2021高考数学课标版理数一轮复习讲义+提能作业:第一节 导数的概念及运算 Word版含解析

合集下载

2021年高三数学第一轮复习-导数的概念及运算

2021年高三数学第一轮复习-导数的概念及运算

课题:导数的概念及运算考纲要求:1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);2.掌握函数在一点处的导数的定义和导数的几何意义;3.理解导函数的概念 熟记基本导数公式;4.掌握两个函数和、差、积、商的求导法则;5.了解复合函数的求导法则 会求某些简单函数的导数;6.会求“过点A 的曲线的切线方程”和“在点A 处的切线方程”.教材复习1.导数的定义000000()()()()()lim lim x o x x f x x f x f x f x f x x x x ∆→→+∆--'==∆-.2.导数的几何意义:曲线)(x f y =上点()(,00x f x )处的切线的斜率即0()k f x ='.切线方程为 000()()()y f x f x x x -='-,其中切点P ()(,00x f x ).要注意“过点A 的曲线的切线方程”与“在点A 处的切线方程”是不尽相同的,后者A 必为切点,前者未必是切点.3.几种常见函数的导数:0'=C (C 为常数);1)'(-=n n nxx (Q n ∈);x x cos )'(sin =; x x sin )'(cos -=;1(ln )x x '=, 1(log )log a a x e x '=; ()x x e e '= , ()ln x x a a a '=.4.求导法则:法则1 [()()]()()u x v x u x v x ±'='±'.法则2 [()()]()()()()u x v x u x v x u x v x '='+', [()]'()Cu x Cu x '=法则3: '2''(0)u u v uv v v v -⎛⎫=≠ ⎪⎝⎭5.复合函数的求导法则:复合函数(())y f g x =的导数和函数()y f u =,()u g x =的导数间的关系为'''x u x y y u =⋅.典例分析:题型一 利用导数的定义解题问题1 已知000(2)()lim 13x f x x f x x →--=△△△,求0()f x '练习:1.若0()2f x '=,求0lim →k k x f k x f 2)()(00--.题型二 导数的计算问题2.求下列函数的导数:()1 ln x y e x =⋅ ()2 11x x e y e +=-()3sin 1cos x y x =+ ()4()21sin cos y x x x x =-⋅+⋅()532x x x y e e =⋅-+ ()6()()33421y x x x =-⋅-问题3.求下列复合函数的导数. ()1()323y x =-; ()2y =;()3sin 23y x π⎛⎫=+ ⎪⎝⎭; ()4()ln 25y x =+练习:1.设()ln f x x x =,若0()2f x '=,则0x = .2.已知2()2(2)f x x xf =+',则(2)f '= . 3.已知函数()()cos sin 4f x f x x π='+则()4f π= .题型三 导数的几何意义的应用:求曲线切线的方程问题3.已知函数45)(2+-=x x x f .()1求曲线()f x 在2x =处的切线方程;()2求经过点)0,0(O 的曲线()f x 的切线方程.问题4.(1)已知曲线mx y +=331的一条切线方程是44y x =-,则m 的值为 .(2)若曲线2y x ax b =++在()0,b 处的切线方程是10x y -+=,则.A 1,1a b == .B 1,1a b =-= .C 1,1a b ==- .D 1,1a b =-=-练习:1.曲线32242y x x x =--+在点(13)-,处的切线方程是 .2.(1)过原点作曲线x y e =的切线,则切点的坐标为 ,切线的斜率为 .(2) 已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为 .(3) 曲线324y x x =-+在点(13),处的切线的倾斜角为 .(4) 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是122y x =+,则(1)(1)f f '+= .3.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 .4.曲线12xy e =在点()24,e 处的切线与坐标轴所围三角形的面积为( ).A 29e 2 .B 24e .C 22e .D 2e5.设0()sin f x x =,10()()f x f x =',21()()f x f x =',…,1()()n n f x f x +=',n N ∈,则=)(2017x f ( ) .A sin x .B sin x - .C cos x .D cos x -6.已知322()()3f x x f x x =+'-,则()f x 在点22,33f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线方程是 .7.若存在过点()1,0的直线与曲线3y x =和21594y ax x =+-都相切,则a =8.已知点P 在曲线41x y e =+上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( ).A [0,4π) .B [,)42ππ .C 3(,]24ππ .D 3[,)4ππ9.已知a 为常数,若曲线23ln y ax x x =+-存在与直线10x y +-=垂直的切线,则实数 a 的取值范围是( ).A 1,2⎡⎫-+∞⎪⎢⎣⎭ .B 1,2⎛⎤-∞- ⎥⎝⎦ .C [)1,-+∞ .D (],1-∞-。

高考数学一轮复习专题3.1导数的概念及运算定积分知识点讲解理科版含解析

高考数学一轮复习专题3.1导数的概念及运算定积分知识点讲解理科版含解析

知识点 7.微积分基本定理
一般地,如果 f(x)是在区间[a,b]上的连续函数,且 F′(x)=f(x),那么 错误!f(x)dx=F(b)-F(a).
b
| 这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.可以把 F(b)-F(a)记为 F(x) ,即 错误!f(x)dx a b
| =F(x) )=F(b)-F(a). a 【特别提醒】
于形如 y=f(ax+b)的复合函数)的导数;
5.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念,几何意义;
6.了解微积分基本定理的含义。
【重点知识梳理】
知识点 1.导数的概念
(1)函数 y=f(x)在 x=x0 处的导数:函数 y=f(x)在 x=x0 处的瞬时变化率 liΔxm→0 Δy=liΔxm→0 Δx
x 【答案】e
【方法技巧】
1.求函数导数的总原则:先化简解析式,再求导.
2.常见形式及具体求导 6 种方法
连乘形式
先展开化为多项式形式,再求导
三角形式 先利用三角函数公式转化为和或差的形式,再求导
分式形式
先化为整式函数或较为简单的分式函数,再求导
根式形式
先化为分数指数幂的形式,再求导
对数形式
先化为和、差形式,再求导
n
n b-a
点ξi(i=1,2,…,n),作和式 ∑ f(ξi)Δx= ∑
f(ξi),当 n→∞时,上述和式无限接近于某个
i=1
i=1 n
常数,这个常数叫做函数 f(x)在区间[a,b]上的定积分,记作 错误!f(x误!f(x)dx 中,a,b 分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,函数 f(x)叫做被
函数 f(x)在闭区间[-a,a]上连续,则有

