讲义_有理数的基本概念及分类

合集下载

有理数及其加减(经典讲义)

有理数及其加减(经典讲义)

有理数及其加减一. 教学内容:1. 有理数2. 数轴、相反数3. 绝对值二. 知识要点:1. 有理数的定义:整数和分数统称为有理数。

有理数的分类:有理数 有理数2. 数轴:(1)定义:规定了原点、正方向和单位长度的直线,叫做数轴。

(2)意义:任意有理数都可以用数轴上的点来表示;用数轴比较有理数的大小:数轴上的两个点表示的数,右边的总比左边的大。

3. 绝对值定义:在数轴上,一个数所对应的点与原点之间的距离叫做该数的绝对值 两个正数比较大小,绝对值大的数大。

两个负数比较大小,绝对值大的数反而小。

绝对值的非负性:三. 考点分析1、有理数的有关概念是中考的一大热点,常以选择题、填空题的形式出现;2、利用数轴比较大小,相反数的概念,是近几年的中考热点,一般多是与绝对值等内容综合考查,常以选择题、填空题的形式出现;3、绝对值的中考考点有三个:求一个数或一个整式的绝对值;绝对值非负性的应用;比较有理数的大小。

中考命题时形式多样,既有填空题又有选择题,有时出现解答题。

【典例精析】例1、把下列各数填在相应的大括号里:-1,-,0,+3.6,-17%,3.142,,-0.088,2008,-506 整数集合:{ …} 分数集合:{ …} ⎧⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎪⎨⎧⎪⎪⎨⎪⎪⎩⎪⎪⎪⎩正整数0整数负整数正分数分数负分数{{0⎧⎪⎪⎨⎪⎪⎩正整数正分数负整数负分数正有理数负有理数a 0≥39119负整数集合:{ …} 正分数集合:{ …} 负有理数集合:{ …} 正有理数集合:{ …}例2、在数轴上表示下列各数,并用“<”号把它们连接起来:-3,,0,1,+4.5,-1.5,,例3、已知︱x -3︱+︱4-y ︱=0,求x ,y 的值。

例4、某检修小组乘汽车沿一条东西方向的公路检修线路,如果规定向东为正,向西为负,某天从A 地出发,到收工时所走的路线 (单位:千米 )如下:+10,-5,+4,-9,+8,+12,-8若汽车每千米耗油0.2升,问:(1)收工时检修组在A 地何处?(2)到收工时共耗油多少升?【模拟试题】一、填空题(每题4分,共32分)1. 把下列各数分别填入相应的括号内:+3,-5,+1/2,-0.09,0,-70,3.36,-7/8正分数( ) 负分数( )负整数( ) 整数( )正有理数( )2. 用“>”、、“<”或“=”填空: (1)-1/2( )-1/3 (2)-(-3)( )︱-3︱ (3)0( )-(+5)3. 数轴上距原点距离是4个单位的点表示的数是( )4. 绝对值不大于3的整数有( )个,它们的和是( )5. 绝对值最小的有理数是( ),最大的负整数是( )﹡6. 若|x -6|+|y -2|=0,则x/y =( )﹡7. 若m ≥0,则|m |=( ),若m ≤0,则m =( )8. 已知一个数的相反数是-2.5的倒数的绝对值,则这个数是( )二、选择题(每题4分,共24分)9. 一个有理数的绝对值是( )A. 正数B. 负数C. 非正数D. 非负数10. 下面结论中错误的是( )A. 0是整数但不是正数B. 正分数都是正有理数C. 整数和分数统称为有理数D. 有理数中除了正数就是负数11. 下列两数中互为相反数的是( )23 113A. 4和1/4B. -0.3和1/3C. -(-6)和-︱-6︱D. 5和︱-5︱12. 在数轴上,在表示数-3.5与2.5的两点之间,表示整数的点的个数是( )A. 6B. 5C. 4D. 3﹡13. =1,则m 是( )A. 正数或负数B. 正数C. 有理数D. 正整数﹡14. 已知 |-x |=20,|y |=5,则|x |+y 的值是( )A. 15B. 25C. –15或-2 5D. 15或25三 解答题(共44分)15. (6分)比较下列各组数的大小(1)-5与-6 (2)|-3.1|与|2.9| (3)0与|-3|16. (8分)已知x ,y 是有理数,且满足|x +4|+|1-y |=0 求x +y 的值。

