2019中职数学高考全真模拟题

合集下载

2019年陕西省高考数学全真模拟试卷(理科)

2019年陕西省高考数学全真模拟试卷(理科)

2019年陕西省高考数学全真模拟试卷(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.集合P={x|x2﹣9<0},Q={x∈Z|﹣1≤x≤3},则P∩Q=()A.{x|﹣3<x≤3}B.{x|﹣1≤x<3}C.{﹣1,0,1,2,3}D.{﹣1,0,1,2}3.已知cosα=﹣,且α∈(,π),则tan(α+)等于()A.﹣B.﹣7 C.D.74.若命题p:对任意的x∈R,都有x3﹣x2+1<0,则¬p为()A.不存在x∈R,使得x3﹣x2+1<0B.存在x∈R,使得x3﹣x2+1<0C.对任意的x∈R,都有x3﹣x2+1≥0D.存在x∈R,使得x3﹣x2+1≥05.在等比数列{a n}中,a1=4,公比为q,前n项和为S n,若数列{S n+2}也是等比数列,则q等于()A.2 B.﹣2 C.3 D.﹣36.已知向量=(1,1),2+=(4,2),则向量,的夹角的余弦值为()A.B.C.D.7.函数f(x)=sin(2x+φ)+cos(2x+φ)的图象关于原点对称的充要条件是()A.φ=2kπ﹣,k∈Z B.φ=kπ﹣,k∈Z C.φ=2kπ﹣,k∈Z D.φ=kπ﹣,k∈Z8.执行如图所示的程序框图(算法流程图),输出的结果是()A.9 B.121 C.130 D.170219.双曲线的离心率为2,则的最小值为()A.B. C.2 D.110.5的展开式中,x5y2的系数为()A.﹣90 B.﹣30 C.30 D.9011.已知不等式组表示平面区域D,现在往抛物线y=﹣x2+x+2与x 轴围成的封闭区域内随机地抛掷一小颗粒,则该颗粒落到区域D中的概率为()A.B.C.D.12.定义在R上的函数f(x)满足(x﹣1)f′(x)≤0,且y=f(x+1)为偶函数,当|x1﹣1|<|x2﹣1|时,有()A.f(2﹣x1)≥f(2﹣x2)B.f(2﹣x1)=f(2﹣x2)C.f(2﹣x1)<f(2﹣x2)D.f(2﹣x1)≤f(2﹣x2)第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量(),0a t =r ,()1,3b =-r,若4a b ⋅=r r ,则2a b -=r r . 14.若()52132x a x x ⎛⎫-- ⎪⎝⎭的展开式中3x 的系数为80,则a = .15.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,且ABC ∆的外接圆半径为1,若6abc =,则ABC ∆的面积为 .16.已知抛物线()2:20C x py p =>的焦点为F ,O 为坐标原点,点4,2p M ⎛⎫- ⎪⎝⎭,1,2p N ⎛⎫-- ⎪⎝⎭,射线,MO NO 分别交抛物线C 于异于点O 的点,A B ,若,,A B F 三点共线,则p = .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知正项数列3n n a ⎧⎫⎨⎬⎩⎭是公差为2的等差数列,且12,9,a a 成等比数列.(1)求数列{}n a 的通项公式; (2)求数列{}n a 的前n 项和n S .18. 2018年2月22日,在韩国平昌冬奥会短道速滑男子500米比赛中,中国选手武大靖以连续打破世界纪录的优异表现,为中国代表队夺得了本届冬奥会的首枚金牌,也创造中国男子冰上竞速项目在冬奥会金牌零的突破.根据短道速滑男子500米的比赛规则,运动员自出发点出发进入滑行阶段后,每滑行一圈都要依次经过4个直道与弯道的交接口()1,2,3,4k A k =.已知某男子速滑运动员顺利通过每个交接口的概率均为34,摔倒的概率均为14.假定运动员只有在摔倒或到达终点时才停止滑行,现在用X 表示一名顺利进入最后一圈的运动员在滑行结束后,在最后一圈顺利通过的交接口数.(1)求该运动员停止滑行时恰好已顺利通过3个交接口的概率; (2)求X 的分布列及数学期望()E X .19. 如图,在三棱锥P ABC -中,D 为棱PA 上的任意一点,,,F G H 分别为所在棱的中点.(1)证明:BD ∥平面FGH ;(2)若CF ⊥平面ABC ,AB BC ⊥,2AB =,45BAC ∠=︒,当二面角C GF H --的平面角为3π时,求棱PC 的长.20. 已知椭圆()2222:10x y E a b a b+=>>的焦距为2c ,且b =,圆()222:0O x y r r +=>与x 轴交于点,,M N P 为椭圆E 上的动点,2PM PN a +=,PMN ∆(1)求圆O 与椭圆E 的方程;(2)设圆O 的切线l 交椭圆E 于点,A B ,求AB 的取值范围.21. 已知函数()()326,f x x x ax b a b =-++∈R 的图象在与x 轴的交点处的切线方程为918y x =-. (1)求()f x 的解析式; (2)若()()212910kx x f x x k -<<+对()2,5x ∈恒成立,求k 的取值范围. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,圆C的极坐标方程为3cos ρθ=. (1)求圆C 的参数方程;(2)设P 为圆C 上一动点,()5,0A ,若点P 到直线sin 3πρθ⎛⎫-= ⎪⎝⎭求ACP ∠的大小.23.选修4-5:不等式选讲 已知函数()3121f x x x a =--++. (1)求不等式()f x a >的解集;(2)若恰好存在4个不同的整数n ,使得()0f n <,求a 的取值范围.2019年陕西省高考数学全真模拟试卷(理科)一、选择题1.复数在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简复数,求出复数在复平面上对应的点的坐标,则答案可求.【解答】解:=,则复数在复平面上对应的点的坐标为:(,),位于第一象限.故选:A.【点评】本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.2.集合P={x|x2﹣9<0},Q={x∈Z|﹣1≤x≤3},则P∩Q=()A.{x|﹣3<x≤3}B.{x|﹣1≤x<3}C.{﹣1,0,1,2,3}D.{﹣1,0,1,2}【考点】交集及其运算.【分析】求出集合P中一元二次不等式的解集确定出集合P,取集合Q中解集的整数解确定出集合Q,然后找出既属于P又属于Q的元素即可确定出两集合的交集.【解答】解:由集合P中的不等式x2﹣9<0,解得:﹣3<x<3,∴集合P={x|﹣3<x<3};由集合Q中的解集﹣1≤x≤3,取整数为﹣1,0,1,2,3,∴集合Q={﹣1,0,1,2,3},则P∩Q={﹣1,0,1,2}.故选D【点评】此题属于以不等式解集为平台,考查了交集的元素,是一道基础题,也是高考中常考的题型.3.已知cosα=﹣,且α∈(,π),则tan(α+)等于()A.﹣B.﹣7 C.D.7【考点】两角和与差的正切函数;弦切互化.【分析】先根据cosα的值求出tanα的值,再由两角和与差的正切公式确定答案.【解答】解析:由cosα=﹣且α∈()得tanα=﹣,∴tan(α+)==,故选C.【点评】本题主要考查两角和与差的正切公式.属基础题.4.若命题p:对任意的x∈R,都有x3﹣x2+1<0,则¬p为()A.不存在x∈R,使得x3﹣x2+1<0B.存在x∈R,使得x3﹣x2+1<0C.对任意的x∈R,都有x3﹣x2+1≥0D.存在x∈R,使得x3﹣x2+1≥0【考点】命题的否定.