21高考数学课标理数一轮复习讲义+提能作业:第一节 导数的概念及运算 含解析

21高考数学课标理数一轮复习讲义+提能作业:第一节 导数的概念及运算 含解析

第三章导数及其应用第一节导数的概念及运算1.导数的概念及其几何意义(1)了解导数概念的实际背景.(2)理解导数的几何意义.2.导数的运算(1)能根据导数定义求函数y=C(C为常数),y=x,y=x2,y=1x,y=√x的导数.(2)能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax+b)的复合函数)的导数.1.函数y=f(x)从x1到x2的平均变化率函数y=f(x)从x1到x2的平均变化率为①f(x2)-f(x1)x2-x1,若Δx=x2-x1,Δy=f(x2)-f(x1),则平均变化率可表示为②ΔyΔx.2.函数y=f(x)在x=x0处的导数(1)定义:称函数y=f(x)在x=x0处的瞬时变化率limΔx→0ΔyΔx=limΔx→0f(x0+Δx)-f(x0)Δx为函数y=f(x)在x=x0处的导数,记作f'(x0)或y'|x=x0,即f'(x0)=limΔx→0ΔyΔx=limΔx→0f(x0+Δx)-f(x0)Δx.(2)几何意义:函数f(x)在点x0处的导数f'(x0)的几何意义是在曲线y=f(x)上点③(x0,f(x0))处的④切线的斜率.相应地,切线方程为⑤y-f(x0)=f'(x0)(x-x0).▶提醒 (1)曲线y=f(x)在点P(x 0,y 0)处的切线是指P 为切点,斜率为k=f '(x 0)的切线,是唯一的一条切线.(2)曲线y=f(x)过点P(x 0,y 0)的切线,是指切线经过P,点P 可以是切点,也可以不是切点,而且这样的直线可能有多条.(3)函数y=f(x)在某点处的导数、曲线y=f(x)在某点处切线的斜率和倾斜角,这三者是可以相互转化的.3.函数f(x)的导函数 称函数f '(x)=limΔx →0f(x+Δx)-f(x)Δx为f(x)的导函数,导函数有时也记作y'.4.基本初等函数的导数公式原函数 导函数 f(x)=C(C 为常数) f '(x)=⑥ 0 f(x)=x α(α∈N *) f '(x)=⑦ αx α-1 f(x)=sin x f '(x)=⑧ cos x f(x)=cos x f '(x)=⑨ -sin x f(x)=a x (a>0,且a ≠1)f '(x)=⑩ a x ln a f(x)=e x f '(x)= e x f(x)=log a x (a>0,且a ≠1) f '(x)= 1xlna f(x)=ln xf '(x)= 1x5.导数的运算法则(1)[f(x)±g(x)]'= f '(x)±g'(x) ; (2)[f(x)·g(x)]'= f '(x)g(x)+f(x)g'(x) ; (3)[f(x)g(x)]'=f '(x)g(x)-f(x)g'(x)[g(x)]2(g(x)≠0).1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.2.[af(x)+bg(x)]'=af '(x)+bg'(x).3.函数y=f(x)的导数f '(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了变化方向,其大小|f '(x)|反映了变化快慢,|f '(x)|越大,曲线在这点处的切线越“陡”.1.判断正误(正确的打“√”,错误的打“✕”). (1)f '(x 0)与[f(x 0)]'表示的意义相同.( )(2)与曲线只有一个公共点的直线一定是曲线的切线.( ) (3)曲线的切线不一定与曲线只有一个公共点.( ) (4)若f(x)=f '(a)x 2+ln x(a>0),则f '(x)=2xf '(a)+1x .( )(5)f '(x 0)表示曲线y=f(x)在点A(x 0, f(x 0))处切线的斜率,也可表示函数y=f(x)在点A(x 0, f(x 0))处的瞬时变化率.( )答案 (1)✕ (2)✕ (3)√ (4)√ (5)√ 2.下列求导运算正确的是( ) A.(x +1x )'=1+1x 2 B.(log 2x)'=1xln2 C.(3x )'=3x log 3e D.(x 2cos x)'=-2sin x 答案 B3.有一机器人的运动方程为s(t)=t 2+3t (t 是时间,s 是位移),则该机器人在时刻t=2时的瞬时速度为( ) A.194B.174 C .154 D .134答案 D4.曲线y=cos x-x2在点(0,1)处的切线方程为 .答案 x+2y-2=05.求过点(0,0)与曲线y=e x 相切的直线方程. 解析 设切点坐标为(a,e a ), 又切线过(0,0),则切线的斜率k=e aa , f '(x)=e x ,把x=a 代入得斜率k=f '(a)=e a ,则e a =ea a ,由于e a >0,故a=1, 即切点坐标为(1,e), 所以切线方程为y=ex.导数的计算典例1 求下列函数的导数. (1)y=x 2sin x; (2)y=ln x+1x +log 2x; (3)y=cosx e x;(4)y=3x e x -2x +e; (5)y=tan x; (6)y=√x .解析 (1)y'=(x 2)'sin x+x 2(sin x)'=2xsin x+x 2cos x. (2)y'=(lnx +1x)'+(log 2x)'=(ln x)'+(1x)'+1xln2=1x -1x2+1xln2.(3)y'=(cosx e x)'=(cosx)'e x -cosx(e x )'(e x )2=-sinx+cosxe x.(4)y'=(3x e x )'-(2x )'+e'=(3x )'e x +3x (e x )'-(2x )'=3x ln 3·e x +3x e x -2x ln 2=(ln 3+1)·(3e)x -2x ln 2. (5)y'=(sinx cosx )'=(sinx)'cosx -sinx(cosx)'cos 2x=cosxcosx -sinx(-sinx)cos 2x=1cos 2x .(6)y'=(x 12)'=12x -12=2√x .方法技巧1.求导数的总原则:先化简函数的解析式,再求导.2.具体方法:(1)遇到连乘的形式,先展开化为多项式形式,再求导;(2)遇到根式形式,先化为分数指数幂,再求导;(3)遇到复杂的分式,先将分式化简,再求导;(4)遇到三角函数形式,先利用三角恒等变换对函数变形,再求导;(5)遇到复合函数,先确定复合关系,再由外向内逐层求导,必要时可换元.▶提醒对解析式中含有导数值的函数,即解析式类似于f(x)=f'(x0)g(x)+h(x)(x0为常数)的函数,解决这类问题的关键是明确f'(x0)是常数,其导数值为0.因此先求导数f'(x),再令x=x0,即可得到f'(x0)的值,进而得到函数的解析式,求得所求导数值.1-1f(x)=x(2018+ln x),若f'(x0)=2019,则x0等于()A.e2B.1C.ln2D.e答案B1-2已知函数f(x)=axln x,x∈(0,+∞),其中a为实数,f'(x)为f(x)的导函数,若f'(1)=3,则a=.答案31-3已知函数f(x)的导函数为f'(x),且满足f(x)=2xf'(1)+ln x,则f'(1)=.答案-1解析∵f(x)=2xf'(1)+ln x,∴f'(x)=2f'(1)+1,x∴f'(1)=2f'(1)+1,即f'(1)=-1.导数的几何意义命题方向一求曲线的切线方程典例2曲线y=3(x2+x)e x在点(0,0)处的切线方程为.答案3x-y=0解析y'=3(2x+1)e x+3(x2+x)e x=3(x2+3x+1)e x,所以切线的斜率k=y'|x=0=3,则曲线y=3(x2+x)e x在点(0,0)处的切线方程为y=3x,即3x-y=0.命题方向二求参数的值(取值范围)典例3已知曲线y=ae x+xln x在点(1,ae)处的切线方程为y=2x+b,则()A.a=e,b=-1B.a=e,b=1C.a=e -1,b=1D.a=e -1,b=-1 答案 D解析 ∵y'=ae x +ln x+1,∴切线的斜率k=y'|x=1=ae+1=2,∴a=e -1,将(1,1)代入y=2x+b,得2+b=1,b=-1.故选D.典例4 直线 y=kx+b 是曲线y=ln x+2的切线,也是曲线y=ln(x+1)的切线,求b 的值.解析 设直线y=kx+b 与曲线y=ln x+2的切点的横坐标为x 1,与曲线y=ln(x+1)的切点的横坐标为x 2,所以曲线y=ln x+2在相应切点处的切线为y=1x 1·x+ln x 1+1,曲线y=ln(x+1)在相应切点处的切线为y=1x2+1·x+ln(x 2+1)-x 2x 2+1,所以{k =1x 1=1x 2+1,b =ln x 1+1=ln(x 2+1)-x 2x 2+1,解得{x 1=12,x 2=-12,于是b=ln x 1+1=1-ln 2.规律总结导数的几何意义的应用及求解思路(1)求切线方程时,注意区分曲线在某点处的切线和曲线过某点的切线,曲线y=f(x)在点P(x 0, f(x 0))处的切线方程是y-f(x 0)=f '(x 0)(x-x 0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.(2)已知切线方程(或斜率)求切点的一般思路是先求函数的导数,然后让导数等于切线的斜率,从而求出切点的横坐标,将横坐标代入函数解析式求出切点的纵坐标.(3)已知切线方程(或斜率)求参数值的关键就是列出函数的导数等于切线斜率的方程. (4)函数图象在某一点处的切线斜率的变化情况反映函数图象在相应点处的变化情况,由切线的倾斜程度可以判断出函数图象升降得快慢.(5)求两条曲线的公切线的方法:①利用其中一条曲线在某点处的切线与另一条曲线相切,列出关系式求解. ②利用公切线得出关系式.设公切线l 在曲线y=f(x)上的切点P 1(x 1,y 1),在曲线y=g(x)上的切点P 2(x 2,y 2),则f '(x 1)=g'(x 2)=f(x 1)-g(x 2)x 1-x 2.2-1 已知直线y=-x+1是函数f(x)=-1a ·e x 图象的切线,则实数a= .答案 e 2解析 设切点为(x 0,y 0), 则f '(x 0)=-1a ·e x 0=-1,∴e x 0=a,又-1a ·e x 0=-x 0+1, ∴x 0=2,∴a=e 2.2-2 已知曲线f(x)=x 3+ax+14在x=0处的切线与曲线g(x)=-ln x 相切,求a 的值. 解析 由f(x)=x 3+ax+14得,f(0)=14, f '(x)=3x 2+a,则f '(0)=a,∴曲线y=f(x)在x=0处的切线方程为y-14=ax.设直线y-14=ax 与曲线g(x)=-ln x 相切于点(x 0,-ln x 0),又g'(x)=-1x , ∴{-ln x 0-14=ax 0,①a =-1x 0,②将②代入①得ln x 0=34, ∴x 0=e 34, ∴a=-1e 34=-e -34.A 组 基础题组1.已知函数f(x)=log a x(a>0且a ≠1),若f '(1)=-1,则a=( ) A.e B.1e C.1e 2 D .12 答案 B2.已知曲线y=x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( ) A.3 B.2 C.1 D.12答案 A3.已知曲线y=ln x 的某条切线过原点,则此切线的斜率为( ) A.e B.-e C.1e D.-1e答案 C y=ln x 的定义域为(0,+∞),设切点为(x 0,y 0),则k=y'|x=x 0=1x 0,所以切线方程为y-y 0=1x 0(x-x 0),又切线过点(0,0),代入切线方程得y 0=1,则x 0=e,所以k=y'|x=x 0=1x 0=1e .4.已知函数f(x)=e x ln x, f '(x)为f(x)的导函数,则f '(1)的值为 . 答案 e解析 由函数的解析式可得f '(x)=e x ×ln x+e x ×1x =e x (lnx +1x),则f '(1)=e 1×(ln1+11)=e,即f '(1)的值为e.5.(2019湖北宜昌联考)已知f '(x)是函数f(x)的导数, f(x)=f '(1)·2x +x 2,则f '(2)= . 答案41-2ln2解析 易知f '(x)=f '(1)·2x ln 2+2x,所以f '(1)=f '(1)·2ln 2+2,解得f '(1)=21-2ln2,所以f '(x)=21-2ln2·2x ln 2+2x,所以f '(2)=21-2ln2×22×ln 2+2×2=41-2ln2. 6.曲线y=2ln x 在点(1,0)处的切线方程为 .答案y=2x-27.已知a∈R,设函数f(x)=ax-ln x的图象在点(1,f(1))处的切线为l,则l在y轴上的截距为.答案1解析由题意可得f(1)=a,则切点为(1,a),因为f'(x)=a-1x,所以切线l的斜率k=f'(1)=a-1,则切线l的方程为y-a=(a-1)(x-1),令x=0,可得y=1,故l在y轴上的截距为1.8.(2018课标全国Ⅲ,14,5分)曲线y=(ax+1)e x在点(0,1)处的切线的斜率为-2,则a=. 答案-3解析设f(x)=(ax+1)e x,则f'(x)=(ax+a+1)e x,所以曲线在点(0,1)处的切线的斜率k=f'(0)=a+1=-2,解得a=-3.9.若曲线f(x)=xsin x+1在x=π2处的切线与直线ax+2y+1=0垂直,则实数a=.答案2解析因为f'(x)=sin x+xcos x,所以f'(π2)=sinπ2+π2·cosπ2=1.又直线ax+2y+1=0的斜率为-a2,所以1×(-a2)=-1,解得a=2.10.已知曲线y=x+ln x在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=.答案8解析令f(x)=x+ln x,于是有f'(x)=1+1x,由于f'(1)=2,所以曲线y=x+ln x在点(1,1)处的切线的斜率k=2,则曲线y=x+ln x在点(1,1)处的切线方程为y-1=2(x-1),即y=2x-1,由于切线与曲线y=ax2+(a+2)x+1相切,故将y=ax2+(a+2)x+1与y=2x-1联立,得ax2+ax+2=0,因为a≠0,两线相切于一点,所以Δ=a2-8a=0,解得a=8.11.在平面直角坐标系xOy中,P是曲线y=x+4x(x>0)上的一个动点,则点P到直线x+y=0的距离的最小值是.答案4解析由y=x+4x (x>0),得y'=1-4x2(x>0),设斜率为-1的直线与曲线y=x+4x(x>0)相切于点(x0,x0+4x0),由1-4x02=-1得x0=√2(x0=-√2舍去),∴曲线y=x+4x(x>0)上的点P(√2,3√2)到直线x+y=0的距离最小,最小值为√2+3√2|√12+12=4.12.函数f(x)=e x(ax+b)-x2-4x的图象在点(0,f(0))处的切线方程是y=4x+4,求a,b.解析f'(x)=e x(ax+a+b)-2x-4,由已知得f(0)=4,f'(0)=4,故b=4,a+b=8,∴a=4.综上,a=4,b=4.13.(2019湖南长沙模拟)已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标;(3)如果曲线y=f(x)的某一切线与直线y=-14x+3垂直,求切点坐标与切线方程.解析(1)易知点(2,-6)在曲线y=f(x)上,所以点(2,-6)为切点.因为f'(x)=(x3+x-16)'=3x2+1,所以f(x)在点(2,-6)处的切线的斜率为f'(2),f'(2)=13,所以切线的方程为y+6=13(x-2),即y=13x-32.(2)设切点坐标为(x0,y0),则直线l的斜率为f'(x0),f'(x0)=3x02+1,所以直线l的方程为y=(3x02+1)(x-x0)+x03+x0-16,因为直线l过原点,所以0=(3x02+1)(0-x0)+x03+x0-16,整理得,x03=-8,所以x0=-2,所以y0=(-2)3+(-2)-16=-26,f'(x0)=3×(-2)2+1=13.所以直线l的方程为y=13x,切点坐标为(-2,-26).(3)因为切线与直线y=-14x+3垂直,所以切线的斜率k=4.设切点的坐标为(x0,y0),则f'(x0)=3x02+1=4,所以x0=±1.所以{x 0=1,y 0=-14或{x 0=-1,y 0=-18,即切点坐标为(1,-14)或(-1,-18),切线方程为y=4(x-1)-14或y=4(x+1)-18,即y=4x-18或y=4x-14.B 组 提升题组1.已知f(x)=acos x,g(x)=x 2+bx+1,若曲线y=f(x)与曲线y=g(x)在交点(0,m)处有公切线,则a+b=( )A.-1B.0C.1D.2答案 C 依题意得, f '(x)=-asin x,g'(x)=2x+b, f '(0)=g'(0),∴-asin 0=2×0+b,故b=0, ∵m=f(0)=g(0),∴m=a=1,因此a+b=1,故选C.2.若曲线f(x)=ax 2(a>0)与g(x)=ln x 有两条公切线,则a 的取值范围是( )A.(0,1e )B.(0,12e )C.(1e ,+∞)D.(12e ,+∞)答案 D 假设两曲线相切,设其切点为P(m,n),∴f '(m)=2am=g'(m)=1m ,∴2am 2=1,∵点P 在曲线上,∴n=am 2=ln m,∴12=ln m,∴m=e 12,∴a=12e ,当a>12e 时,两曲线相离,∴必然存在两条公切线,∴a ∈(12e ,+∞).3.已知函数f(x)={-x 2+2x,x ≤0,ln(x +1),x >0,若|f(x)|≥ax,则实数a 的取值范围是 . 答案 [-2,0]解析 作出函数y=|f(x)|的图象与直线y=ax,如图所示,当直线在第四象限的部分介于直线l 与x 轴之间时符合题意,直线l 为曲线f(x)的切线,且此时函数y=|f(x)|在第二象限的解析式为y=x 2-2x,则y'=2x-2,因为x ≤0,故y'≤-2,故直线l 的斜率为-2,故只需直线y=ax 的斜率a 介于-2与0之间即可,即a ∈[-2,0].4.已知点M 是曲线y=13x 3-2x 2+3x+1上任意一点,曲线在M 处的切线为l,求:(1)斜率最小的切线方程;(2)切线l 的倾斜角α的取值范围.解析 (1)∵y'=x 2-4x+3=(x-2)2-1,∴当x=2时,y'min =-1,此时y=53,∴斜率最小时的切点为(2,53),斜率k=-1,∴切线方程为3x+3y-11=0.(2)由(1)得切线的斜率k ≥-1,∴tan α≥-1,∵α∈[0,π),∴α∈[0,π2)∪[3π4,π).故α的取值范围是[0,π2)∪[3π4,π).。