人教版七年级数学上册知识点归纳上课讲义

人教版七年级数学上册知识点归纳上课讲义

1.1正数和负数(1)正数: 大于0的数;负数: 小于0的数;(2)0既不是正数, 也不是负数;(3)在同一个问题中, 分别用正数和负数表示的量具有相反的意义;(4) — a不一定是负数, +a也不一定是正数;(5)自然数: 0和正整数统称为自然数;(6) a>0 a是正数;a>0 a是正数或0 a是非负数;a< 0 a是负数;a< 0 a是负数或0 a是非正数.1.2有理数(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式, 这样的数称为有理数;(2)正整数、0、负整数统称为整数;(3)有理数的分类:第一章有理数正有理数正整数正整数整数有理数零有理数负有理数负整数分数负整数正分数(4)数轴: 规定了原点、正方向、单位长度的一条直线;(即数轴的三要素)(5) 一般地, 当a是正数时, 则数轴上表示数 a的点在原点的右边, 距离原点点在原点的左边, 距离原点 a个单位长度;(6)两点关于原点对称: 一般地, 设 a是正数, 则在数轴上与原点的距离为a的点有两个, 它们分别在原点的左右, 表示-a和a,我们称这两个点关于原点对称;(7)相反数: 只有符号不同的两个数称为互为相反数;(8) 一般地, a的相反数是一a;特别地, 0的相反数是0;(9)相反数的几何意义: 数轴上表示相反数的两个点关于原点对称;(10)a、b互为相反数a+b=0 ;(即相反数之和为0)a ,b ,(11)a、b互为相反数一1或一1;(即相反数之商为—1)b a(12)a、b互为相反数|a|=|b| ;(即相反数的绝对值相等)(13)绝对值: 一般地, 在数轴上表示数a的点到原点的距离叫做 a的绝对值;([a|R)(14)一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;a (a 0)(15)绝对值可表示为: a 0 (a 0)a (a 0)(16) —1 a 0 ;— 1 a 0;a a(17)有理数的比较: 在数轴上表示有理数, 它们从左到右的顺序, 就是从小到大的顺序。

讲义之有理数

讲义之有理数

第一章有理数知识点提要1.1正数和负数●0以外的数前面加上负号“-”的书叫做负数,其余叫做正数。

●数0既不是正数也不是负数,0是正数与负数的分界。

●在同一个问题中,分别用正数和负数表示的量具有相反的意义1.2有理数1.2.1有理数1.2.2数轴规定了原点、正方向、单位长度的直线叫做数轴。

数轴的作用:所有的有理数都可以用数轴上的点来表达。

注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。

⑵同一根数轴,单位长度不能改变。

一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a 个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。

1.2.3相反数只有符号不同的两个数叫做互为相反数。

数轴上表示相反数的两个点关于原点对称。

在任意一个数前面添上“-”号,新的数就表示原数的相反数。

1.2.4绝对值一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。

一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。

在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

注意事项:比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。

⑵两个负数,绝对值大的反而小。

例题【考题1-1】|-22|的值是()A.-2 B.2 C.4 D.-4解C 点拨:由于-22=-4,而|-4|=4.故选C.【考题1-2】在下面等式的□内填数,○内填运算符号,使等号成立(两个算式中的运算符号不能相同):□○□=-6;□○□=-6.⊕ = -6点拨:此题考查有理数运算,答案不唯一,只要符合题目要求即可.【考题1-3】自然数中有许多奇妙而有趣的现象,很多秘密等待着我们去探索!比如:对任意一个自然数,先将其各位数字求和,再将其和乘以3后加上1,多次重复这种操作运算,运算结果最终会得到一个固定不变的数R ,它会掉入一个数字“陷断”,永远也别想逃出来,没有一个自然数能逃出它的“魔掌”.那么最终掉人“陷井”的这个固定不变的数R=_________解:13 点拨:可任意举一个自然数去试验,如 15,(1+5)×3+1=19,(1+9)×3+1=31,(3+1)×3+1=13(1+3)×3+1=13,…….【考题1-4】在一条东西走向的马路旁,有青少年宫、学校、商场、医院四家公共场所.已知青少年宫在学校东300m 处,商场在学校西200m 处,医院在学校东500m 处.若将马路近似地看作一条直线,以学校为原点,向东方向为正方向,用1个单位长度表示100m .(1)在数轴上表示出四家公共场所的位置;(2)列式计算青少年宫与商场之间的距离.:解:(1)如图1-2-1所示:(2)300-(-200)=500(m );或|-200-300 |=500(m );或 300+|200|=500(m ).答:青少宫与商场之间的距离是 500m 。