【分析】利用全称命题的否定是特称命题,去判断.【解答】解:因为命题是全称命题,根据全称命题的否定是特称命题,所以命题的否定¬p为:存在x∈R,使得x3﹣x2+1≥0故选:D【点评】本题主要考查全称命题的否定,要求掌握全称命题的否定是特称命题.5.在等比数列{a n}中,a1=4,公比为q,前n项和为S n,若数列{S n+2}也是等比数列,则q等于()A.2 B.﹣2 C.3 D.﹣3【考点】等比关系的确定.【分析】由数列{S n+2}也是等比数列可得s1+2,s2+2,s3+2成等比数列,即(s2+2)2=(S+2)(S3+2)1代入等比数列的前n项和公式整理可得(6+4q)2=24(1+q+q2)+12解方程即可求解【解答】解:由题意可得q≠1由数列{S n+2}也是等比数列可得s1+2,s2+2,s3+2成等比数列则(s2+2)2=(S1+2)(S3+2)代入等比数列的前n项和公式整理可得(6+4q)2=24(1+q+q2)+12解可得q=3故选C.【点评】等比数列得前n项和公式的应用需要注意公式的选择,解题时要注意对公比q=1,q≠1的分类讨论,体现了公式应用的全面性.6.已知向量=(1,1),2+=(4,2),则向量,的夹角的余弦值为()A.B.C.D.【考点】数量积表示两个向量的夹角.【分析】利用向量的坐标运算求出;利用向量的数量积公式求出两个向量的数量积;利用向量模的坐标公式求出两个向量的模;利用向量的数量积公式求出两个向量的夹角余弦.【解答】解:∵∴∴∵∴两个向量的夹角余弦为故选C【点评】本题考查向量的数量积公式,利用向量的数量积公式求向量的夹角余弦、考查向量模的坐标公式.7.函数f(x)=sin(2x+φ)+cos(2x+φ)的图象关于原点对称的充要条件是()A.φ=2kπ﹣,k∈Z B.φ=kπ﹣,k∈Z C.φ=2kπ﹣,k∈Z D.φ=kπ﹣,k∈Z【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】先利用辅助角公式对函数化简可得,f(x)=sin(2x+φ)+cos(2x+φ)=2sin(2x+φ+),由函数的图象关于原点对称可知函数f(x)为奇函数,由奇函数的性质可得,f(0)=0代入可得sin(φ)=0,从而可求答案.【解答】解:∵f(x)=sin(2x+φ)+cos(2x+φ)=2sin(2x+φ+)的图象关于原点对称∴函数f(x)为奇函数,由奇函数的性质可得,f(0)=0∴sin(φ)=0∴φ=kπ∴φ=故选:D【点评】本题主要考查了利用辅助角公式把不同名的三角函数化为y=Asin(x+)的形式,进而研究函数的性质;还考查了奇函数的性质(若奇函数的定义域内有0,则f(0)=0)的应用,灵活应用性质可以简化运算,减少运算量.8.执行如图所示的程序框图(算法流程图),输出的结果是()A.9 B.121 C.130 D.17021【考点】程序框图.【分析】执行程序框图,依次写出每次循环得到的a,b,c的值,当c=16900时,不满足条件c<2016,退出循环,输出a的值为121.【解答】解:模拟执行程序,可得a=1,b=2,c=3满足条件c<2016,a=2,b=9,c=11满足条件c<2016,a=9,b=121,c=130满足条件c<2016,a=121,b=16900,c=17021不满足条件c<2016,退出循环,输出a的值为121.故选:B.【点评】本题主要考察了程序框图和算法,正确理解循环结构的功能是解题的关键,属于基本知识的考查.9.双曲线的离心率为2,则的最小值为()A.B. C.2 D.1【考点】双曲线的简单性质;基本不等式.【分析】根据基本不等式,只要根据双曲线的离心率是2,求出的值即可.【解答】解:由于已知双曲线的离心率是2,故,解得,所以的最小值是.故选A.【点评】本题考查双曲线的性质及其方程.双曲线的离心率e和渐近线的斜率之间有关系,从这个关系可以得出双曲线的离心率越大,双曲线的开口越大.10.(x2+3x﹣y)5的展开式中,x5y2的系数为()A.﹣90 B.﹣30 C.30 D.90【考点】二项式系数的性质.=(﹣y)5﹣r(x2+3x)r,令5【分析】(x2+3x﹣y)5的展开式中通项公式:T r+1﹣r=2,解得r=3.展开(x2+3x)3,进而得出.=(﹣y)5﹣r(x2+3x)r,【解答】解:(x2+3x﹣y)5的展开式中通项公式:T r+1令5﹣r=2,解得r=3.∴(x2+3x)3=x6+3(x2)2•3x+3(x2)×(3x)2+(3x)3,∴x5y2的系数=×9=90.故选:D.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于中档题.11.已知不等式组表示平面区域D,现在往抛物线y=﹣x2+x+2与x轴围成的封闭区域内随机地抛掷一小颗粒,则该颗粒落到区域D中的概率为()A.B.C.D.【考点】几何概型.【分析】根据积分的知识可得先求y=﹣x2+x+2与x轴围成的封闭区域为曲面MEN,的面积,然后根据线性规划的知识作出平面区域D,并求面积,最后代入几何概率的计算公式可求.【解答】解:根据积分的知识可得,y=﹣x2+x+2与x轴围成的封闭区域为曲面MEN,面积=等式组表示平面区域D即为△AOB,其面积为根据几何概率的计算公式可得P=故选:C【点评】本题主要考查了利用积分求解曲面的面积,还考查了几何概率的计算公式的应用,属于基础试题.12.定义在R上的函数f(x)满足(x﹣1)f′(x)≤0,且y=f(x+1)为偶函数,当|x1﹣1|<|x2﹣1|时,有()A.f(2﹣x1)≥f(2﹣x2)B.f(2﹣x1)=f(2﹣x2)C.f(2﹣x1)<f(2﹣x2)D .f (2﹣x 1)≤f (2﹣x 2)【考点】函数的单调性与导数的关系.【分析】①若函数f (x )为常数,可得当|x 1﹣1|<|x 2﹣1|时,恒有f (2﹣x 1)=f (2﹣x 2).②若f (x )不是常数,可得y=f (x )关于x=1对称.当x 1≥1,x 2≥1,则由|x 1﹣1|<|x 2﹣1|可得f (x 1)>f (x 2).当x 1<1,x 2<1时,同理可得f (x 1)>f (x 2).综合①②得出结论.【解答】解:①若f (x )=c ,则f'(x )=0,此时(x ﹣1)f'(x )≤0和y=f (x +1)为偶函数都成立,此时当|x 1﹣1|<|x 2﹣1|时,恒有f (2﹣x 1)=f (2﹣x 2).②若f (x )不是常数,因为函数y=f (x +1)为偶函数,所以y=f (x +1)=f (﹣x +1), 即函数y=f (x )关于x=1对称,所以f (2﹣x 1)=f (x 1),f (2﹣x 2)=f (x 2). 当x >1时,f'(x )≤0,此时函数y=f (x )单调递减,当x <1时,f'(x )≥0,此时函数y=f (x )单调递增.若x 1≥1,x 2≥1,则由|x 1﹣1|<|x 2﹣1|,得x 1﹣1<x 2﹣1,即1≤x 1<x 2,所以f (x 1)>f (x 2).同理若x 1<1,x 2<1,由|x 1﹣1|<|x 2﹣1|,得﹣(x 1﹣1)<﹣(x 2﹣1),即x 2<x 1<1,所以f (x 1)>f (x 2).若x 1,x 2中一个大于1,一个小于1,不妨设x 1<1,x 2≥1,则﹣(x 1﹣1)<x 2﹣1, 可得1<2﹣x 1<x 2,所以f (2﹣x 1)>f (x 2),即f (x 1)>f (x 2). 综上有f (x 1)>f (x 2),即f (2﹣x 1)>f (2﹣x 2), 故选A .【点评】本题主要考查函数的导数与函数的单调性的关系,体现了分类讨论的数学思想,属于中档题.