2021高考数学(理)一轮复习过关讲义《3.1导数的概念及运算》

2021高考数学(理)一轮复习过关讲义《3.1导数的概念及运算》

f′(x0) 或
y′|
x=x0
,即
f′(x0)

lim
Δx→0
Δy = lim Δx Δx→0
fx0+Δx-fx0. Δx
(2)如果函数 y=f(x)在开区间(a,b)内的每一点处都有导数,其导数值在(a,b)内构成一个新
函数,这个函数称为函数 y=f(x)在开区间(a,b)内的导函数.记作 f′(x)或 y′.
2x-1 2x+1
′=2x+1· 2x-1
2x-1′2x+1-2x-12x+1′ 2x+12

2x+1
4. 4x2-1
3.f(x)=x(2 019+ln x),若 f′(x0)=2 020,则 x0=
.
答案 1
解析 f′(x)=2 019+ln x+x·1=2 020+ln x, x
由 f′(x0)=2 020,得 2 020+ln x0=2 020,∴x0=1.
(2)f′(x0)=[f(x0)]′.( × ) (3)(2x)′=x·2x-1.( × )
(4)若 f(x)=e2x,则 f′(x)=e2x.( × )
题组二 教材改编
2.[P18A 组 T5]若 f(x)=x·ex,则 f′(1)=
.
答案 2e 解析 ∵f′(x)=ex+xex,∴f′(1)=2e.
4.若 f(x)=x2+2x·f′(1),则 f′(0)=
.
答案 -4
解析 ∵f′(x)=2x+2f′(1), ∴f′(1)=2+2f′(1),即 f′(1)=-2, ∴f′(x)=2x-4,∴f′(0)=-4. 思维升华 1.求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,尽量避 免不必要的商的求导法则,这样可以减少运算量,提高运算速度减少差错. 2.(1)若函数为根式形式,可先化为分数指数幂,再求导. (2)复合函数求导,应由外到内逐层求导,必要时可进行换元.

2021届新高考版高考数学一轮复习课件:§4.1 导数的概念及运算(讲解部分)

2021届新高考版高考数学一轮复习课件:§4.1 导数的概念及运算(讲解部分)

例2
设函数f(x)=xm+ax的导函数f
'(x)=2x+1,则数列
f
1 (n)
(n∈N*)的前n项
和是 ( )
A. n
n 1
B. n 2
n 1
C. n
n-1
D. n 1
n
解题导引
要求
f
1 (n)
的前n项和,应先求出f(n),由f
'(x)=mxm-1+a,
f
'(x)=2x+
1,可得
m 2, a 1,
方法总结 若已知曲线y=f(x)过点P(x0,y0),求曲线过点P的切线方程,则需分 点P(x0,y0)是切点和不是切点两种情况求解. (1)当点P(x0,y0)是切点时,切线方程为y-y0=f '(x0)(x-x0). (2)当点P(x0,y0)不是切点时,可分以下几步完成: 第一步:设出切点坐标P'(x1, f(x1)); 第二步:写出曲线在点P'(x1, f(x1))处的切线方程y-f(x1)=f '(x1)(x-x1); 第三步:将点P的坐标(x0,y0)代入切线方程求出x1; 第四步:将x1的值代入方程y-f(x1)=f '(x1)(x-x1),可得过点P(x0,y0)的切线方程.
答案 A
程v=v(t)在t0时刻的瞬时加速度a,即a=v'(t0).
考点二 导数的运算
1.基本初等函数的导数公式
原函数 f(x)=C(C为常数) f(x)=xn(n∈Q*) f(x)=sin x f(x)=cos x f(x)=ax(a>0,且a≠1) f(x)=ex f(x)=logax(a>0,且a≠1)