第一章 有理数讲义

第一章  有理数讲义

小专一:正数和负数【要点回顾】为什么会出现负数?根据现实生活的需要,产生了正数和负数,规定一种意义的量为正,把另一种与它意义相反的量规定为负。

一般地,我们把上升、运进、零上、收入、前进、高出、零上温度等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于、零下温度等规定为负的。

正数和负数的定义是什么?(要会判别正负数)像3,1.8%,3.5这样大于0的数叫做正数(有时也在它前面放上一个“+”(读作正)号);像-3,-2.7%,-4.5,-1.2这样在正数前加上一个“-”(读作负)号的数叫做负数。

零有点特别哦!零既不是正数,也不是负数,比正数小,比负数大!默默提示:正数,0,负数前带“十”号,结果分别是正数,0,负数;正数,0,负数前带“-”号,结果分别是负数,0,正数。

用正负数表示具有相反意义的量。

相反意义的量包含两层意思:一是“相反意义”,即意义相反(意义相反的量必须是成对出现的,是同类的量比如支出与收入,向东与向西等,二是“量”,具有一定的量。

【题型展示】1.下列不是具有相反意义的量是()A.前进5米和后退5米 B.节约3吨和消费10吨C.身高增加2厘米和体重减少2千克 D.超过5克和不足2克2.下列说法不正确的是()(概念理解)A.0不是正数也不是负数 B.负数是带“—”的数,正数是带有“+”的数C.非负数是正数或0D.0是一个特殊的整数,它并不只是表示“没有”3.(05年宜昌市中考·课改卷)如果收入15•元记作+15•元,•那么支出20•元记作元。

(用正负数表示相反意义的量)4.如果以每月生产180个零件为准,超过的零件数记作正数,不足的零件数记作负数,那么1月生产160 个零件记作个,2月生产200个零件记作个。

5.某老师把某一小组五名同学的成绩简记为:+10,-5,0,+8,-3,又知道记为0的成绩表示90分,正数表示超过90分,则五名同学的平均成绩为多少分?(4到5是正负数在生活中的应用。

有理数讲义

有理数讲义

第一讲:有理数【概念精讲】1、三个重要的定义:(1)正数:像1、2.5、这样大于0的数叫做 ;(2)负数:在正数前面加上“-”号,表示比0小的数叫做 ;(3) 即不是正数也不是负数。

2、有理数的分类:(1)按定义分类: (2)按性质符号分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0 ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数0 3、数轴数轴有三要素: 。

画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

在数轴上的所表示的数,右边的数总比左边的数大,所以正数都大于0,负数都小于0,正数大于负数。

4、相反数如果两个数只有符号不同,那么其中一个数就叫另一个数的相反数。

0的相反数是 ,互为相反的两上数,在数轴上位于原点的两则,并且与原点的距离 。

5、绝对值(1)绝对值的几何意义:一个数的绝对值就是数轴上表示该数的点与原点的 。

(2)绝对值的代数意义:一个正数的绝对值是它本身;0的绝对值是0;一个负数的绝对值是它的相反数,可用字母a 表示如下:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a(3)两个负数比较大小,绝对值大的 。

【例题祥解】1,-0.1,-789,25,0,-20,-3.14,-590,87正整数集{ …};正有理数集{ …};负有理数集{ …};负整数集{ …};自然数集{ …};正分数集{ …};负分数集{ …};2.如图所示的图形为四位同学画的数轴,其中正确的是( )3.在数轴上画出表示下列各数的点,并按从大到小的顺序排列,用“>”号连接起来。