二、填空题13.()2,6-- 14.-2 15.3216.2 三、解答题17.解:(1)因为数列3n n a ⎧⎫⎨⎬⎩⎭是公差为2的等差数列,所以212233a a -=, 则21318a a =+,又12,9,a a 成等比数列,所以()212113189a a a a =+=,解得13a =或19a =-,因为数列3n n a ⎧⎫⎨⎬⎩⎭为正项数列,所以13a =.所以()3212133n n a n n =+-=-, 故()213n n a n =-⋅.(2)由(1)得()21333213n n S n =⨯+⨯++-⋅L , 所以()23131333213n n S n +=⨯+⨯++-⋅L ,所以()231332333213n n n n S S n +⎡⎤-=+⨯+++--⋅⎣⎦L ,即()2133323221313n n n S n +-⨯-=+⨯--⋅-()1136123n n n ++=-+-⋅()12236n n +=-⋅-, 故()1133n n S n +=-⋅+.18.解:(1)由题意可知:3312744256P ⎛⎫=⨯= ⎪⎝⎭.(2)X 的所有可能值为0,1,2,3,4.则()()31,2,3,44k P A k ==,且1234,,,A A A A 相互独立. 故()()1104P X P A ===,()()121P X P A A ==⋅=3134416⨯=,()()1232P X P A A A ==⋅⋅=23194464⎛⎫⨯= ⎪⎝⎭,()()12343P X P A A A A ==⋅⋅⋅=3312744256⎛⎫⨯= ⎪⎝⎭,()()12344P X P A A A A ==⋅⋅⋅=43814256⎛⎫=⎪⎝⎭.从而X 的分布列为所以()139********E X =⨯+⨯+⨯+278152534256256256⨯+⨯=.19.(1)证明:因为,G H 分别为,AC BC 的中点, 所以AB GH ∥,且GH ⊂平面FGH ,AB ⊄平面FGH ,所以AB ∥平面FGH .又因为,F G 分别为,PC AC 的中点,所以有GF AP ∥,FG ⊂平面FGH , 且AP ⊄平面FGH ,所以AP ∥平面FGH . 又因为AP AB A =I ,所以平面ABP ∥平面FGH . 因为BD ⊂平面ABP ,所以BD ∥平面FGH .(2)解:在平面ABC 内过点C 作CM AB ∥,如图所示,以C 为原点,,,CB CM CF 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系C xyz -.由ABC ∆为等腰直角三角形知BG AC ⊥,又BG C F ⊥,AC CF C =I ,所以有BG ⊥平面PAC .设CF a =,则()2,0,0B ,()1,1,0G -,所以()1,1,0BG =--uuu r为平面PAC 的一个法向量.又()0,0,F a ,()1,0,0H ,所以()1,0,FH a =-uuu r ,()1,1,FG a =--uuu r,设(),,m x y z =u r 为平面FGH 的一个法向量,则有0m FH m FG ⎧⋅=⎪⎨⋅=⎪⎩u r uuu r u r uu u r,即有0x az x y az -=⎧⎨--=⎩,所以可取(),0,1m a =u r .由1cos ,2m BG ==u r uu u r,得1a =,从而22a =. 所以棱PC 的长为2.20.解:(1)因为b =,所以2a c =.①因为2PM PN a +=,所以点,M N 为椭圆的焦点,所以,22214r c a ==. 设()00,P x y ,则0b x b -≤≤,所以0012PMN S r y a y ∆=⋅=, 当0y b =时,()max 12PMN S ab ∆== 由①,②解得2a =,所以b =1c =,所以圆O 的方程为221x y +=,椭圆E 的方程为22143x y +=. (2)①当直线l 的斜率不存在时,不妨取直线l 的方程为1x =,解得31,2A ⎛⎫⎪⎝⎭,31,2B ⎛⎫- ⎪⎝⎭,3AB =.②当直线l 的斜率存在时,设直线l 的方程为y kx m =+,()11,A x kx m +,()22,B x kx m +.因为直线l1=,即221m k =+,联立22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 可得()2224384120k x kmx m +++-=, ()224843k m ∆=+-=()248320k +>,122843kmx x k +=-+,212241243m x x k -=+.AB ===24k+=令2134t k =+,则214034t k <=≤+,所以AB =,403t <≤,所以AB =33AB <≤.综上,AB 的取值范围是⎛ ⎝⎦.21.解:(1)由9180x -=得2x =,∴切点为()2,0. ∵()2312f x x x a '=-+,∴()2129f a '=-=,∴21a =,又()282420f a b =-++=,∴26b =-,()3262126f x x x x =-+-. (2)由()9f x x k <+得()9k f x x >-=3262126x x x -+-,设()3261226g x x x x =-+-,()()2344g x x x '=-+=()2320x ->对()2,5x ∈恒成立,∴()g x 在()2,5上单调递增,∴()59k g ≥=.∵()()32612892f x x x x x =-+-+-=()()3292x x -+-,∴由()()21210kx x f x -<对()2,5x ∈恒成立得()129102x k x x x -<+-213212x x x -=+-对()2,5x ∈恒成立,设()()21321252x h x x x x -=+<<-,()()22213132x x h x x x -+'=-, 当25x <<时,213130x x -+<,∴()0h x '<,∴()h x 单调递减,∴()165105k h ≤=,即12k ≤. 综上,k 的取值范围为[]9,12.22.解:(1)∵3cos ρθ=,∴23cos ρρθ=,∴223x y x +=,即223924x y ⎛⎫-+= ⎪⎝⎭,∴圆C 的参数方程为33cos ,223sin 2x y αα⎧=+⎪⎪⎨⎪=⎪⎩(α为参数).(2)由(1)可设333cos ,sin 222P θθ⎛⎫+ ⎪⎝⎭,[)0,2θπ∈,sin 3πρθ⎛⎫-= ⎪⎝⎭0y -+=, 则P到直线sin 3πρθ⎛⎫-= ⎪⎝⎭=3sin 23πθ⎛⎫-=⎪⎝⎭, ∴sin 03πθ⎛⎫-= ⎪⎝⎭,∵[)0,2θπ∈,∴3πθ=或43π,故3ACP π∠=或23ACP π∠=. 23.解:(1)由()f x a >,得3121x x ->+, 不等式两边同时平方得,22961441x x x x -+>++, 即2510x x >,解得0x <或2x >.所以不等式()f x a >的解集为()(),02,-∞+∞U .(2)设()3121g x x x =--+=12,2115,2312,3x x x x x x ⎧-≤-⎪⎪⎪--<<⎨⎪⎪-≥⎪⎩,作出()g x 的图象,如图所示,因为()()020g g ==,()()()34213g g g <=<-=, 又恰好存在4个不同的整数n ,使得()0f n <,所以()()30,40,f f <⎧⎪⎨≥⎪⎩即1020a a +<⎧⎨+≥⎩,故a 的取值范围为[)2,1--.。