2021高考数学课标版理数一轮复习讲义+提能作业:第一节 函数及其表示 Word版含解析

2021高考数学课标版理数一轮复习讲义+提能作业:第一节 函数及其表示 Word版含解析

第二章 函数第一节 函数及其表示(1)了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念. (2)在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.(3)了解简单的分段函数,并能简单应用.1.函数与映射的概念函数映射两集合A 、B设A 、B 是两个① 非空数集 设A 、B 是两个② 非空集合对应关系 f:A →B按照某种确定的对应关系f,使对于集合A 中的③ 任意 一个数x,在集合B 中都有④ 唯一确定 的数f(x)与之对应按某种确定的对应关系f,使对于集合A中的⑤ 任意 一个元素x,在集合B 中都有⑥ 唯一确定 的元素y 与之对应名称称f:A →B 为从集合A 到集合B 的一个函数称对应f:A →B 为从集合A 到集合B 的一个映射 记法 y=f(x),x ∈A对应f:A →B2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的⑦定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的⑧值域.(2)函数的三要素:⑨定义域、值域和对应关系.(3)相等函数:若两个函数的⑩定义域相同,且对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示法:表示函数的常用方法:解析法、图象法、列表法.▶提醒判断两个函数是否相同,抓住两点:①定义域是否相同;②对应关系是否相同,其中解析式可以化简,但要注意化简过程的等价性.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.▶提醒一个分段函数的解析式要把每一段写在一个大括号内,各段函数的定义域不可以相交.1.常见的函数的定义域(1)分式函数中分母不等于0.(2)偶次根式函数的被开方式大于或等于0.(3)一次函数、二次函数的定义域为R.(4)y=a x(a>0且a≠1),y=sin x,y=cos x的定义域均为R.,k∈Z}.(5)y=tan x的定义域为{x|x∈R且x≠kπ+π2(6)函数f(x)=x0的定义域为{x|x∈R,且x≠0}.2.基本初等函数的值域(1)y=kx+b(k≠0)的值域是R.(2)y=ax2+bx+c(a≠0)的值域:当a>0时,值域为[4ac-b 24a ,+∞),当a<0时,值域为(-∞,4ac-b24a].(3)y=kx(k≠0)的值域是{y|y≠0}.(4)y=a x(a>0且a≠1)的值域是(0,+∞).(5)y=log a x(a>0且a≠1)的值域是R.1.判断正误(正确的打“√”,错误的打“✕”).(1)函数y=f(x)的图象与直线x=a最多有2个交点.()(2)函数f(x)=x2-2x与g(t)=t2-2t是同一函数.()(3)若两个函数的定义域与值域相同,则这两个函数是相等函数.()(4)若A=R,B={x|x>0},f:x→y=|x|,则对应关系f是从A到B的映射.()(5)分段函数的定义域等于各段定义域的并集,值域等于各段值域的并集.()(6)对于函数f:A→B,其值域是集合B.()答案(1)✕(2)√(3)✕(4)✕(5)√(6)✕2.若函数y=f(x)的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数y=f(x)的图象可能是()答案B3.下面各组函数中为相等函数的是()A.f(x)=√(x-1)2,g(x)=x-1B.f(x)=x-1,g(t)=t-1C.f(x)=2-1,g(x)=√x+1·√x-1D.f(x)=x,g(x)=x 2x 答案 B4.函数f(x)=√2x-1+1x-2的定义域为()A.[0,2)B.(2,+∞)C.[0,2)∪(2,+∞)D.(-∞,2)∪(2,+∞)答案C5.已知f(12x-1)=2x-5,且f(a)=6,则a等于()A.74B.-74C.43D.-43答案A6.若函数f(x)={x2+1,x≤1,2x,x>1,则f(f(3))=.答案139函数、映射概念的理解典例1(1)给出下列四个对应:①A=R,B=R,对应关系f:x→y,y=1x+1;②A={a|12a∈N*},B={b|b=1n,n∈N*},对应关系f:a→b,b=1a;③A={x|x≥0},B=R,对应关系f:x→y,y2=x,x∈A,y∈B;④A={x|x是平面α内的矩形},B={y|y是平面α内的圆},对应关系f:每一个矩形都对应它的外接圆.其中是从A到B的映射的为()A.①③B.②④C.①④D.③④(2)下列函数中,与函数y=x+1是相等函数的是()A.y=(√x+1)2B.y=√x33+1C.y=x 2x+1 D.y=2答案(1)B (2)B解析(1)对于①,当x=-1时,y的值不存在,所以①不是从A到B的映射;对于②,A,B是两个集合,分别用列举法表述为A={2,4,6,…},B={1,12,13,14,…},由对应关系f:a→b,b=1知,②是从A到B的映射;③不是从A到B的映射,如A中的元素1对应B中两个元素±1;④是从A 到B的映射.(2)对于A,函数y=(√x+1)2的定义域为{x|x≥-1},与函数y=x+1的定义域不同,不是相等函数;对于B,两个函数的定义域和对应关系都相同,是相等函数;对于C,函数y=x 2x+1的定义域为{x|x≠0},与函数y=x+1的定义域不同,不是相等函数;对于D,两个函数的定义域相同,但对应关系不同,不是相等函数,故选B.方法技巧1.定义域和值域都相同的两个函数不一定是同一函数.2.判断一个从集合A到集合B的对应是不是一个函数(映射)的依据可归纳为可以一对一,也可以多对一,但不能一对多.1-1下列对应关系:①A={1,4,9},B={-3,-2,-1,1,2,3},f:x→x的平方根;②A=R,B=R,f:x→x的倒数;③A=R,B=R,f:x→x2-2;④A={-1,0,1},B={-1,0,1},f:x→x2.其中是A到B的映射的是()A.①③B.②④C.③④D.②③答案C1-2下列四组函数中,表示相等函数的一组是()A.f(x)=|x|,g(x)=√x2B.f(x)=√x2,g(x)=(√x)2C.f(x)=x 2-1x-1,g(x)=x+1D.f(x)=√x+1·√x-1,g(x)=2-1答案 A函数的定义域命题方向一 具体函数的定义域考法一 已知函数解析式,求函数定义域典例2 (1)函数f(x)=√x +1+lg(6-3x)的定义域为( ) A.(-∞,2)B.(2,+∞)C.[-1,2)D.[-1,2](2)函数f(x)=√4-|x|+lgx 2-5x+6x -3的定义域为( )A.(2,3)B.(2,4]C.(2,3)∪(3,4]D.(-1,3)∪(3,6]答案 (1)C (2)C解析 (1)要使函数f(x)=√x +1+lg(6-3x)有意义,则{x +1≥0,6-3x >0,即-1≤x<2.故函数f(x)的定义域为[-1,2).(2)要使函数f(x)有意义,需满足{4-|x|≥0,x 2-5x+6x -3>0,即{|x|≤4,(x -3)(x -2)x -3>0,解得2<x<3或3<x ≤4,故f(x)的定义域为(2,3)∪(3,4]. 方法技巧(1)若f(x)是由一些基本初等函数通过四则运算构成的,则它的定义域为各基本初等函数的定义域的交集.(2)复合函数的定义域:先由外层函数的定义域确定内层函数的值域,从而确定对应的内层函数的自变量的取值范围,同时还需要确定内层函数的定义域,两者取交集即可.▶提醒 (1)求函数的定义域时,先不要化简函数解析式; (2)求出定义域后,一定要将其写成集合或区间的形式. 2-1 (1)函数f(x)=√2x -1-1的定义域是 .(2)函数f(x)=√-x 2+4x +1x -2的定义域是 . (3)函数f(x)=(x -12)0√x+2的定义域是 .答案 (1)(1,3] (2)[0,2)∪(2,4] (3)(-2,12)∪(12,+∞) 考法二 已知函数定义域,求参数的取值范围典例3 (1)(2019河北衡水联考)若函数y=mx -1mx +4mx+3的定义域为R ,则实数m 的取值范围是( )A.(0,34] B.(0,34)C.[0,34]D.[0,34)(2)若函数f(x)=2+abx +b 的定义域为{x|1≤x ≤2},则a+b 的值为 . 答案 (1)D (2)-92解析 (1)要使函数的定义域为R , 则mx 2+4mx+3≠0恒成立, ①当m=0时,显然满足条件; ②当m ≠0时,由Δ=(4m)2-4m×3<0, 得0<m<34,由①②得0≤m<34.(2)函数f(x)=√ax 2+abx +b 的定义域是不等式ax 2+abx+b ≥0的解集. 由题意知不等式ax 2+abx+b ≥0的解集为{x|1≤x ≤2}, 所以{a <0,1+2=-b,1×2=ba,解得{a =-32,b =-3,所以a+b=-32-3=-92. 方法技巧求给定函数的定义域往往转化为解不等式(组)的问题,然后求解. 2-2 若函数√ax 2-4ax+2的定义域为R ,则实数a 的取值范围是 .答案[0,12)解析由题意得ax2-4ax+2>0恒成立,则a=0或{a>0,Δ=(-4a)2-4×a×2<0,解得0≤a<12.命题方向二抽象函数的定义域典例4(1)已知函数y=f(x)的定义域是[-2,3],则y=f(2x-1)的定义域是()A.[0,52] B.[-1,4]C.[-12,2] D.[-5,5](2)已知函数y=f(x2-1)的定义域为[-√3,√3],则函数y=f(x)的定义域为.答案(1)C (2)[-1,2]解析(1)∵函数y=f(x)的定义域为[-2,3],∴-2≤2x-1≤3,即-12≤x≤2,即函数y=f(2x-1)的定义域为[-12,2].(2)因为y=f(x2-1)的定义域为[-√3,√3],所以x∈[-√3,√3],x2-1∈[-1,2],所以y=f(x)的定义域为[-1,2].方法技巧求函数y=f(g(x))的定义域:若y=f(x)的定义域为(a,b),则解不等式a<g(x)<b即可求出y=f(g(x))的定义域;若y=f(g(x))的定义域为(a,b),则求出g(x)在(a,b)上的值域即得f(x)的定义域.2-3已知函数f(x)的定义域是[0,4],则g(x)=f(x+1)+f(x-1)的定义域是.答案[1,3]2-4已知函数f(x2-3)=lg x 2x2-4,则f(x)的定义域为. 答案(1,+∞)函数的解析式典例5(1)已知x与函数f(x),g(x)的关系如下表所示:x123f(x)131g(x)321则f[g(1)]的值为;满足f[g(x)]>g[f(x)]的x的值是.(2)已知f(x+1x )=x2+1x2,求f(x)的解析式.(3)已知f(2x+1)=lg x,求f(x)的解析式.