4,-|-2|, -4.5, 1, 04.下列语句中正确的是( )A.数轴上的点只能表示整数 B.数轴上的点只能表示分数C.数轴上的点只能表示有理数 D.所有有理数都可以用数轴上的点表示出来5. -5的相反数是 ;-(-8)的相反数是 ;- =0的相反数是 ; a 的相反数是 ;6. 若a 和b 是互为相反数,则a+b= 。

01-有理数的基本概念-七年级寒假班讲义

01-有理数的基本概念-七年级寒假班讲义

第一讲 有理数的基本概念【学习目标】1.掌握用正负数表示实际问题中具有相反意义的量;2.理解正数、负数、有理数的概念;3. 掌握有理数的分类方法,初步建立分类讨论的思想.【知识梳理】知识点一、正数与负数像+3、+1.5、12+、+584等 0的数,叫做 ;像-3、-1.5、12-、-584等在正数前面加“-”号的数,叫做 .0既不是 ,又不是 。

知识点二、有理数的分类(1)按整数、分数的关系分类: (2)按正数、负数与0的关系分类:注:⑴正数和零统称为 ;⑵负数和零统称为 ;⑶正整数和零统称为 ;⑷负整数和零统称为 .【例1】下列说法正确的是( )A .a -一定是负数B .一个数不是正数就是负数C .0-是负数D .在正数前面加“-”号,就成了负数【例2】(1)如果收入2000元,可以记作2000+元,那么支出5000元,记为 .(2)高于海平面300米的高度记为海拔300+米,则海拔高度为600-米表示 .(3)某地区5月平均温度为20C ︒,记录表上有5月份5天的记录分别为 2.7+,0,1.4+,3-,4.7-,那么这5项记录表示的实际温度分别是 .(4)向南走200-米,表示 .【例3】某饮料公司生产的一种瓶装饮料外包装上印有“60030±(mL )”字样,请问“30mL ±”是什么含义?质检局对该产品抽查5瓶,容量分别为603mL ,611mL ,589mL ,573mL ,627mL ,问抽查产品的容量是否合格?【例4】检查篮球的质量,把超过标准质量的克数记为正数,不足标准质量的克数记为负数,检查的结果如下表: 篮球编号 1 2 3 4 5与标准质量的差(克) 4+ 7+ 3- 8- 9+最接近标准质量的是_______号篮球;质量最大的篮球比质量最小的篮球重_______克.【例5】下面说法中正确的是( ).A .非负数一定是正数.B .有最小的正整数,有最小的正有理数.C .a -一定是负数.D .正整数和正分数统称正有理数.【例6】下列数中,哪些属于负数?哪些属于非正数?属于正分数?哪些属于非负有理数?﹣4.5,6,0,2.4,π,,﹣0.313,3.14,﹣11负 数:( …); 非 正 数:( …); 正分数:( …); 非负有理数:( …)【例7】(1)在下列各数:(2)--,2(2)--,2--,2(2)-,2(2)--中,负数的个数为 个.(2)①10a -;②21a --;③a -;④2(1)a -+一定是负数的是 (填序号).一、选择题:1、下列各数中是负整数的是( )A 、2-B 、5C 、12 D 、25-2、在12,π,4,123,0,0.3-&中,表示有理数的有( )A 、3个B 、4个C 、5个D 、6个3、下列各数:74-,1.010010001,833,0,π-, 2.626626662-⋯,0.12&&,其中有理数的个数是()A 、3B 、4C 、5D 、64、如果+20%表示增加20%,那么-6%表示( )A 、增加14%B 、增加6%C 、减少6%D 、减少26%5、下列判断正确的是( )①+a 一定不为0;②-a 一定不为0;③a >0;④a <0A 、①②B 、③④C 、①②③④D 、都不正确6、观察下列一组数:-1,2,-3,4,-5,6,…,则第100个数是( )A 、100B 、-100C 、101D 、-1017、在-,π,0,14,-5,0.333…六个数中,整数的个数为( )A 、1B 、2C 、3D 、48、-0.5不属于( )A 、负数B 、分数C 、整数D 、有理数9、在下列集合中,分类正确的是( )A 、正数集合B 、非负数集合C 、分数集合D 、整数集合10、在有理数中,不存在这样的数( )A 、既是整数,又是负数B 、既不是整数,也不是负数C 、既是正数,又是负数D 、既是分数,又是负数11、在-3,-121,0,-73,2002各数中,是正数的有( ) A 、0个 B 、1个 C 、2个 D 、3个12、下列既不是正数又不是负数的是( )A 、-1B 、+3C 、0.12D 、013、飞机上升-30米,实际上就是( )A 、上升30米B 、下降30米C 、下降-30米D 、先上升30米,再下降30米14、下列说法正确的是( )A 、整数就是正整数和负整数B 、分数包括正分数、负分数C 、正有理数和负有理数组成全体有理数D 、一个数不是正数就是负数。