2019年福建省中等职业学校学生学业水平考试数学模拟试卷(三)及参考答案

2019年福建省中等职业学校学生学业水平考试数学模拟试卷(三)及参考答案

2019年福建省中等职业学校学生学业水平考试数学模拟试卷(三)第一部分选择题一、单项选择题(本大题共15小题,每小题3分,共45分)1.集合{0,1}的真子集共有_____个,A .1 B. 2 C .3 D .42.不等式3x -6>0的解集是A .}2{<x xB .}2{->x xC .}2{>x xD .}22{>-<x x x 或3.已知函数的解析式为:12-=x y ,则它的定义域是 A .{1≠∈x R x x 且} B . RC .{0≠∈x R x x 且} D.}1{>x x4.以下各数列中,为等差数列的是A .5,4, 3, 2,1B 1,21,31,41,51,…… C .1, 2, 4, 8, 16,… D. -1,1, -1,1,-1,…5.计算cos100 的值,结果是A .正的B .负的C 。

正负号无法判断D .不存在的6.空间中垂直于同一条直线的两条直线的位置关系是A .平行B .相交C .平行或相交D .平行、相交或异面7.集合{41≤<-x x }可用区间的符号表示为A .(一1,4)B .[一1,4)C .(一∞,-1)U[4,+∞)D .(一1,4]8.数列 ,,,,,625516493421,的一个通项公式是 A 12+=n n a n B .12+=n n a n C .n n a n 22= D .112+-=n n a n )( 9.已知点A(l ,0),B(2,3),则线段AB 的长度是 A.32 B .(2323,) C .10 D. 10 10.函数)(x f y =的图像如下图所示,那么函数的增区间是A .[一5,- 3]B .[一3,0]C .[一3,2]D .[一l ,2]11.任意抛掷一颗骰子,出现的点数至少是5点的概率是A .31B .21C .65 D .1 12.已知三个数l ,m ,4组成的数列是等比数列,则m 的值为A .2B .2.5C .3D .D .2或-213.以下关于平面向量→a =(1,-2)和→b =(一2,4)的关系的判断,正确的是A.不是共线向量 B .互为负向量 C .方向相同 D.方向相反14.已知一个球的半径是2厘米,那么该球的表面积积是 平方厘米.A. π4B. π8C. π16D. π3215.从3个白球7个黑球中随机抽取4个球,下列事件中,必然事件是A.抽到的全是黑球 B .抽到的全是白球C .抽到的有白球也有黑球D .抽到的至少有一个黑球第二部分非选择题二、填空题(本大题共5小题,每小题3分,共15分)16.不等式)3(1-+x x )(>0的解集是 ·17.已知函数)(x f y =是区间(一∞,十∞)上的奇函数,且f (2)=一5,那么 f (-2)= .18.如图,已知PA ⊥平面α,垂足为A ,α⊆AB ,且AB =3,PB =23,则斜线PB 与平面α所成的角是 度。

(完整版)2019对口高职高考数学模拟试卷(2018.11.15)

(完整版)2019对口高职高考数学模拟试卷(2018.11.15)
2019 对口高职高考数学模拟试卷 (2018.11.15)
一、 选择题
1.已知集合 A={x | -2 < x ≤ 5}, 集合 B={x |-3 ≤ x < 0}, 则 A ∪B=( ) A. {x |-2 < x < 0} B. {x |-3 ≤x ≤ 5} C. {x |-2 < x ≤ 5} D. {x |-3 ≤x < 0}

2. 抛 物 线 y 2 =-8x 上 一 点 P 到 焦 点 的 距 离 为 3 , 则 点 P 的 横 坐 标


3.数列{an}的前 n 项和 Sn =2n2 +n, 那么它的通项公式为

4. 在? ABC中, a=15,b=10, ∠ A = 60 0, 则 sinB=

5. 若角 α的终边经过两直线 3x-2y+5=0 和 x+y-5=0 的交点 P, 则∝的正弦值
6.设双曲线
y2 a2
-
x 2=1 的焦点分别为
3
F1 ,F2
,离心率为
2;
(1)求双曲线的标准方程及渐近线 l 1,l 2的方程。
( 2)若 A,B 分别是 l1,l2 上的动点,且 2|AB|=5|F1F2 | ,求线段 AB 中点 M
的轨迹方程。
2.已知
osα=
(
).
25
A. 4 B. 7
C.
12
D.-
7
5
25
25
25
3.函数 y=√log 2 (1 - x) 的定义域为( )。
A. (- ∞,1) B. (- ∞,0] C.[0,1 ) D.R
4.直线 2x-ay+3=0 与直线 4x+2y-1=0 垂直,则 a 的值为( )。 A. 2 B. -2 C. -4 D.4