(4)已知f(x)是二次函数,且f(0)=0,f(x+1)=f(x)+x+1.求f(x)的解析式.(5)已知函数f(x)满足f(-x)+2f(x)=2x,求f(x)的解析式.答案(1)1;2解析(1)f[g(1)]=f(3)=1.当x=1时,f[g(1)]=1,g[f(1)]=g(1)=3,不满足f[g(x)]>g[f(x)],当x=2时,f[g(2)]=f(2)=3,g[f(2)]=g(3)=1,满足f[g(x)]>g[f(x)].当x=3时,f[g(3)]=f(1)=1,g[f(3)]=g(1)=3,不满足f[g(x)]>g[f(x)].故满足f[g(x)]>g[f(x)]的x的值是2.(2)(配凑法)由于f(x+1x )=x2+1x=(x+1x)2-2,所以f(x)=x2-2,x≥2或x≤-2,故f(x)的解析式是f(x)=x2-2,x≥2或x≤-2.(3)(换元法)令2x +1=t,得x=2t-1,代入得f(t)=lg2t-1.又x>0,所以t>1,故f(x)的解析式是f(x)=lg2x-1,x>1. (4)(待定系数法)设f(x)=ax2+bx+c(a≠0),由f(0)=0,知c=0,则f(x)=ax2+bx,又由f(x+1)=f(x)+x+1,得a(x+1)2+b(x+1)=ax2+bx+x+1,即ax2+(2a+b)x+a+b=ax2+(b+1)x+1,所以{2a +b =b +1,a +b =1,解得a=b=12,所以f(x)=12x 2+12x.(5)(解方程组法)由f(-x)+2f(x)=2x ,① 得f(x)+2f(-x)=2-x ,② ①×2-②,得3f(x)=2x+1-2-x , 即f(x)=2x+1-2-x3.所以f(x)的解析式是f(x)=2x+1-2-x3.方法技巧求函数解析式的常用方法(1)配凑法:由已知条件f(g(x))=F(x),可将F(x)改写成关于g(x)的式子,然后以x 替代g(x),即得f(x)的解析式.(2)换元法:已知函数f(g(x))的解析式,求f(x)的解析式时可用换元法,即令g(x)=t,从中解出x,代入已知解析式进行换元,此时要注意新元的取值范围.(3)待定系数法:若已知函数的类型(如一次函数、二次函数),则可用待定系数法. (4)解方程组法:已知关于f(x)与f (1x )或f(-x)的等式,可根据已知条件构造出等式,组成方程组,通过解方程组求出f(x)的解析式.3-1 (1)已知函数f(x),g(x)与x 的关系如下表,x 1 2 3 g(x) 1 3 2 f(x)231则方程f(g(x))=x+1的解集是( ) A.{1} B.{1,2} C.{1,2,3} D.⌀(2)已知f(√x +1)=x+1,则函数f(x)的解析式为( ) A.f(x)=x 2 B.f(x)=x 2+1(x ≥1) C.f(x)=x 2-2x+2(x ≥1) D.f(x)=x 2-2x(x ≥1)(3)若g(x+2)=2x+3,则g(x)的表达式为( ) A.g(x)=2x+1B.g(x)=2x-1C.g(x)=2x-3D.g(x)=2x+7(4)已知f(x)满足2f(x)+f (1x )=3x,求f(x)的解析式. (5) 已知y=f(x)为一次函数, f [f(x)]=4x+3,求f(x)的解析式. 答案 (1)A (2)C (3)B 解析 (4)2f(x)+f (1x )=3x,① 将①中的x 换成1x ,得2f (1x )+f(x)=3x ,② ①×2-②,得3f(x)=6x-3x , ∴f(x)=2x-1.(5)因为f(x)是一次函数,所以设f(x)=ax+b(a ≠0), 则f [f(x)]=af(x)+b=a(ax+b)+b=a 2x+ab+b=4x+3, 根据对应项系数相等得a 2=4,ab+b=3, 解得{a =2,b =1或{a =-2,b =-3.所以f(x)的解析式为f(x)=2x+1或f(x)=-2x-3.分段函数命题方向一 分段函数的最值问题典例6 已知函数f(x)={x 2-2ax +9,x ≤1,x +4x +a,x >1,若f(x)的最小值为f(1),则实数a 的取值范围是 .答案 a ≥2解析 当x>1时, f(x)=x+4x +a ≥4+a,当且仅当x=2时,等号成立.当x ≤1时, f(x)=x 2-2ax+9,为二次函数,要想在x=1处取最小值,则函数图象的对称轴要满足x=a ≥1,并且f(1)≤4+a,即1-2a+9≤a+4,解得a ≥2.命题方向二 通过分段函数的图象解题典例7 已知函数f(x)={-4(x -12)2+1,0≤x <1,log 2 017x,x >1,若f(a)=f(b)=f(c)且a,b,c 互不相等,则a+b+c 的取值范围是 .答案 (2,2 018) 解析 作出函数f(x)={-4(x -12)2+1,0≤x <1,log 2 017x,x >1的大致图象,当0≤x<1时,函数f(x)=-4(x -12)2+1,其图象的对称轴为直线x=12, 当f(x)=1时,由log 2 017x=1,计算出x=2 017,若a,b,c 互不相等,不妨设a<b<c. 因为f(a)=f(b)=f(c),所以由图象可知,0<a<12,12<b<1,1<c<2 017, 且a+b 2=12,即a+b=1,所以a+b+c=1+c,又2<1+c<2 018,即2<a+b+c<2 018, 所以a+b+c 的取值范围是(2,2 018).命题方向三 已知函数值,求参数的值(或取值范围)典例8 设函数f(x)={x 2+2x,x <0,x +1,x ≥0,则f(-1)= ;若f(a)>f(a-1),则实数a 的取值范围是 .答案 -1;(-12,+∞) 规律总结分段函数问题的求解策略(1)根据分段函数的解析式求函数值.首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解.(2)已知函数值或函数的取值范围求自变量的值或范围时,应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围. 4-1 (1)已知函数f(x)={-|x +1|+1,x ≤0,-12x,x >0,则f(x)的最大值是 .(2)已知函数f(x)={2x ,x <0,a √x,x ≥0,若f(-1)+f(1)=2,则a= .(3)已知f(x)={x -3,x ≥9,f[f(x +4)],x <9,则f(7)= .答案 (1)1 (2)32 (3)6A 组 基础题组1.下列各组函数中,表示同一个函数的是( ) A.f(x)=x 2和f(x)=(x+1)2B.f(x)=(√x)2x 和f(x)=(√x)2C.f(x)=log a x 2和f(x)=2log a xD.f(x)=x-1和f(x)=√(x -1)2 答案 B2.已知函数y=f(x)的对应关系如下表,函数y=g(x)的图象是如图的曲线ABC,其中A(1,3),B(2,1),C(3,2),则f(g(2))的值为( )x 1 2 3 f(x)23A.3B.2C.1D.0答案 B3.已知函数f(x)的定义域为(-1,0),则函数f(2x+1)的定义域为( )A.(-1,1)B.(-1,-12)C.(-1,0)D.(12,1)答案B4.已知函数f(x+1)=3x+2,则f(x)=()A.3x+2B.3x+1C.3x-1D.3x+4答案C5.已知f(10x)=x,则f(5)=()A.105B.510C.log510D.lg5答案D6.已知函数f(x)={2x,x≤3,x-3,x>3,则f(f(1)-f(5))的值为()A.1B.2C.3D.-3答案A7.已知函数f(x)=1x2+mx+m的定义域是R,则实数m的取值范围是() A.0<m<4 B.0≤m≤4C.0≤m<4D.m≥4答案A8.已知函数f(x)={3-x+1(x≤0),x a+2(x>0),若f(f(-1))=18,则实数a的值是()A.0B.1C.2D.3答案C9.设函数f:R→R满足f(0)=1,且对任意x,y∈R都有f(xy+1)=f(x)f(y)-f(y)-x+2,则f(2017)=()A.0B.1C.2017D.2018答案 D 令x=y=0,则f(1)=f(0)f(0)-f(0)-0+2=1×1-1-0+2=2,令y=0,则f(1)=f(x)f(0)-f(0)-x+2,将f(0)=1,f(1)=2代入,可得f(x)=1+x,所以f(2017)=2018,故选D.10.已知函数y=f(x-2)的定义域是[0,4],则y=f(x+1)x-1的定义域是.答案 [-3,1)11.已知函数f(x)满足f(2x)=2f(x),且当1≤x<2时, f(x)=x 2,则f(3)= . 答案 92解析 ∵f(2x)=2f(x),且当1≤x<2时, f(x)=x 2,∴f(3)=2f (32)=2×(32)2=92.B 组 提升题组1.已知函数f(x)满足f(x)+2f(3-x)=x 2,则f(x)的解析式为( ) A.f(x)=x 2-12x+18B.f(x)=13x 2-4x+6C.f(x)=6x+9D.f(x)=2x+3答案 B 由f(x)+2f(3-x)=x 2可得f(3-x)+2f(x)=(3-x)2,由以上两式解得f(x)=13x 2-4x+6, 故选B.2.函数y=ln(x 2-x)+√4-2x 的定义域为( ) A.(-∞,0)∪(1,+∞) B.(-∞,0)∪(1,2] C.(-∞,0) D.(-∞,2)答案 B 由已知得{x 2-x >0,4-2x ≥0,解得{x <0或x >1,x ≤2,即x ∈(-∞,0)∪(1,2],故选B.3.已知函数f(x)={(a -1)x +4-2a,x <1,1+log 2x,x ≥1,若f(x)的值域为R ,则实数a 的取值范围是( )A.(1,2]B.(-∞,2]C.(0,2]D.[2,+∞)答案 A 当x ≥1时, f(x)=1+log 2x ≥1;当x<1时, f(x)=(a-1)x+4-2a 必须是增函数,且值域区间的右端点的值大于或等于1,才能满足f(x)的值域为R ,可得{a -1>0,a -1+4-2a ≥1,解得a ∈(1,2].4.(2019衡阳模拟)已知函数f(x)=axx -1,若f(x)+ f (1x )=3,则f(x)+f(2-x)= . 答案 6解析 ∵f(x)=axx -1, f(x)+f (1x )=3,∴f(x)+f (1x )=axx -1+a x 1x-1=ax x -1-a x -1=a(x -1)x -1=3,解得a=3,∴f(x)=3xx -1,∴f(x)+f(2-x)=3xx -1+6-3x 2-x -1=6(x -1)x -1=6.5.已知函数f(x)=2x+12x -1,则f (12 017)+ f (22 017)+…+f (2 0162 017)= . 答案 2 016 解析 ∵f(x)=2x+12x -1, ∴f(x)+f(1-x)=2x+12x -1+2(1-x)+12(1-x)-1=2,∴f (12 017)+f (22 017)+…+f (2 0162 017)=1 008×2=2 016.。