人教版初一上册数学《有理数》专题讲义(含答案)

人教版初一上册数学《有理数》专题讲义(含答案)

有理数1. 掌握有理数有关分类、数轴、相反数、近似数、有效数字和科学计数法等有关概念 2. 熟练去括号法则,以及有理数的有关运算模块一 正负数与有理数的分类1. 对于正负数的理解不能简单理解为带“+”号的数就是正数,带“-”号的数就是负数。

2. 相反意义的两个量是相互的,也是相对的。

3. 掌握有理数的两种分类:按“定义”分类与按“性质符号”分类☞有理数的分类【例1】 下列说法:①0是整数;②负分数一定是负有理数;③一个数不是整数就是负数;④π-为有理数;⑤最大的负有理数是1-,正确的序号是【难度】2星【解析】考察有理数的分类 【答案】①②【巩固】下列说法:①存在最小的自然数;②存在最小的正有理数;③不存在最大的正有理数;④存在最大的负有理数;⑤不是正整数就不是整数,错误的序号是【难度】2星【解析】考察有理数的分类 【答案】②④⑤模块二 数轴、相反数、倒数1. 数形结合思想是一种重要的数学思想。

数轴就是数形结合的工具。

2. 数轴是条直线,可以向两方无限延伸。

3. 数轴的三要素:原点、正方向、单位长度、三者缺一不可。

4. 所有有理数都可以用数轴上点表示,反过来,不能说数轴上所有的点都表示有理数5. 相反数是成对出现的,不能单独存在。

相反数和为零。

☞数轴例题精讲重难点【例2】 如图所示,小明在写作业时,不慎将两滴墨水滴在数轴上,根据图中的数值,试定墨迹盖住的整数共有几个【难度】1星【解析】考察数轴的有关概念【答案】如图,盖住数中的整数有4-、3-、2-、2、3、4,共有6个【巩固】 数轴上表示整数的点称为整点,某条数轴的单位长度为1cm ,若在数轴上任意画出一条长2006cm 的线段,则线段盖住的整数点共有 个【难度】2星【解析】考察数轴的有关概念 【答案】2006或2007☞相反数与倒数【例3】 已知a 、b 互为相反数,c 、d 互为倒数,1x =±,求2a b x cdx ++-的值 【难度】3星【解析】考察相反数与倒数的有关概念 【答案】解:由相反数、倒数的定义可得 0a b +=,1cd =则当1x =时,原式=01110+-⨯= 当1x =-时,原式=20(1)1(1)2+--⨯-=【巩固】已知a 和b 互为相反数,m 和n 互为倒数,(2)c =-+,求22mna b c++的值 【难度】3星【解析】考察相反数与倒数有关概念 【答案】解:由相反数和倒数的定义可得 0a b +=,1mn =∵(2)c =-+ ∴原式112()022mn a b c =++=+=--【巩固】已知数轴上点A 和点B 分别表示互为相反数的两个数,a 和b ()a b <并且A 、B 两点间的距离是144,求a 、b 【难度】3星【解析】考察相反数有关概念【答案】解:∵a 、b 两数互为相反数 ∴0a b += ∴a b =-∵A 、B 两点间距离有144b a -= ∴1()44b b --=∴178b =,178a =-模块三 有理数的运算1. 在进行有理数加法运算时,优先确定符号,然后在计算绝对值,这样就不容易出错。