2019年广东省高等职业院校招生中等职业学校高考数学试卷(真题)和答案

2019年广东省高等职业院校招生中等职业学校高考数学试卷(真题)和答案

2019年广东省高等职业院校招收中等职业学校毕业生考试数 学班级 学号 姓名本试卷共4页,24小题,满分150分,考试用时120分钟一、选择题:(本大题共15小题,每小题5分,满分75分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.已知集合{}{}0,2,1,0,1<=-=x x B A ,则A B =I ( )A 、 {}2,1B 、 {}1-C 、{}1,1-D 、 {}0,1,22.函数)2lg(+=x y 的定义域是 ( )A 、),2(+∞-B 、),2[+∞-C 、)2,(--∞D 、]2,(--∞3.不等式0)5)(1(>-+x x 的解集是 ( )A 、]5,1(-B 、)5,1(-C 、[)+∞--∞,5]1,(YD 、),5(]1,(+∞--∞Y4.已知函数R x x f y ∈=是)(上的增函数,则下列关系正确的是 ( ) A 、)3()2(f f >- B 、)3()2(f f < C 、 )3()2(-<-f f D 、)0()1(f f >-5.某职业学习有两个班,一班有30人,二班有35人,从两个班选一个去参加技能大赛,则不同的选择方案有 ( ) A 、30 B 、35 C 、65 D 、10506.”“1>a 是 ”“1->a 的 ( ) A 、必要非充分条件 B 、充分非必要条件 C 、充分必要条件 D 、即非充分非必要条件7.已知向量,),1,3(),3,(b a b x a ρρρρ⊥=-=若则=x ( )A 、9-B 、1-C 、1D 、98..双曲线1162522=-y x 的焦点坐标是( )A 、)0,3(),0,3(-B 、)0,41(),0,41(-C 、)3,0(),3,0(-D 、)41,0(),41,0(- 9.袋中有2个红球,2个白球,红球和白球除颜色外,外形,质量完全相同,现取出球,取得全是红球的概率是( )A 、61 B 、21 C 、31 D 、3210.若)(,13)(2R b bx x x f ∈-+=是偶函数,则)1(-f =( )A 、4B 、4-C 、2D 、2-11.若等差数列{}n a 的前n 项和)(2R a a n S n ∈+=,则=a ( )A 、2B 、0C 、1-D 、2 12.已知=+∈=)cos(),,2(,21sin απππαα则( )A 、23-B 、21-C 、23D 、21 13.已知函数⎩⎨⎧≤>=0,100,lg )(13x x x x f x,若t f =)101(,则=)(t f ( )A 、1B 、101 C 、1- D 、114.抛物线x y 42=上一点P 到其焦点F 的距离为3,则点P 到y 轴的距离( )A 、1B 、2C 、3D 、415.直线1C 的方程为033=--y x ,直线2C 的倾斜角是直线1C 的2的倍,且2C 经过坐标原点O ,则直线2C 的方程为( )A 、032=-y xB 、032=+y xC 、03=-y xD 、03=+y x二、填空题:(本大题共5个小题,每小题5分,满分25分。

2019年高考数学仿真押题试卷(十九)(含答案解析)

2019年高考数学仿真押题试卷(十九)(含答案解析)