2021高考数学(新高考版)一轮复习考点:第三章 第一讲 导数的概念及运算

2021高考数学(新高考版)一轮复习考点:第三章 第一讲 导数的概念及运算

第三章 一元函数导数及其应用第一讲 导数的概念及运算1.[2020成都市高三摸底测试]设函数f (x )的导函数为f ' (x ),若f (x )=e x ln x +1x - 1,则f ' (1)= ( ) A.e-3 B.e-2 C.e-1 D.e2.[易错题]已知函数f (x )=f ' (1)x 2+2x +2f (1),则f ' (2)的值为 ( ) A. - 2 B.0 C. - 4 D. - 63.[2020陕西省百校第一次联考]若f (x )=x 3+a 是定义在R 上的奇函数,则曲线y =f (x )在点(1,f (1))处的切线方程是 ( ) A.y =3x - 3 B .y =3x - 2C.y = - 3x - 3D.y = - 3x - 24.[2020广东七校联考]已知函数f (x )=x ln x +a 的图象在点(1,f (1))处的切线经过原点,则实数a = ( ) A .1 B .0 C .1e D. - 15.[2020洛阳市第一次联考]已知f (x )为偶函数,当x >0时,f (x )=ln x - 3x ,则曲线y =f (x )在点( - 1, - 3)处的切线与两坐标轴围成的图形的面积等于 ( ) A.1 B.34C.14D.126.[2020洛阳市第一次联考]已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1, f (1)),则m 的值为 ( ) A.-1 B.-3 C.-4 D.-27.[2020江西五校联考]已知曲线C :y =x e x 过点A (a ,0)的切线有且仅有两条,则实数a 的取值范围是 ( ) A .( - ∞, - 4)∪(0,+∞) B .(0,+∞) C .( - ∞, - 1)∪(1,+∞) D .( - ∞, - 1)8.[2019安徽示范高中高三测试]设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,f ' (x ),g' (x )为其导函数,当x <0时,f ' (x )g (x )+f (x )g' (x )>0且g ( - 3)=0,则不等式f (x )g (x )<0的解集是 ( ) A.( - 3,0)∪(3,+∞) B.( - 3,0)∪(0,3) C.( - ∞, - 3)∪(3,+∞) D.( - ∞, - 3)∪(0,3)9.[2019福建五校第二次联考]已知函数f (x )={ln(-x +1),x <0,x 2+3x,x ≥0,若f (x ) - (m +2)x ≥0,则实数m的取值范围是 ( )A.(-∞,1]B.[-2,1]C.[0,3]D.[3,+∞) 10.[2020四川五校联考]已知函数f (x )=e x +ax.(1)若曲线y =f (x )在x =1处的切线与直线x +(e - 1)y - 1=0垂直,求实数a 的值; (2)若对于任意实数x ≥0,f (x )>0恒成立,求实数a 的取值范围.11.[2020洛阳市第一次联考]已知函数f (x )是定义在R 上的偶函数,设函数f (x )的导函数为f ' (x ),若对任意x >0都有2f (x )+ xf ' (x )>0成立,则 ( ) A.4f ( - 2)<9f (3) B.4f ( - 2)>9f (3) C.2f (3)>3f ( - 2) D.3f ( - 3)<2f ( - 2)12.[2019开封市高三模拟]已知函数f (x )=(k +4k )ln x +4-x 2x,k ∈[4,+∞),曲线y =f (x )上总存在两点M (x 1,y 1),N (x 2,y 2),使曲线y =f (x )在M ,N 两点处的切线互相平行,则x 1+x 2的取值范围为 ( ) A.(85,+∞)B.(165,+∞) C.[85,+∞) D.[165,+∞)13.[2019辽宁五校联考]设函数f (x )=e 2x - t 的图象与g (x )=a e x +a 2x (a >0)的图象有公共点,且在公共点处的切线相同,则实数t 的最大值是 ( ) A.e -12 B .e 12C.12eD.2e14.[2020武汉市部分学校质量监测]若直线y =kx +b 是曲线y =ln x 的切线,也是曲线y =e x - 2的切线,则k = .15.[2020唐山市摸底考试]已知函数f (x )=ax sin x +b cos x ,且曲线y =f (x )与直线y =π2相切于点(π2,π2).(1)求f (x );(2)若f (x )≤mx 2+1,求实数m 的取值范围.16.[2019江西红色七校第一次联考]已知函数f (x )=e x (x 2 - 2x +a )(其中a ∈R ,a 为常数,e 为自然对数的底数).(1)讨论函数f (x )的单调性;(2)设曲线y =f (x )在(a ,f (a ))处的切线为l ,当a ∈[1,3]时,求直线l 在y 轴上的截距的取值范围.17.[2020陕西省百校第一次联考][新角度题]已知函数f (x )=ln x ,g (x )=2 - 3x (x >0).(1)试判断f (x)与g(x)的大小关系.(2)试判断曲线y=f (x)和y=g(x)是否存在公切线,若存在,求出公切线的方程;若不存在,说明理由.第一讲导数的概念及运算1.C由题意,得f ' (x)=(e x ln x)' - 1x2=e x ln x+e xx− 1x2,所以f ' (1)=0+e - 1=e - 1,故选C.2.D由题意得f (1)=f ' (1)+2+2f (1),化简得f (1)= - f ' (1) - 2,而f ' (x)=2f ' (1)x+2,所以f ' (1)=2f ' (1)+2,解得f ' (1)= - 2,故f (1)=0,所以f (x)= - 2x2+2x,所以f ' (x)= - 4x+2,所以f ' (2)= - 6,故选D.3.B依题意得f (0)=0,即0+a=0,a=0,所以f (x)=x3,则f ' (x)=3x2,所以f ' (1)=3,又f (1)=1,因此曲线y=f (x)在点(1,f (1))处的切线方程是y=3x - 2,故选B.4.A∵f ' (x)=ln x+1,∴f ' (1)=1,又f (1)=a,∴f (x)的图象在点(1,f (1))处的切线方程为y=x - 1+a,又该切线过原点,故0=0 - 1+a,解得a=1,故选A.5.C当x>0时,f ' (x)=1x- 3,因为f (x)是偶函数,所以f ' (x)是奇函数,故曲线y=f (x)在点( - 1, - 3)处的切线的斜率k=f ' ( - 1)= - f ' (1)=2,所以切线方程为y+3=2(x+1),该切线与x轴,y轴的交点分别为(12,0),(0,- 1),所以该切线与两坐标轴围成的图形的面积等于12×1 2×1=14,故选C.6.D解法一∵f ' (x)=1x,∴直线l的斜率k=f ' (1)=1,又f (1)=0,∴切线l的方程为y=x -1.g' (x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有{x 0+m =1,y 0=x 0-1,y 0=12x 02+mx 0+72,m <0,解得m = - 2.故选D.解法二 ∵f ' (x )=1x ,∴直线l 的斜率k =f ' (1)=1,又f (1)=0,∴切线l 的方程为y =x - 1.又直线l 与g (x )的图象相切,则方程组{y =x -1,y =12x 2+mx +72只有一组解,即关于x 的方程12x 2+(m -1)x +92=0只有一个解,则Δ=(m - 1)2 - 4×12×92=0,结合m <0,解得m = - 2.故选D.7.A 对函数y =x e x 求导得y' =e x +x ·e x =(1+x )e x .设切点坐标为(x 0,x 0e x 0),则曲线y =x e x 过点A (a ,0)的切线的斜率k =(1+x 0)ex 0=x 0e x 0x 0-a,化简得x 02- ax 0 - a =0.依题意知,上述关于x 0的二次方程有两个不相等的实数根,所以Δ=( - a )2 - 4×1×( - a )>0,解得a < - 4或a >0.故选A .8.D 令h (x )=f (x )g (x ),当x <0时,h' (x )=f ' (x )g (x )+f (x )g' (x )>0,则h (x )在( - ∞,0)上单调递增,又f (x ),g (x )分别是定义在R 上的奇函数和偶函数,所以h (x )为奇函数,所以h (x )在(0,+∞)上单调递增.由g ( - 3)=0,可得h ( - 3)= - h (3)=0, 所以当x < - 3或0<x <3时,h (x )<0,故选D .9.B 令g (x )=x +3x (x ≥0),则g' (x )=2x +3,所以g' (0)=3,所以函数g (x )的图象在原点处的切线方程为y =3x ,故函数f (x )的图象在原点处的切线方程为y =3x.如图D 3 - 1 - 1,画出函数f (x )的图象,切线y =3x ,以及直线y =(m +2)x ,分析可知,为满足f (x ) - (m +2)x ≥0,即f (x )≥(m +2)x ,则0≤m +2≤3,解得 - 2≤m ≤1.故选B .图D 3 - 1 - 110.(1)因为f ' (x )=e +a ,所以曲线y =f (x )在点(1,f (1))处的切线的斜率为f ' (1)=e+a , 因为直线x +(e - 1)y - 1=0的斜率为11-e , 所以(e+a )×11-e = - 1,解得a = - 1.(2)若x =0,则a 为任意实数时,f (x )=e x +ax >0恒成立. 若x >0,f (x )=e x +ax >0恒成立,即当x >0时,a > - e xx 恒成立,设H (x )= - e xx (x >0),则H' (x )= -e x x -e x x 2=(1-x)e x x 2,当x ∈(0,1)时,H' (x )>0,则H (x )在(0,1)上单调递增, 当x ∈(1,+∞)时,H' (x )<0,则H (x )在(1,+∞)上单调递减, 所以当x =1时,H (x )取得最大值. H (x )max =H (1)= - e ,所以a > - e .所以要使当x ≥0时,f (x )>0恒成立,a 的取值范围为( - e ,+∞).11.A 令g (x )=x 2f (x ),则g' (x )=2xf (x )+x 2f' (x ).因为对任意x >0都有2f (x )+xf ' (x )>0成立,则当x >0时,g ' (x )=x [2f (x )+xf ' (x )]>0成立,即函数g (x )=x 2f (x )在x >0时单调递增,由函数f (x )是定义在R 上的偶函数,得f ( - x )=f (x ),所以g ( - x )=( - x )2f ( - x )=x 2f (x )=g (x ),即g (x )=x 2f (x )为偶函数,则有g ( - 2)=g (2),且g (2)<g (3),所以g ( - 2)<g (3),即4f ( - 2)<9f (3),故选A.12.B f ' (x )=k+4kx− 4x 2 - 1(x >0,k ≥4),由题意知,f ' (x 1)=f ' (x 2)(x 1,x 2>0且x 1≠x 2),即k+4kx 1−4x 12 - 1=k+4kx 2− 4x 22 - 1,化简得4(x 1+x 2)=(k +4k)x 1x 2,而x 1x 2<(x 1+x 22)2,所以4(x 1+x 2)<(k +4k)(x 1+x 22)2,即x 1+x 2>16k+4k对k ∈[4,+∞)恒成立,令g (k )=k +4k ,则g' (k )=1 - 4k 2=(k+2)(k -2)k 2>0对k ∈[4,+∞)恒成立,故g (k )在[4,+∞)上单调递增,所以g (k )≥g (4)=5,所以16k+4k≤165,所以x 1+x 2>165.故x 1+x 2的取值范围为(165,+∞).故选B.13.C 设函数f (x )=e 2x - t 的图象与g (x )=a e x +a 2x (a >0)的图象的公共点为(x 0,y 0),因为f ' (x )=2e 2x ,g' (x )=a e x +a 2,所以2e 2x 0=a e x 0+a 2,所以(e x 0 - a )(2e x 0+a )=0,因为2e x 0+a >0,所以e x 0=a ,所以x 0=ln a.又a e x 0+a 2x 0=e 2x 0 - t ,所以a e ln a +a 2ln a =e 2ln a - t ,化简得t = - a 2ln a ,则t' = - 2a ln a - a 2×1a = - a (1+2ln a ).令t' >0得0<a <e -12,令t' <0得a >e -12,所以t = - a 2ln a 在(0,e -12)上单调递增,在(e -12,+∞)上单调递减,所以当a =e -12时,t = - a 2ln a 取得最大值,最大值为-(e -12)2ln e -12=12e .故选C .14.1或1e 解法一 设直线y =kx +b 与曲线y =ln x 相切于点(x 1,ln x 1),则曲线y =ln x 在点(x 1,ln x 1)处的切线方程为y - ln x 1=1x 1(x - x 1),即y =1x 1x - 1+ln x 1 ①.设直线y =kx +b 与曲线y =e x - 2相切于点(x 2,e x 2-2),则曲线y =e x - 2在点(x 2,e x 2-2)处的切线方程为y - e x 2-2=e x 2-2(x - x 2),即y =e x 2-2x +(1 - x 2)e x 2-2 ②.由题意知①②表示同一直线,所以1x 1=e x 2-2,且 - 1+ln x 1=(1 - x 2)e x 2-2.所以 - 1+ln x 1=1-x2x 1=1-(2-ln x 1)x 1=-1+ln x 1x 1,解得x 1=1或x 1=e .所以k =1或1e .解法二直线y=kx+b与曲线y=ln x相切,则存在x1,使得k=1x1,且ln x1=kx1+b,消去x1,得- ln k=1+b①.直线y=kx+b与曲线y=e x - 2相切,则存在x2,使得k=e x2-2,且e x2-2=kx2+b,消去x2,得k=k(ln k+2)+b②.由①②得k=k ln k+2k - ln k - 1,即(k - 1)(ln k+1)=0,解得k=1或1e.15.(1)由f (π2)=aπ2=π2得a=1.则f ' (x)=x cos x+(1 - b)sin x,由f ' (π2)=1 - b=0得b=1.所以f (x)=x sin x+cos x.(2)令g(x)=mx2+1 - f (x)=mx2 - x sin x - cos x+1,由g(x)≥0得g(2π)=4π2m≥0,所以m≥0.易知g(x)为偶函数,所以只需满足当x≥0时,g(x)≥0即可. g' (x)=2mx - x cos x=x(2m - cos x),下面只讨论x≥0时的情形.当m≥12时,g' (x)≥0,即g(x)在[0,+∞)上单调递增,所以g(x)≥g(0)=0,从而当m≥12时,f (x)≤mx2+1恒成立.当0≤m<12时,因为y=2m - cos x在[0,π2]上单调递增,且当x=0时,y=2m - 1<0,当x=π2时,y=2m≥0,所以存在x0∈(0,π2],使得2m - cos x0=0,因此当x∈(0,x0)时,2m - cos x<0,g' (x)<0,即g(x)在(0,x0)上单调递减,所以当x∈(0,x0)时,g(x)<g(0)=0,与g(x)≥0矛盾.因此当0≤m<12时,f (x)≤mx2+1不恒成立.综上,满足题意的m的取值范围是[12,+∞).16.(1)f ' (x)=e x(x2 - 2x+a)+e x(2x - 2)=e x(x2+a - 2),当a≥2时,f ' (x)≥0恒成立,函数f (x)在区间( - ∞,+∞)上单调递增;当a<2时,令f ' (x)≥0,解得x≤ - √2-a或x≥√2-a,令f ' (x)<0,解得- √2-a<x<√2-a,所以函数f (x)在区间( - ∞, - √2-a],[√2-a,+∞)上单调递增,在区间( - √2-a,√2-a)上单调递减.(2)因为f (a)=e a(a2 - a),f ' (a)=e a(a2+a - 2),所以直线l的方程为y - e a(a2 - a)=e a(a2+a - 2)(x - a).令x=0,得直线l在y轴上的截距为e a( - a3+a),记g(a)=e a( - a3+a)(1≤a≤3),则g' (a)=e a( - a3 - 3a2+a+1),记h(a)= - a3 - 3a2+a+1(1≤a≤3),则h' (a)= - 3a2 - 6a+1<0(1≤a≤3),所以h(a)在[1,3]上单调递减,所以h(a)≤h(1)= - 2<0,所以g' (a)<0,即g(a)在区间[1,3]上单调递减,所以g(3)≤g(a)≤g(1),即直线l在y轴上的截距的取值范围是[ - 24e3,0].17.(1)设F(x)=f (x) - g(x),则F' (x)=1x − 3x2(x>0).由F' (x)=0,得x=3,当0<x<3时,F' (x)<0,当x>3时,F' (x)>0,故F(x)在区间(0,3)上单调递减,在区间(3,+∞)上单调递增,所以F(x)的最小值为F(3)=ln 3 - 1,且F(3)>0,所以F(x)>0,即f (x)>g(x).(2)曲线y=f (x)和y=g(x)不存在公切线,理由如下.假设曲线y=f (x)与y=g(x)有公切线,切点分别为P(x0,ln x0)和Q(x1,2 - 3x1).因为f ' (x)=1x ,g' (x)=3x2,所以分别以P(x0,ln x0)和Q(x1,2 - 3x1)为切点的切线方程为y=xx0+ln x0- 1,y=3x12x+2 - 6x1.由{1x0=3x12,ln x0-1=2-6x1,得2ln x1+6x1- (3+ln 3)=0.令h(x)=2ln x+6x - (3+ln 3),则h' (x)=2x− 6x2(x>0),令h' (x)=0,得x=3.显然,当0<x<3时,h'(x)<0,当x>3时,h' (x)>0,所以h(x)在区间(0,3)上单调递减,在区间(3,+∞)上单调递增,所以h(x)的最小值为h(3)=2ln 3+2 - 3 - ln 3=ln 3 - 1,且h(3)>0,所以h(x)>0,所以方程2ln x1+6x1- (3+ln 3)=0无解,所以曲线y=f (x)与曲线y=g(x)不存在公切线.快乐分享,知识无界!感谢您的下载!由Ruize收集整理!。