有理数复习讲义以及习题

有理数复习讲义以及习题
5、 的相反数是_______,它的倒数是_______,它的绝对值是______.
6、既不是正数也不是负数的数是_________,其相反数是________.
7、最大的负整数是_________,最小的正整数是_________.
8、在 中的底数是__________,指数是_____________.
5、有理数的乘方
(1)有理数的乘方的定义:求几个相同因数a的运算叫做乘方,乘方是一种运算,是几个相同的因数的特殊乘法运算,记做“ ”其中a叫做,表示相同的因数。n叫做,表示相同因数的个数,它所表示的意义是n个a相乘,乘方的结果叫做.
(2)正数的任何次方都是,负数的偶数次方是,负数的奇数次方是
6、有理数的混合运算
(2)有理数加法的运算律:
加法的交换律:;加法的结合律:
用加法的运算律进行简便运算的基本思路是:先把互为相反数的数相加;把同分母的分数先相加;把符号相同的数先相加;把相加得整数的数先相加.
2、有理数的减法
(1)有理数减法法则:减去一个数等于.
(2)有理数加减混合运算步骤:先把减法变成加法,再按有理数加法法则进行运算;
3、有理数的乘法
(1)有理数乘法的法则:两个有理数相乘,同号得,异号得,并把绝对值;任何数与0相乘都得.
(2)有理数乘法的运算律:交换律:;结合律:;交换律:.
(3)倒数的定义:乘积是1的两个有理数互为倒数,即ab=1,那么a和b互为倒数;倒数也可以看成是把分子分母的位置颠倒过来.
4、有理数的除法
有理数的除法法则:除以一个数,等于乘上这个数的,不能做除数.这个法则可以把除法转化为乘法;除法法则也可以看成是:两个数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数都等于0.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲有理数
【1.1正数与负数】
知识点对应训练
知识点1:正数、负数的概念
像3、2、0.5、1.8%这样比0大的数叫,根据需要,
有时在正数前面加上“+”,如+5,,,,…。

正数
前面的“+”,一般省略不写:而像-3、-2、-3.5%这样在正数前面加
上“—”号的数叫。

如-6,,…。

“-6”读
作。

【例1】下列各数中,哪些是正数?哪些是负数?
-10,1,-0.5,0,36,52
-,15%,-60,
53
1
-,22.8
解:
1、下列各数 -11 ,0.2,81
-,
7
4
+,1,
-1, -a, -30%中,
()一定是正数,
()一定是负数。

知识点2:对“0”的理解。

0既不是数,也不是数,它是正数与负数的分水岭。


的意义很特殊,它既可以表示“没有”,也可以表示特定的意义。

【例2】对于“0”的说法正确的有()
①0是正数与负数的分界;②0℃是一个确定的温度;
③0是正数;④0是自然数;⑤不存在既不是正数也不是负数的数。

解:
2下列说法正确的有()。

①0是最小的自然数;
②0是整数也是偶数;
③0既非正数也非负数;
④一个数不是正数就是负数;
⑤负数也叫非正数。

⑥一个数,如果不是正数,必定就是负数.
知识点3;用正数和负数表示具有相反意义的量。

相反意义的量必须具有两个要素:一是它们的意义;二是
它们都具有数量,而且一定是量。

【例3】下面问题中:
(1)将水位上升3m时水位变化记作+3m;则水位下降3m时水位变
化记作-3m。

(2)在一个月内,小明的身高增加2.5cm,记作+2.5cm;体重下降
3kg,记作-3kg
(3)某人存进银行1900元,记作+1900元;取出500元,记作-500
元。

(4)向东走500m记作+500m;向西走120m,记作-120m.
(5)小张往前走10m,记作+10m,那么他往左走5m记作-5m.
表述有错误的是()。

3、用正数和负数表示同一问题中具有相反
意义的量。

①某校七年级举行足球比赛,一班胜两局,
记作+2;则三班输一局,记作。

②如果浪费8度电,记作-8度;那么节约
15度电记作。

③如果高于海平面100m记作+100m,那么低
于海平面36m记作。

④我校的入学检测中,以60分为标准,若
王飞得了85分记作+25分,那么,张生得
了45分记作。

相关文档
最新文档