专题19 高考数学仿真押题试卷(十九)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合[1A =-,1],,则(AB = )A .(0,1)B .(0,1]C .(1,1)-D .[1-,1]【解析】解:(0,1)B =;.【答案】A .2.已知z 的共轭复数是z ,且为虚数单位),则复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【解析】解:设,,∴,∴,解得:322x y ⎧=⎪⎨⎪=-⎩,复数z 在复平面内对应的点为3(,2)2-,此点位于第四象限.【答案】D .3.已知向量(1,3)a =,||3b =,且a 与b 的夹角为3π,则|2|(a b += )A .5B C .7D .37【解析】解:由题可得:向量(1,3)a =,||2a =,所以,所以,.【答案】B .4.已知函数,若,则实数a 的取值范围是( )A .[2-,1]B .[1-,2]C .(-∞,2][1-,)+∞D .(-∞,1][2-,)+∞【解析】解:函数,在各段内都是减函数,并且01e -=,,所以()f x 在R 上递减,又,所以,解得:21a -剟, 【答案】A .5.下图的程序框图的算法思路源于我国古代数学名著《数书九章》中的“中国剩余定理”.已知正整数n 被3除余2,被7除余4,被8除余5,求n 的最小值.执行该程序框图,则输出的(n )A .50B .53C .59D .62【解析】解:【方法一】正整数n 被3除余2,得32n k =+,k N ∈; 被8除余5,得85n l =+,l N ∈; 被7除余4,得74n m =+,m N ∈; 求得n 的最小值是53.【方法二】按此歌诀得算法如图, 则输出n 的结果为按程序框图知n 的初值为1229,代入循环结构得,即输出n 值为53. 【答案】B .6.已知函数,将函数()f x 的图象向左平移(0)m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( ) A .6πB .4π C .3π D .2π 【解析】解:,将函数()f x 的图象向左平移m 个单位长度后,得到函数的图象,又所得到的图象关于y 轴对称,所以,即6m k ππ=+,k Z ∈,又0m >,所以当0k =时,m 最小为6π. 【答案】A .7.已知命题p :函数21()21x x f x -=+是定义在实数集上的奇函数;命题q :直线0x =是13()g x x =的切线,则下列命题是真命题的是( ) A .p q ∧B .q ⌝C .()p q ⌝∧D .p ⌝【解析】解:,即()f x 是奇函数,故命题p 是真命题,函数的导数,当0x =时,()g x '不存在,此时切线为y 轴,即0x =,故命题q 是真命题,则p q ∧是真命题,其余为假命题, 【答案】A .8.已知双曲线的渐近线与相切,则双曲线的离心率为(= )A .2B C D 【解析】解:取双曲线的渐近线by x a=,即0bx ay -=. 双曲线22221(x y a b-= 0a >,0)b >的渐近线与相切,∴圆心(2,0)到渐近线的距离d r =, ∴1=,化为2b c =,两边平方得,化为2234c a =.∴c e a =【答案】D .9.我国明代著名乐律学家、明宗室王子朱载堉在《律学新说》中提出的十二平均律,即是现代在钢琴的键盘上,一个八度音程从一个c 键到下一个1c 键的8个白键与5个黑键(如图)的音频恰成一个公比为的等比数列的原理,也即高音c 的频率正好是中音c 的2倍.已知标准音1a 的频率为440Hz ,那么频率为的音名是( )A .dB .fC .eD .#d【解析】解:从第二个单音起,每一个单音的频率与它的左边一个单音的频率的比1122.故从g 起,每一个单音的频率与它右边的一个单音的比为1122q -=由,解得7n =,频率为的音名是(#d ), 【答案】D . 10.函数的大致图象是( )A .B .C .D .【解析】解:当0x <时,,0x e >,所以()0f x >,故可排除B ,C ;当2x =时,f (2)230e =-<,故可排除D . 【答案】A .11.利用Excel 产生两组[0,1]之间的均匀随机数:(a rand = ),(b rand = ):若产生了2019个样本点(,)a b ,则落在曲线1y =、y =和0x =所围成的封闭图形内的样本点个数估计为( ) A .673B .505C .1346D .1515【解析】解:由曲线1y =、y =和0x =所围成的封闭图形的面积为,所以,则落在曲线1y =、y 0x =所围成的封闭图形内的样本点个数估计为,【答案】A .12.已知点P 为直线:2l x =-上任意一点,过点P 作抛物线的两条切线,切点分别为1(A x ,1)y 、2(B x ,2)y ,则12(x x = )A .2B .24pC .2pD .4【解析】解:不妨设(2,0)P -,过P 的切线方程设为(2)y k x =+, 代入抛物线方程得,又0k ≠,故124x x =.【答案】D .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.若整数x 、y 满足不等式组,则y z x =的最小值为 12. 【解析】解:整数x 、y 满足不等式组的可行域如图:三角形区域内的点(2,1)A 、(2,2)B 、(2,3)C 、(1,2)D ,AO 连线的斜率是最小值.则y z x =的最小值为:12. 故答案为:12.14.已知椭圆的焦点为1F 、2F ,以原点为圆心、椭圆的焦距为直径的O 与椭圆C 内切于点P ,则12PF F S= .【解析】解:椭圆的焦点为1F 、2F ,以原点为圆心、椭圆的焦距为直径的O 与椭圆C内切于点P , 可得1b c ==, 所以.故答案为:1.15.定义在R 上的函数()f x 满足,若,且(2)2gl n =-,则1()2g ln = . 【解析】解:根据题意,,则,变形可得,,又由122ln ln =-,且,则,则;故答案为:4.16.已知O 是锐角ABC ∆的外接圆圆心,A 是最大角,若,则m 的取值范围为.【解析】解:由O 是锐角ABC ∆的外接圆圆心, 则点O 为三角形三边中垂线的交点, 由向量投影的几何意义有:,则, 所以则,由正弦定理得:,所以,所以2sin m A =, 又[3A π∈,)2π,所以m ∈2),故答案为:,2).三、解答题:解答应写出文字说明、证明过程或演算步骤.17.在平面四边形ABCD 中,已知34ABC π∠=,AB AD ⊥,1AB =.(1)若AC ABC ∆的面积;(2)若,4AD =,求CD 的长.【解析】解:(1)在ABC ∆中,,,解得BC ,∴.(2),∴,∴在ABC∆中,,∴,,∴CD=18.在某市高三教学质量检测中,全市共有5000名学生参加了本次考试,其中示范性高中参加考试学生人数为2000人,非示范性高中参加考试学生人数为3000人.现从所有参加考试的学生中随机抽取100人,作检测成绩数据分析.(1)设计合理的抽样方案(说明抽样方法和样本构成即可);(2)依据100人的数学成绩绘制了如图所示的频率分布直方图,据此估计本次检测全市学生数学成绩的平均分;(3)如果规定成绩不低于130分为特别优秀,现已知语文特别优秀占样本人数的5%,语文、数学两科都特别优秀的共有3人,依据以上样本数据,完成列联表,并分析是否有99%的把握认为语文特别优秀的同学,数学也特别优秀.参考公式:参考数据:【解析】解:(1)由于总体有明显差异的两部分构成,所以采用分层抽样法,由题意知,从示范性高中抽取(人),从非示范性高中抽取(人);(2)由频率分布直方图估算样本平均数为:,据此估计本次检测全市学生数学成绩的平均分为92.4;(3)由题意知,语文特别优秀学生有5人,数学特别优秀的学生有(人),且语文、数学两科都特别优秀的共有3人,填写列联表如下;计算,所以有99%的把握认为语文特别优秀的同学,数学也特别优秀.19.已知点(0,2)P,点A,B分别为椭圆的左右顶点,直线BP交C于点Q,ABP∆是等腰直角三角形,且35PQ PB=.(1)求C的方程;(2)设过点P 的动直线l 与C 相交于M ,N 两点,O 为坐标原点.当MON ∠为直角时,求直线l 的斜率. 【解析】解:(1)由题意ABP ∆是等腰直角三角形,则2a =,(2,0)B , 设点0(Q x ,0)y ,由35PQ PB =,则065x =,045y =,代入椭圆方程解得21b =,∴椭圆方程为2214x y +=.(2)由题意可知,直线l 的斜率存在,令l 的方程为2y kx =+, 则1(M x ,1)y ,2(N x ,2)y , 则22214y kx x y =+⎧⎪⎨+=⎪⎩,整理可得, ∴△,解得234k >, ,,当MON ∠为直角时,1OM ON k k =-,,则,解得24k =,即2k =±,故存在直线l 的斜率为2±,使得MON ∠为直角. 20.如图,在直三棱柱中,ABC ∆是等腰直角三角形,1AC BC ==,12AA =,点D 是侧棱1AA 的上一点.(1)证明:当点D 是1AA 的中点时,1DC ⊥平面BCD ; (2)若二面角1D BC C --,求AD 的长.【解析】解:(1)证明:由题意:BC AC ⊥且1BC CC ⊥,,BC ∴⊥平面11ACC A ,则1BC DC ⊥. 又D 是1AA 的中点,AC AD =,且90CDA ∠=︒,,同理.,则1DC DC ⊥,1DC ∴⊥平面BCD ;(2)以C 为坐标原点,分别以CA ,CB ,1CC 为x 轴,y 轴,z 轴建立空间直角坐标系. 设AD h =,则(1D ,0,)h ,(0B ,1,0),1(0C ,0,2).由条件易知CA ⊥平面1BC C ,故取(1m =,0,0)为平面1BC C 的法向量. 设平面1DBC 的法向量为(n x =,y ,)z , 则n BD ⊥且1n BC ⊥,,,∴,取1z =,得.由,解得12h =,即12AD =.21.已知函数在0x x =处取得极小值1-.(1)求实数a 的值; (2)设,讨论函数()g x 的零点个数.【解析】解:(1)函数()f x 的定义域为(0,)+∞,,函数在0}x x =处取得极小值1-,∴,得01,1a x =-⎧⎨=⎩当1a =-时,()f x lnx '=,则(0,1)x ∈时,()0f x '<,当(1,)x ∈+∞时,()0f x '> ()f x ∴在(0,1)上单调递减,在(1,)+∞上单调递增,1x ∴=时,函数()f x 取得极小值1-, 1a ∴=-(2)由(1)知,函数,定义域为(0,)+∞,,令()0g x '<,得0x <令()0g x '>,得x >()g x在上单调递减,在)+∞上单调递增,当x ()g x 取得最小值2eb -, 当02e b ->,即2eb >时,函数()g x 没有零点; 当02e b -=,即2eb =时,函数()g x 有一个零点;当02eb -<,即02e b <<时,g (e )0b =>,g g ∴(e )0<存在1x ∈)e ,使1()0g x =,()g x ∴在)e 上有一个零点1x设,则,当(0,1)x ∈时,()0h x '<,则()h x 在(0,1)上单调递减,()h x h ∴>(1)0=,即当(0,1)x ∈时,11lnx x>-, 当(0,1)x ∈时,,取{m x min b =,1},则()0m g x >,,∴存在2(m x x ∈,,使得2()0g x =,()g x ∴在(m x 上有一个零点2x ,()g x ∴在(0,)+∞上有两个零点1x ,2x ,综上可得,当2eb >时,函数()g x 没有零点; 当2eb =时,函数()g x 有一个零点; 当02eb <<时时,函数()g x 有两个零点. 请考生在第22-23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,曲线1C 的参数方程为为参数),以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,点A 为曲线1C 上的动点,点B 在线段OA 的延长线上,且满足,点B 的轨迹为2C .(1)求1C ,2C 的极坐标方程;(2)设点C 的极坐标为(2,)2π,求ABC ∆面积的最小值.【解析】解:(1)曲线1C 的参数方程为为参数),∴曲线1C 的普通方程为,∴曲线1C 的极坐标方程为2cos ρθ=.设B 的极坐标为(,)ρθ,点A 的极坐标为0(ρ,0)θ, 则||OB ρ=,0||OA ρ=,002cos ρθ=,0θθ=,,08ρρ∴=,∴82cos θρ=,cos 4ρθ=,2C ∴的极坐标方程为cos 4ρθ=(2)由题意知||2OC =,,当0θ=时,S ABC 取得最小值为2. [选修4-5:不等式选讲]. 23.已知函数的最小值为t .(1)求实数t 的值; (2)若,设0m >,0n >且满足,求证:.【解析】解:(1),显然,()f x 在(-∞,1]上单调递减,在(1,)+∞上单调递增,(1)2=-,2t ∴=-, 证明(2),,由于0m >,0n >,且1122m n+=,,当且仅当22n mm n=,即当12n =,1m =时取“=”, 故。