2021年新课标新高考数学复习练习讲义:§4.1 导数的概念及运算

2021年新课标新高考数学复习练习讲义:§4.1 导数的概念及运算

专题四导数及其应用【考情探究】【真题探秘】§4.1导数的概念及运算基础篇固本夯基【基础集训】考点一 导数的概念及几何意义1.曲线y=x 3-2x+1在点(1,0)处的切线方程为( ) A.y=x-1 B.y=-x+1 C.y=2x-2 D.y=-2x+2 答案 A2.已知在平面直角坐标系中,曲线f(x)=aln x+x 在点(a, f(a))处的切线过原点,则a=( ) A.1 B.e C.1eD.0 答案 B3.已知函数f(x)=(x 2+x-1)e x,则曲线y=f(x)在点(1, f(1))处的切线方程为( ) A.y=3ex-2e B.y=3ex-4e C.y=4ex-5e D.y=4ex-3e 答案 D4.已知函数f(x)=√x ,g(x)=aln x,a ∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,则a= ,切线方程为 . 答案e 2;x-2ey+e 2=0 考点二 导数的运算5.函数f(x)=sinx sinx+cosx -12在x=π4处的导数是( )A.-12B.12C.-√22D.√22答案 B 6.已知函数f(x)=alnx x+1+bx.若曲线y=f(x)在点(1, f(1))处的切线方程为x+2y-3=0,则a+b= .答案 27.求下列各函数的导数. (1)y=ln(3x-2); (2)y=sin x 2(1-2cos 2x 4); (3)y=11-x +11+x; (4)y=x 2·e 2-x.解析 (1)设y=ln u,u=3x-2. 则y'x =y'u ·u'x =13x -2(3x-2)'=33x -2. (2)y=sin x 2(-cos x 2)=-sin x2·cos x 2=-12sin x, ∴y'=(-12sinx)'=-12(sin x)'=-12cos x. (3)y=11-x +11+x =21-x .∴y'=(21-x )'=2'(1-x)-2(1-x)'(1-x)2=2(1-x)2.(4)y'=(x2·e2-x)'=(x2)'·e2-x+x2·(e2-x)'=2x·e2-x+x2·e2-x·(2-x)'=2x·e2-x-x2e2-x.易错警示y=ln(3x-2)是一个复合函数,注意不要漏掉对y=3x-2求导;y=x2·e2-x中,y=e2-x也是一个复合函数,其导数为y'=-e2-x,易出错.综合篇知能转换【综合集训】考法一与导数运算有关的问题1.(2019课标Ⅱ文,10,5分)曲线y=2sin x+cos x在点(π,-1)处的切线方程为()A.x-y-π-1=0B.2x-y-2π-1=0C.2x+y-2π+1=0D.x+y-π+1=0答案 C2.(2016山东,10,5分)若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是()A.y=sin xB.y=ln xC.y=e xD.y=x3答案 A3.(2018安徽黄山一模,14)已知f(x)=13x3+3xf '(0),则f '(1)=.答案 14.(2019陕西第二次质检,15)设函数f(x)=2x3+ax2+bx+1的导函数为f '(x),若函数y=f '(x)图象顶点的横坐标为-12,且f '(1)=0,则a+b的值为.答案-9考法二与曲线的切线相关的问题5.(2019辽宁丹东质量测试(一),6)已知直线2x-y+1=0与曲线y=ae x+x相切,则a=()A.eB.2eC.1D.2答案 C6.(2019广东江门一模,12)若f(x)=ln x与g(x)=x2+ax的图象有一条与直线y=x平行的公共切线,则a=()A.1B.2C.3D.3或-1答案 D7.(2018辽宁大连一模)过曲线y=e x上一点P(x0,y0)作曲线的切线,若该切线在y轴上的截距小于0,则x0的取值范围是()A.(0,+∞)B.(1e,+∞) C.(1,+∞) D.(2,+∞)答案 C创新篇守正出奇创新集训1.(2019河北邯郸一模,12)过点M(-1,0)引曲线C:y=2x 3+ax+a 的两条切线,这两条切线与y 轴分别交于A,B 两点,若|MA|=|MB|,则a=( )A.-254B.-274C.-2512D.-4912答案 B2.(2018安徽江南十校4月联考,10)若曲线C 1:y=x 2与曲线C 2:y=e x a(a>0)存在公共切线,则a 的取值范围为( )A.(0,1)B.(1,e 24)C.[e 24,2]D.[e 24,+∞) 答案 D【五年高考】考点一 导数的概念及几何意义1.(2019课标Ⅲ,6,5分)已知曲线y=ae x+xln x 在点(1,ae)处的切线方程为y=2x+b,则( ) A.a=e,b=-1 B.a=e,b=1 C.a=e -1,b=1 D.a=e -1,b=-1 答案 D2.(2018课标Ⅰ,5,5分)设函数f(x)=x 3+(a-1)x 2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为( ) A.y=-2x B.y=-x C.y=2x D.y=x 答案 D3.(2019课标Ⅰ,13,5分)曲线y=3(x 2+x)e x 在点(0,0)处的切线方程为 .答案 y=3x4.(2016课标Ⅲ,15,5分)已知f(x)为偶函数,当x<0时, f(x)=ln(-x)+3x,则曲线y=f(x)在点(1,-3)处的切线方程是 . 答案 y=-2x-15.(2019江苏,11,5分)在平面直角坐标系xOy 中,点A 在曲线y=ln x 上,且该曲线在点A 处的切线经过点(-e,-1)(e 为自然对数的底数),则点A 的坐标是 . 答案 (e,1)6.(2015陕西,15,5分)设曲线y=e x在点(0,1)处的切线与曲线y=1x(x>0)上点P 处的切线垂直,则P 的坐标为 .答案 (1,1)考点二 导数的运算7.(2018天津,10,5分)已知函数f(x)=e xln x, f '(x)为f(x)的导函数,则f '(1)的值为 . 答案 e教师专用题组1.(2014课标Ⅱ,8,5分)设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=( ) A.0 B.1 C.2 D.3 答案 D2.(2012课标,12,5分)设点P 在曲线y=12e x上,点Q 在曲线y=ln(2x)上,则|PQ|的最小值为( )A.1-ln 2B.√2(1-ln 2)C.1+ln 2D.√2(1+ln 2) 答案 B【三年模拟】一、单项选择题(每题5分,共45分)1.(2020届九师联盟9月质量检测,4)函数f(x)=(x-1)ln(x-1)的图象在点(2,0)处的切线方程为( ) A.y=x-2 B.y=2x-4 C.y=-x+2 D.y=-2x+4 答案 A2.(2020届山西省实验中学第一次月考,9)若函数f(x)满足f(x)=13x 3-f '(1)·x 2-x,则f '(1)的值为( ) A.1 B.2 C.0 D.-1 答案 C3.(2020届五省优创名校入学摸底,8)若函数f(x)=ax-ln x 的图象上存在与直线x+3y-4=0垂直的切线,则实数a 的取值范围是( )A.[3,+∞)B.(103,+∞) C.[103,+∞) D.(3,+∞)答案 D4.(2018湖南株洲二模,9)设函数y=xsin x+cos x 的图象在点(t, f(t))处的切线斜率为g(t),则函数y=g(t)图象的一部分可以是( )答案 A5.(2019湖南娄底二模,5)已知f(x)是奇函数,当x>0时, f(x)=-xx -2,则函数图象在x=-1处的切线方程是( )A.2x-y+1=0B.x-2y+2=0C.2x-y-1=0D.x+2y-2=0 答案 A6.(2020届山西省实验中学第一次月考,11)已知函数f(x)=(x+1)2+sinxx 2+1,其中f '(x)为函数f(x)的导数,则f(2 018)+f(-2 018)+f'(2 019)-f '(-2 019)=( )A.2B.2 019C.2 018D.0 答案 A7.(2019皖东名校联盟,8)若抛物线x 2=2y 在点(a,a 22)(a>0)处的切线与两条坐标轴围成的三角形的面积是8,则此切线方程是( )A.x-4y-8=0B.4x-y-8=0C.x-4y+8=0D.4x-y+8=0 答案 B8.(2019江西吉安一模,7)过点P(1,1)且与曲线y=x3相切的直线的条数为()A.0B.1C.2D.3答案 C9.(2018陕西西安八校第一次联考)曲线y=x3上一点B处的切线l交x轴于点A,△OAB(O为原点)是以A为顶点的等腰三角形,则切线l的倾斜角为()A.30°B.45°C.60°D.120°答案 C二、多项选择题(每题5分,共10分)10.(改编题)下列函数求导正确的是()A.(tan x)'=-cosxsinxB.(xe-x)'=(1-x)e-xC.(a2x-3)'=2ln a·a2x-3(a>0,且a≠1))D.(e x ln x)'=e x(lnx+1x答案BCD11.(改编题)若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处切线的倾斜角互补,则称函数具有A性质.下列函数中具有A性质的是()A.f(x)=sin xB.f(x)=x2C.f(x)=ln xD.f(x)=cos x答案ABD三、填空题(每题5分,共20分)的图象在点(1, f(1))处的切线方程为.12.(2020届北京师范大学附中摸底,11)函数f(x)=lnxx+1答案x-2y-1=013.(2020届山东百师联盟开学摸底大联考,15)设函数f(x)=x3+ax2+(a+2)x.若f(x)的图象关于原点(0,0)对称,则曲线y=f(x)在点(1,3)处的切线方程为.答案5x-y-2=014.(2019四川绵阳第一次诊断,15)若直线y=x+1与函数f(x)=ax-ln x的图象相切,则a的值为.答案 215.(2018广东珠海一中等六校第三次联考,15)已知函数y=f(x)的图象在点(2, f(2))处的切线方程为y=2x-1,则曲线g(x)=x2+f(x)在点(2,g(2))处的切线方程为.答案6x-y-5=0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章导数及其应用第一节导数的概念及运算1.导数的概念及其几何意义(1)了解导数概念的实际背景.(2)理解导数的几何意义.2.导数的运算(1)能根据导数定义求函数y=C(C为常数),y=x,y=x2,y=1x,y=√x的导数.(2)能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax+b)的复合函数)的导数.1.函数y=f(x)从x1到x2的平均变化率函数y=f(x)从x1到x2的平均变化率为①f(x2)-f(x1)x2-x1,若Δx=x2-x1,Δy=f(x2)-f(x1),则平均变化率可表示为②ΔyΔx.2.函数y=f(x)在x=x0处的导数(1)定义:称函数y=f(x)在x=x0处的瞬时变化率limΔx→0ΔyΔx=limΔx→0f(x0+Δx)-f(x0)Δx为函数y=f(x)在x=x0处的导数,记作f'(x0)或y'|x=x0,即f'(x0)=limΔx→0ΔyΔx=limΔx→0f(x0+Δx)-f(x0)Δx.(2)几何意义:函数f(x)在点x0处的导数f'(x0)的几何意义是在曲线y=f(x)上点③(x0,f(x0))处的④切线的斜率.相应地,切线方程为⑤y-f(x0)=f'(x0)(x-x0).▶提醒 (1)曲线y=f(x)在点P(x 0,y 0)处的切线是指P 为切点,斜率为k=f '(x 0)的切线,是唯一的一条切线.(2)曲线y=f(x)过点P(x 0,y 0)的切线,是指切线经过P,点P 可以是切点,也可以不是切点,而且这样的直线可能有多条.(3)函数y=f(x)在某点处的导数、曲线y=f(x)在某点处切线的斜率和倾斜角,这三者是可以相互转化的.3.函数f(x)的导函数 称函数f '(x)=limΔx →0f(x+Δx)-f(x)Δx为f(x)的导函数,导函数有时也记作y'.4.基本初等函数的导数公式原函数 导函数 f(x)=C(C 为常数) f '(x)=⑥ 0 f(x)=x α(α∈N *) f '(x)=⑦ αx α-1 f(x)=sin x f '(x)=⑧ cos x f(x)=cos x f '(x)=⑨ -sin x f(x)=a x (a>0,且a ≠1)f '(x)=⑩ a x ln a f(x)=e x f '(x)= e x f(x)=log a x (a>0,且a ≠1) f '(x)= 1xlna f(x)=ln xf '(x)= 1x5.导数的运算法则(1)[f(x)±g(x)]'= f '(x)±g'(x) ; (2)[f(x)·g(x)]'= f '(x)g(x)+f(x)g'(x) ; (3)[f(x)g(x)]'=f '(x)g(x)-f(x)g'(x)[g(x)]2(g(x)≠0).1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.2.[af(x)+bg(x)]'=af '(x)+bg'(x).3.函数y=f(x)的导数f '(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了变化方向,其大小|f '(x)|反映了变化快慢,|f '(x)|越大,曲线在这点处的切线越“陡”.1.判断正误(正确的打“√”,错误的打“✕”). (1)f '(x 0)与[f(x 0)]'表示的意义相同.( )(2)与曲线只有一个公共点的直线一定是曲线的切线.( ) (3)曲线的切线不一定与曲线只有一个公共点.( ) (4)若f(x)=f '(a)x 2+ln x(a>0),则f '(x)=2xf '(a)+1x .( )(5)f '(x 0)表示曲线y=f(x)在点A(x 0, f(x 0))处切线的斜率,也可表示函数y=f(x)在点A(x 0, f(x 0))处的瞬时变化率.( )答案 (1)✕ (2)✕ (3)√ (4)√ (5)√ 2.下列求导运算正确的是( ) A.(x +1x )'=1+1x 2 B.(log 2x)'=1xln2 C.(3x )'=3x log 3e D.(x 2cos x)'=-2sin x 答案 B3.