一笔画出。
【解析】图(1)不能一笔画出,因为图中有4个奇点,连结BD,或者去掉BF都可以使图形能一笔画出。
图(2)不能一笔画出,因为图中有4个奇点,去掉KL,或者BK都可以使图形能一笔画出。
图(3)不能一笔画出,因为图中有4个奇点,去掉AB可以使图形能一笔画出。
一个K(K>1)笔画最少要添加几条连线才能变成一笔画呢?我们知道K笔画有2K个奇点,如果在任意两个奇点之间添加一条连线,那么这两个奇点同时变成了偶点。
如左下图中的B,C两个奇点在右下图中都变成了偶点。
所以只要在K笔画的2K个奇点间添加(K-1)笔就可以使奇点数目减少为2个,从而变成一笔画。
【题文】18世纪的哥尼斯堡城是一座美丽的城市,在这座城市中有一条布勒格尔河横贯城区,这条河有两条支流在城市中心汇合,汇合处有一座小岛A和一座半岛D,人们在这里建了一座公园,公园中有七座桥把河两岸和两个小岛连接起来(如图a).如果游人要一次走过这七座桥,而且对每座桥只许走一次,问如何走才能成功?
【答案】
【解析】欧拉解决这个问题的方法非常巧妙.他认为:人们关心的只是一次不重复地走遍这七座桥,而并不关心桥的长短和岛的大小,因此,岛和岸都可以看作一个点,而桥则可以看成是连接这些点的一条线.这样,一个实际问题就转化为一个几何图形(如下图)能否一笔画出的问题了。
而图B中有4个奇点显然不能一笔画出.
【题文】右图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一个
进口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?
【答案】能够
【解析】将图形中的6个区域看成6个点,每个门看成连结他们的线段,显然6个点都是偶点,所以有人能一次不重复的走过所有的门。
【题文】一条小虫沿长6分米,宽4分米,高5分米的长方体的棱爬行.如果它只能进不能退,并且同一条棱不能爬两次,那么它最多能爬多少分米?
【答案】48分米
【解析】8个定点都是奇点,所以至少需要4笔。
多画长和高能保证总路程最长,为A-B-G-H-A-D-C-F-E-D
总长为6×4+5×4 +4×1=48分米。
【题文】如图是某餐厅的平面图,共有五个小厅,相邻两厅之间有门相通,并且设有入口.请问你能否从入口进入一次不重复地穿过所有的门.如果可以,请指明穿行路线,如果不能,应关闭哪个门就可以办到?
【答案】
【解析】可以将图中的五个小厅以及厅外的部分都抽象成点,为方便解题,给它们分别编号。
这时,连通厅与厅之间的门就相当于各点之间的连线。
于是题目中餐厅的平面图就抽象成为一个连通的图形,求穿形路线的问题就转化成一笔画的问题。
在抽象出的图形中,我们可以找到四个奇点,即①、④、③和厅外,
所以图形不能一笔画出也就是说,从入口进入不可能一次不重复的穿过所有的门。
但根据一笔画问题的知识,只要关闭门,把③、④变为偶点,就可以办到,可行路线如下图:B
【题文】在3×3的方阵中每个小正方形的边长都是100 米.小明沿线段从A点到B 点,不许走重复路,他最多能走多少米?
【答案】1800米
【解析】这道题大多数同学都采用试画的方法,实际上可以用一笔画原理求解。
首先,图中有8 个奇点,在8 个奇点之间至少要去掉4 条线段,才能使这8 个奇点变成偶点;其次,从A点出发到B 点, A, B 两点必须是奇点,现在A, B 都是偶点,必须在与A,B 连接的线段中各去掉1 条线段,使A,B 成为奇点.所以至少要去掉6 条线段,也就是最多能走1800 米,走法如图
【题文】一个邮递员投递信件要走的街道如右图所示,图中的数字表示各条街道的千米数,他从邮局出发,要走遍各街道,最后回到邮局.怎样走才能使所走的行程最短?全程多少千米?
【答案】30千米
【解析】图中共有8 个奇点,必须在8 个奇点间添加4 条线,才能消除所有奇点,成为能从邮局出发最后返回邮局的一笔画。
在距离最近的两个奇点间添加一条连线,如左下图中虚线所示,共添加4 条连线,这4 条连线表示要重复走的路,显然,这样重复走的路程最短,全程30千米。
走法参考右下图(走法不唯一)。