2019年河南省普通高等学校对口招收中等职业学校毕业生考试数学全真模拟卷(一)

2019年河南省普通高等学校对口招收中等职业学校毕业生考试数学全真模拟卷(一)

河南省2019年普通高等学校对口招收中等职业学校毕业生考试数学全真模拟试题(一)考生注意:所有答案都要写在答题卡上,写在试题卷上无效一、选择题(每小题3分,共30分。

每小题中只有一个选项是正确的,请将正确选项涂在答题卡上)1.若全集{}{}{}1,2,3,4,5,62,31,3U M N ===,,,则集合{}4,5,6等于A.M NB.M NC.()()U U M ND.()()U U M N2.不等式321x ->的解集为 A.1(,)(1,)3-∞-+∞ B.1(,1)3- C.1(,)(1,)3-∞+∞ D.1(,1)33.函数2232y x x =--的定义域为 A.(,1]-∞ B.11(,)(,1]22-∞-- C.(,2]-∞ D.11(,)(,1]22-∞-- 4.已知445sin cos 9θθ+=,且θ是第二象限的角,则sin 2θ的值是A.23-B.23C.3-D.3 5.若函数log a y x =的图像经过点(2,—1),则底a 等于A.2B.2-C.12D.12- 6.为了得到函数sin()3y x π=+的图像,只需把函数sin y x =的图像上的所有点A.向左平移3π个单位长度B.向右平移3π个单位长度C.向上平移3π个单位长度D.向下平移3π个单位长度7.等差数列{}n a 中公差13579230d a a a a a =++++=,,则10S =A.60B.80C.65D.708.在平行四边形ABCD 中,BA a BC b ==, ,则表示a b -的是A.BDB.DBC.ACD.CA9.某班拟从8名候选人中推选出3名同学参加学生代表大会,8名候选人中有甲、乙两名同学。

假设每名候选人都有相同的机会被选到,则甲、乙两同学都被选为学生代表的概率是 A.314 B.328 C.128 D.15610.在长方体1111ABCD A B C D -中,12,3AB BC AC ===,则该长方体的表面积为A.4B.8C.12D.16二、填空题(每小题3分,共24分)11.已知集合{{},2,1,1,2A x y B ===--,则A B =___________.12.已知不等式3(1,3)x b a -<的解集是,则a =___________,b =___________.13.已知函数()231log log 242019f x a x b x f ⎛⎫=++= ⎪⎝⎭且 ,则()2019f =___________.14.己知{}n a 为等比数列,且85270a a -=,则公比q =___________.15.函数2341y x x =--+的单调递减区间为___________.16.抛物线230x y -=的焦点坐标为___________.17.己知向量()()1,1,2,3a b ==-,若ka b a - 与 垂直,则实数k=___________.18.己知PA 垂直于矩形ABCD 所在平面,且4,6,5PB PC PD ===,则PA 的长是___________.三、计算题(每小题8分,共24分)19.解不等式()()1210x x -++<.20.如图,在三棱柱111ABC A B C -中,E ,F ,G ,H分别是AB ,AC ,A 1B 1,A 1C 1的中点,求证:(1)B ,C ,H ,G 四点共面;(2)平面EF A 1//平面BCHG.21.某电子原件生产厂生产的10件产品中,有8件一级品,2件二级品,一级品和二级品在外观上没有区别,从这10件产品中任意抽检2件,计算:(1)2件都是一级品的概率:(2)至少有一件二级品的概率.四、证明题(每小题6分,共12分)22.在ABC 中,已知22()1a b c bc --=,求证:3A π∠=.23.已知圆方程为()()22238x y -+-=,证明:过点M (4, 1)的圆的切线方程为30x y --=.五、综合题(10分)24.己知抛物线()2:20C y px p =>焦点F 到准线L 的距离为2.(1)求p 的值;(2)过点F 作斜率为1的直线L ’交抛物线于点A ,B ,求AB .。

2019中职数学高考全真模拟题

2019中职数学高考全真模拟题

精品文档石城职校2019对口升学数学高考全真模拟题(一)命题人:赖斌 审核人:李发彬 命题时间:2019.3 份数:95第Ⅰ卷(选择题 共70分)一、是非选择题:本大题共10小题,每小题3分,共30分.对每小题的命题做出判断,对的选A ,错的选B.1、集合A={(2,4)}中含有1个元素 . (A B )2、如果x 2+x +1>0,则x ∈R . (A B )3、f(x)=x x -+-732的定义域是{x 丨23≤x≤7} . (A B ) 4、x=3与y=2为互相垂直两条直线 . (A B ) 5.(x -1)2+y 2=3是以(-1,0)圆心,3为半径的的圆 . (A B )6. 椭圆x 2+52y =1的离心率为552 . (A B )7. 2,<,>=135°,则3=⋅b a ρρ . (A B )8. 已知{a n }的通项公式a n =lg (3n 2+1),则301lg 10=a . (A B ) 9. sin α=sin β是α =β的必要但不充分条件 . (A B ) 10. 在△ABC 中,a=22,b=23,∠A=45°,则∠B=60° . (A B )二、单项选择题:本大题共8小题,每小题5分,共40分。

11、已知集合},102{N x x x A ∈≤≤=,则集合A 中的元素个数为( ). A .6 B .7 C .8 D .912、下列函数中的奇函数是( ).A .23-=x yB .xy 1-= C .22x y = D .x x y -=213、化简log 38÷log 32可得( ).A .log34B .23C .3D .4 14、已知两点)7,2(),3,2(B A -,则线段AB 的长度是( ). A .4 B .24 C .10 D .2 15、函数22()log 2xf x x-=+是( ). A .递增的奇函数 B .递增的偶函数 C .递减的奇函数 D .递减的偶函数16、等差数列}{n a 的公差为2,若421,,a a a 成等比数列,则2a =( ). A .8B .6C .4D .217、在二项式nx x )21(32-的展开式中,只有第5项的二项式系数最大,则展开式中的第 6项是( ). A .61635x -B .61635xC .747x -D .747x 18、若某射手射击一次射中10环,9环,8环,7环的概率分别是0.2,0.3,0.1,0.1,计算这名射手射击一次,则射中10环或9环的概率为( ). A .0.2 B .0.3 C .0.5 D .0.6第Ⅱ卷(非选择题 共80分)三、填空题:本大题共6小题,每小题5分,共30分.19、不等式 |12| 3 x ->的解集为____________________________ .20、圆心坐标为(0,-3),且与x 轴相切的圆的方程为 ;21、已知2=a ρ,1=b ρ,3=⋅b a ρρ,则>=<b a ρρ, ;22、函数lg(1)y x =-的定义域为 (用区间表示);23、过点()0,1-,且垂直于直线240x y +-=的直线方程为 (写一般式). 24、若圆锥母线长为5,圆锥的高为3,则圆锥的体积 ;班级:_____________________姓名:_____________________座位号:_________________***************************密***************封*********************线****************************精品文档四、解答题:本大题共6小题,25~28小题每小题8分,29~30小题每小题9分,共50分.解答应写出过程或步骤.25、求过点P (1,2)且与直线310x y -+=平行的直线方程 .26、求值:(1);31)81(5lg 24lg --++(2)0000tan120cos(60)sin(765)sin 330--27、等比数列{}n a 中,已知142,16a a ==. (1)求数列{}n a 的通项公式;(2)若35,a a 分别为等差数列{}n b 的第3项和第5项,试求数列{}n b 的通项公式 .28、证明函数()x f =xx 1+在区间]1,0(上是减函数 .29、已经圆C 的方程044222=+-++y x y x(1)求该圆的圆心坐标和半径; (2)求过点(0,0)的切线方程 .30、如图,四棱锥P ABCD -的底面ABCD 是正方形,棱PD ⊥底面ABCD ,PD DC ==1,E 是PC 的中点.(1)证明:平面BDE ⊥平面PBC ;(2)求二面角E BD C --的余弦值精品文档。