有一机器人的运动方程为s(t)=t 2+3t (t 是时间,s 是位移),则该机器人在时刻t=2时的瞬时速度为( ) A.194B.174 C .154 D .134答案 D4.曲线y=cos x-x2在点(0,1)处的切线方程为 .答案 x+2y-2=05.求过点(0,0)与曲线y=e x 相切的直线方程. 解析 设切点坐标为(a,e a ), 又切线过(0,0),则切线的斜率k=e aa , f '(x)=e x ,把x=a 代入得斜率k=f '(a)=e a ,则e a =ea a ,由于e a >0,故a=1, 即切点坐标为(1,e), 所以切线方程为y=ex.导数的计算典例1 求下列函数的导数. (1)y=x 2sin x; (2)y=ln x+1x +log 2x; (3)y=cosx e x;(4)y=3x e x -2x +e; (5)y=tan x; (6)y=√x .解析 (1)y'=(x 2)'sin x+x 2(sin x)'=2xsin x+x 2cos x. (2)y'=(lnx +1x )'+(log 2x)'=(ln x)'+(1x )'+1xln2=1x -1x 2+1xln2. (3)y'=(cosx e x)'=(cosx)'e x -cosx(e x )'(e x )2=-sinx+cosxe x.(4)y'=(3x e x )'-(2x )'+e'=(3x )'e x +3x (e x )'-(2x )'=3x ln 3·e x +3x e x -2x ln 2=(ln 3+1)·(3e)x -2x ln 2. (5)y'=(sinx cosx )'=(sinx)'cosx -sinx(cosx)'cos x=cosxcosx -sinx(-sinx)cos 2x=1cos 2x .(6)y'=(x 12)'=12x -12=2√x .方法技巧1.求导数的总原则:先化简函数的解析式,再求导.2.具体方法:(1)遇到连乘的形式,先展开化为多项式形式,再求导;(2)遇到根式形式,先化为分数指数幂,再求导;(3)遇到复杂的分式,先将分式化简,再求导;(4)遇到三角函数形式,先利用三角恒等变换对函数变形,再求导;(5)遇到复合函数,先确定复合关系,再由外向内逐层求导,必要时可换元.▶提醒对解析式中含有导数值的函数,即解析式类似于f(x)=f'(x0)g(x)+h(x)(x0为常数)的函数,解决这类问题的关键是明确f'(x0)是常数,其导数值为0.因此先求导数f'(x),再令x=x0,即可得到f'(x0)的值,进而得到函数的解析式,求得所求导数值.1-1f(x)=x(2018+ln x),若f'(x0)=2019,则x0等于()A.e2B.1C.ln2D.e答案B1-2已知函数f(x)=axln x,x∈(0,+∞),其中a为实数,f'(x)为f(x)的导函数,若f'(1)=3,则a=.答案31-3已知函数f(x)的导函数为f'(x),且满足f(x)=2xf'(1)+ln x,则f'(1)=.答案-1解析∵f(x)=2xf'(1)+ln x,∴f'(x)=2f'(1)+1,x∴f'(1)=2f'(1)+1,即f'(1)=-1.导数的几何意义命题方向一求曲线的切线方程典例2曲线y=3(x2+x)e x在点(0,0)处的切线方程为.答案3x-y=0解析y'=3(2x+1)e x+3(x2+x)e x=3(x2+3x+1)e x,所以切线的斜率k=y'|x=0=3,则曲线y=3(x2+x)e x在点(0,0)处的切线方程为y=3x,即3x-y=0.命题方向二求参数的值(取值范围)典例3已知曲线y=ae x+xln x在点(1,ae)处的切线方程为y=2x+b,则()A.a=e,b=-1B.a=e,b=1C.a=e -1,b=1D.a=e -1,b=-1 答案 D解析 ∵y'=ae x +ln x+1,∴切线的斜率k=y'|x=1=ae+1=2,∴a=e -1,将(1,1)代入y=2x+b,得2+b=1,b=-1.故选D.典例4 直线 y=kx+b 是曲线y=ln x+2的切线,也是曲线y=ln(x+1)的切线,求b 的值.解析 设直线y=kx+b 与曲线y=ln x+2的切点的横坐标为x 1,与曲线y=ln(x+1)的切点的横坐标为x 2,所以曲线y=ln x+2在相应切点处的切线为y=1x 1·x+ln x 1+1,曲线y=ln(x+1)在相应切点处的切线为y=1x2+1·x+ln(x 2+1)-x 2x 2+1,所以{k =1x 1=1x 2+1,b =ln x 1+1=ln(x 2+1)-x 2x 2+1,解得{x 1=12,x 2=-12,于是b=ln x 1+1=1-ln 2.规律总结导数的几何意义的应用及求解思路(1)求切线方程时,注意区分曲线在某点处的切线和曲线过某点的切线,曲线y=f(x)在点P(x 0, f(x 0))处的切线方程是y-f(x 0)=f '(x 0)(x-x 0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.(2)已知切线方程(或斜率)求切点的一般思路是先求函数的导数,然后让导数等于切线的斜率,从而求出切点的横坐标,将横坐标代入函数解析式求出切点的纵坐标.(3)已知切线方程(或斜率)求参数值的关键就是列出函数的导数等于切线斜率的方程. (4)函数图象在某一点处的切线斜率的变化情况反映函数图象在相应点处的变化情况,由切线的倾斜程度可以判断出函数图象升降得快慢.(5)求两条曲线的公切线的方法:①利用其中一条曲线在某点处的切线与另一条曲线相切,列出关系式求解. ②利用公切线得出关系式.设公切线l 在曲线y=f(x)上的切点P 1(x 1,y 1),在曲线y=g(x)上的切点P 2(x 2,y 2),则f '(x 1)=g'(x 2)=f(x 1)-g(x 2)x 1-x 2.2-1 已知直线y=-x+1是函数f(x)=-1a ·e x 图象的切线,则实数a= .答案 e 2解析 设切点为(x 0,y 0), 则f '(x 0)=-1a ·e x 0=-1, ∴e x 0=a,又-1a ·e x 0=-x 0+1,∴x 0=2,∴a=e 2.2-2 已知曲线f(x)=x 3+ax+14在x=0处的切线与曲线g(x)=-ln x 相切,求a 的值. 解析 由f(x)=x 3+ax+14得, f(0)=14, f '(x)=3x 2+a,则f '(0)=a,∴曲线y=f(x)在x=0处的切线方程为y-14=ax.设直线y-14=ax 与曲线g(x)=-ln x 相切于点(x 0,-ln x 0),又g'(x)=-1x , ∴{-ln x 0-14=ax 0,①a =-1x 0,②将②代入①得ln x 0=34, ∴x 0=e 34, ∴a=-1e 34=-e -34.A 组 基础题组1.已知函数f(x)=log a x(a>0且a ≠1),若f '(1)=-1,则a=( ) A.e B.1eC.1e 2 D .12 答案 B2.已知曲线y=x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( ) A.3 B.2 C.1 D.12 答案 A3.已知曲线y=ln x 的某条切线过原点,则此切线的斜率为( ) A.e B.-e C.1e D.-1e答案 C y=ln x 的定义域为(0,+∞),设切点为(x 0,y 0),则k=y'|x=x 0=1x 0,所以切线方程为y-y 0=1x 0(x-x 0),又切线过点(0,0),代入切线方程得y 0=1,则x 0=e,所以k=y'|x=x 0=1x 0=1e .4.已知函数f(x)=e x ln x, f '(x)为f(x)的导函数,则f '(1)的值为 . 答案 e解析 由函数的解析式可得f '(x)=e x ×ln x+e x ×1x =e x (lnx +1x),则f '(1)=e 1×(ln1+11)=e,即f '(1)的值为e.5.(2019湖北宜昌联考)已知f '(x)是函数f(x)的导数, f(x)=f '(1)·2x +x 2,则f '(2)= . 答案41-2ln2解析 易知f '(x)=f '(1)·2x ln 2+2x,所以f '(1)=f '(1)·2ln 2+2,解得f '(1)=21-2ln2,所以f '(x)=21-2ln2·2x ln 2+2x,所以f '(2)=21-2ln2×22×ln 2+2×2=41-2ln2. 6.曲线y=2ln x 在点(1,0)处的切线方程为 . 答案 y=2x-27.已知a∈R,设函数f(x)=ax-ln x的图象在点(1,f(1))处的切线为l,则l在y轴上的截距为.答案1解析由题意可得f(1)=a,则切点为(1,a),因为f'(x)=a-1x,所以切线l的斜率k=f'(1)=a-1,则切线l的方程为y-a=(a-1)(x-1),令x=0,可得y=1,故l在y轴上的截距为1.8.(2018课标全国Ⅲ,14,5分)曲线y=(ax+1)e x在点(0,1)处的切线的斜率为-2,则a=. 答案-3解析设f(x)=(ax+1)e x,则f'(x)=(ax+a+1)e x,所以曲线在点(0,1)处的切线的斜率k=f'(0)=a+1=-2,解得a=-3.9.若曲线f(x)=xsin x+1在x=π2处的切线与直线ax+2y+1=0垂直,则实数a=.答案2解析因为f'(x)=sin x+xcos x,所以f'(π2)=sinπ2+π2·cosπ2=1.又直线ax+2y+1=0的斜率为-a2,所以1×(-a2)=-1,解得a=2.10.已知曲线y=x+ln x在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=.答案8解析令f(x)=x+ln x,于是有f'(x)=1+1x,由于f'(1)=2,所以曲线y=x+ln x在点(1,1)处的切线的斜率k=2,则曲线y=x+ln x在点(1,1)处的切线方程为y-1=2(x-1),即y=2x-1,由于切线与曲线y=ax2+(a+2)x+1相切,故将y=ax2+(a+2)x+1与y=2x-1联立,得ax2+ax+2=0,因为a≠0,两线相切于一点,所以Δ=a2-8a=0,解得a=8.11.在平面直角坐标系xOy中,P是曲线y=x+4x(x>0)上的一个动点,则点P到直线x+y=0的距离的最小值是.答案4解析由y=x+4x (x>0),得y'=1-4x2(x>0),设斜率为-1的直线与曲线y=x+4x(x>0)相切于点(x0,x0+4x0),由1-4x02=-1得x0=√2(x0=-√2舍去),∴曲线y=x+4x(x>0)上的点P(√2,3√2)到直线x+y=0的距离最小,最小值为√2+3√2|√12+12=4.12.函数f(x)=e x(ax+b)-x2-4x的图象在点(0,f(0))处的切线方程是y=4x+4,求a,b.解析f'(x)=e x(ax+a+b)-2x-4,由已知得f(0)=4,f'(0)=4,故b=4,a+b=8,∴a=4.综上,a=4,b=4.13.(2019湖南长沙模拟)已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标;(3)如果曲线y=f(x)的某一切线与直线y=-14x+3垂直,求切点坐标与切线方程.解析(1)易知点(2,-6)在曲线y=f(x)上,所以点(2,-6)为切点.因为f'(x)=(x3+x-16)'=3x2+1,所以f(x)在点(2,-6)处的切线的斜率为f'(2),f'(2)=13,所以切线的方程为y+6=13(x-2),即y=13x-32.(2)设切点坐标为(x0,y0),则直线l的斜率为f'(x0),f'(x0)=3x02+1,所以直线l的方程为y=(3x02+1)(x-x0)+x03+x0-16,因为直线l过原点,所以0=(3x02+1)(0-x0)+x03+x0-16,整理得,x03=-8,所以x0=-2,所以y0=(-2)3+(-2)-16=-26,f'(x0)=3×(-2)2+1=13.所以直线l的方程为y=13x,切点坐标为(-2,-26).(3)因为切线与直线y=-14x+3垂直,所以切线的斜率k=4.设切点的坐标为(x0,y0),则f'(x0)=3x02+1=4,所以x0=±1.所以{x 0=1,y 0=-14或{x 0=-1,y 0=-18,即切点坐标为(1,-14)或(-1,-18),切线方程为y=4(x-1)-14或y=4(x+1)-18,即y=4x-18或y=4x-14.B 组 提升题组1.已知f(x)=acos x,g(x)=x 2+bx+1,若曲线y=f(x)与曲线y=g(x)在交点(0,m)处有公切线,则a+b=( )A.-1B.0C.1D.2答案 C 依题意得, f '(x)=-asin x,g'(x)=2x+b, f '(0)=g'(0),∴-asin 0=2×0+b,故b=0, ∵m=f(0)=g(0),∴m=a=1,因此a+b=1,故选C.2.若曲线f(x)=ax 2(a>0)与g(x)=ln x 有两条公切线,则a 的取值范围是( )A.(0,1e )B.(0,12e )C.(1e ,+∞)D.(12e ,+∞)答案 D 假设两曲线相切,设其切点为P(m,n),∴f '(m)=2am=g'(m)=1m ,∴2am 2=1,∵点P 在曲线上,∴n=am 2=ln m,∴12=ln m,∴m=e 12,∴a=12e ,当a>12e 时,两曲线相离,∴必然存在两条公切线,∴a ∈(12e ,+∞).3.已知函数f(x)={-x 2+2x,x ≤0,ln(x +1),x >0,若|f(x)|≥ax,则实数a 的取值范围是 . 答案 [-2,0]解析 作出函数y=|f(x)|的图象与直线y=ax,如图所示,当直线在第四象限的部分介于直线l 与x 轴之间时符合题意,直线l 为曲线f(x)的切线,且此时函数y=|f(x)|在第二象限的解析式为y=x 2-2x,则y'=2x-2,因为x ≤0,故y'≤-2,故直线l 的斜率为-2,故只需直线y=ax 的斜率a 介于-2与0之间即可,即a ∈[-2,0].4.已知点M 是曲线y=13x 3-2x 2+3x+1上任意一点,曲线在M 处的切线为l,求:(1)斜率最小的切线方程;(2)切线l 的倾斜角α的取值范围.解析 (1)∵y'=x 2-4x+3=(x-2)2-1,∴当x=2时,y'min =-1,此时y=53,∴斜率最小时的切点为(2,53),斜率k=-1,∴切线方程为3x+3y-11=0.(2)由(1)得切线的斜率k ≥-1,∴tan α≥-1,∵α∈[0,π),∴α∈[0,π2)∪[3π4,π).故α的取值范围是[0,π2)∪[3π4,π).。

相关文档
最新文档