2019年江苏省高考数学模拟试卷(1)(含附加,详细答案)

2019年江苏省高考数学模拟试卷(1)(含附加,详细答案)

2019年江苏省高考数学模拟试卷(1)(含附加,详细答案)文章中没有明显的格式错误和有问题的段落,因此直接改写每段话。

2019年高考模拟试卷(1)第Ⅰ卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分。

1.已知集合A为{x-1<x<1},集合B为{-1≤x≤2},则AB 的并集为[ -1.2 )。

2.复数z=2i/(1-i)的实部是2/5.3.甲、乙两人下棋,结果是一人获胜或下成和棋。

已知甲不输的概率为0.8,乙不输的概率为0.7,则两人下成和棋的概率为0.06.4.某地区连续5天的最低气温(单位:°C)依次为8,-4,-1,0,2,则该组数据的方差为23.2.5.根据XXX所示的伪代码,当输出y的值为2时,则输入的x的值为e。

6.在平面直角坐标系xOy中,圆x^2+y^2-4x+4y+4=0被直线x-y-5=0所截得的弦长为4.7.如图,三个相同的正方形相接,则XXX∠XXX的值为1.8.如图,四棱锥P-ABCD的底面ABCD是矩形,PA⊥底面ABCD,E为PD上一点,且PE=2ED。

设三棱锥P-ACE的体积为V1,三棱锥P-ABC的体积为V2,则.9.已知F是抛物线C:y=8x的焦点,M是C上一点,FM的延长线交y轴于点N。

若M是FN的中点,则FN的长度为16.10.若函数f(x)为定义在R上的奇函数,当x>0时,f(x)=xlnx,则不等式f(x)<-e的解集为(1/e。

e)。

11.钢材市场上通常将相同的圆钢捆扎为正六边形垛(如图)。

现将99根相同的圆钢捆扎为1个尽可能大的正六边形垛,则剩余的圆钢根数为3.12.如图,在△ABC中,点M为边BC的中点,且AM=2,点N为线段AM的中点,若AB×AC=28,则NB×NC的值为21.13.已知正数x,y满足x+y+1/x+1/y=10,则x+y的最小值是4.14.设等比数列{an}满足:a1=2,an=cos(πn/2)+3sin(πn/2),其中n∈N,且nπ/2∈(0.π/2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

石城职校2019对口升学数学高考全真模拟题(一)
命题人:赖斌 审核人:李发彬 命题时间: 份数:95
第Ⅰ卷(选择题 共70分)
一、是非选择题:本大题共10小题,每小题3分,共30分.对每小题的命题做出判断,对的选A ,错的选B.
1、集合A={(2,4)}中含有1个元素 . (A B )
2、如果x 2+x +1>0,则x ∈R . (A B )
3、f(x)=x x -+-732的定义域是{x 丨
2
3
≤x≤7} . (A B ) 4、x=3与y=2为互相垂直两条直线 . (A B ) 5.(x -1)2+y 2=3是以(-1,0)圆心,3为半径的的圆 . (A B )
6. 椭圆x 2+
52
y =1的离心率为5
5
2 . (A B ) 7.
2,<,>=135°,则3=⋅b a ρ
ρ . (A B )
8. 已知{a n }的通项公式a n =lg (3n 2+1),则301lg 10=a . (A B ) 9. sin α=sin β是α =β的必要但不充分条件 . (A B ) 10. 在△ABC 中,a=22,b=23,∠A=45°,则∠B=60° . (A B )
二、单项选择题:本大题共8小题,每小题5分,共40分。

11、已知集合},102{N x x x A ∈≤≤=,则集合A 中的元素个数为( ). A .6 B .7 C .8 D .9 12、下列函数中的奇函数是( ). A .23-=x y B .x
y 1-
= C .22x y = D .x x y -=2
13、化简log 38÷log 32可得( ). A .log34 B .
2
3
C .3
D .4 14、已知两点)7,2(),3,2(B A -,则线段AB 的长度是( ).
A .4
B .24
C .10
D .2 15、函数2
2()log 2x
f x x
-=+是( ). A .递增的奇函数 B .递增的偶函数 C .递减的奇函数 D .递减的偶函数
16、等差数列}{n a 的公差为2,若421,,a a a 成等比数列,则2a =( ). A .8
B .6
C .4
D .2
17、在二项式n
x x )2
1(32-
的展开式中,只有第5项的二项式系数最大,则展开式中的第 6项是( ). A .61635x -
B .61635x
C .747x -
D .74
7x 18、若某射手射击一次射中10环,9环,8环,7环的概率分别是,,,,计算这名射手射击一次,则射中10环或9环的概率为( ). A . B . C . D .
第Ⅱ卷(非选择题 共
80分)
三、填空题:本大题共6小题,每小题5分,共30分.
19、不等式 |12| 3 x ->的解集为____________________________ . 20、圆心坐标为(0,-3),且与x 轴相切的圆的方程为 ;
21、已知2=a ρ,1=b ρ,3=⋅b a ρρ,则>=<b a ρ
ρ, ;
22、函数lg(1)y x =-的定义域为 (用区间表示);
23、过点()0,1-,且垂直于直线240x y +-=的直线方程为 (写一般式). 24、若圆锥母线长为5,圆锥的高为3,则圆锥的体积 ;
四、解答题:本大题共6小题,25~28小题每小题8分,29~30小题每小题9分,共50分.
解答应写出过程或步骤.
25、求过点P (1,2)且与直线310x y -+=平行的直线方程 .
班级:_____________________姓名:_____________________座位号:_________________
***************************密*********************封*********************线****************************
26、求值:(1);
3
1
)8
1(5lg 24lg --++(2)000
tan120cos(60)sin(765)
sin 330--
27、等比数列{}n a 中,已知142,16a a ==. (1)求数列{}n a 的通项公式;
(2)若35,a a 分别为等差数列{}n b 的第3项和第5项,试求数列{}n b 的通项公式 .
28、证明函数()x f =x
x 1
+在区间]1,0(上是减函数 .
29、已经圆C 的方程04422
2=+-++y x y x
(1)求该圆的圆心坐标和半径; (2)求过点(0,0)的切线方程 .
30、如图,四棱锥P ABCD -的底面ABCD 是正方形,棱PD ⊥底面ABCD ,PD DC ==1,E 是PC 的中点.(1)证明:平面BDE ⊥平面PBC ;(2)求二面角E BD C --的余弦值。

相关文档
最新文档