2016武汉数学中考模拟
备考2023年中考数学二轮复习-函数_一次函数_一次函数图象与几何变换

备考2023年中考数学二轮复习-函数_一次函数_一次函数图象与几何变换一次函数图象与几何变换专训单选题:1、(2018东胜.中考模拟) 关于直线y=﹣2x+1,下列叙述正确的是()A . 图象过点(1,0)B . 图象经过一,二,四象限C . y随x的增大而增大D . 是正比例函数y=﹣2x的图象向右平移一个单位得到的2、(2011.中考真卷) 如图,直线l:y=x+2与y轴交于点A,将直线l绕点A旋转90°后,所得直线的解析式为()A . y=x﹣2B . y=﹣x+2C . y=﹣x﹣2D . y=﹣2x﹣13、(2018毕节.中考模拟) 在平面直角坐标系中,把直线y=2x向左平移1个单位长度,平移后的直线解析式是()A . y=2x+1B . y=2x﹣1C . y=2x+2D . y=2x﹣24、(2020西安.中考模拟) 在平面直角坐标系中,将直线y=3x的图象向左平移m 个单位,使其与直线y=﹣x+6的交点在第二象限,则m的取值范围是()A . m>2 B . m<2 C . m>6 D . m<65、(2020沈阳.中考模拟) 将函数y=﹣3x的图象沿y轴向上平移2个单位长度后,所得图象对应的函数关系式为()A .B .C .D .6、(2020温州.中考模拟) 将直线y=-x+a的图象向右平移2个单位后经过点A(3,3),则a的值为( )A . 4B . -4C . 2D . -27、(2020青山.中考模拟) 直线y=kx沿y轴向下平移4个单位长度后与x轴的交点坐标是(-3,0),以下各点在直线y=kx上的是()A . (-4,0)B . (0,3)C . (3,-4)D . (-4,3)8、(2021陕西.中考模拟) 平面直角坐标系中,直线沿轴向右平移个单位后恰好经过,则()A . -1B . 2C . -4D . -39、(2021新华.中考模拟) 把直线向上平移m个单位后,与直线的交点在第二象限,则m可以取得的整数值有()A . 4个B . 5个C . 6个D . 7个10、将直线向下平移2个单位长度,所得直线的表达式为()A . B . C . D .填空题:11、(2017路南.中考模拟) 如图,在平面直角坐标系中,直线y=2x与反比例函数y= 在第一象限内的图象交于点A(m,2),将直线y=2x向下平移4个单位后与反比例函数y= 在第一象限内的图象交于点P,则k=________;△POA的面积为________.12、(2019丹阳.中考模拟) 如图,在平面直角坐标系中,A(1,0),B(3,0),点C在第一象限,∠ABC=90°,AC= ,直线l的关系式为:.将△ABC沿x轴向左平移,当点C落在直线l上时,线段AC扫过的面积为________平方单位.13、(2017深圳.中考模拟) 将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为________.14、(2019永康.中考模拟) 将函数y=2x+1的图象向左平移2个单位所得图象的函数解析式为________.15、(2019荆州.中考模拟) 将函数y=3x+1的图象平移,使它经过点(1,1),则平移后的函数表达式是________.16、(2016益阳.中考真卷) 将正比例函数y=2x的图象向上平移3个单位,所得的直线不经过第________象限.17、(2017深圳.中考模拟) 将函数(b为常数)的图象位于轴下方的部分沿轴翻折至其上方后,所得的折线是函数(b为常数)的图象.若该图象在直线y=2下方的点的横坐标满足,则b的取值范围为________.18、(2019白云.中考模拟) 把抛物线向上平移个单位,再向左平移个单位,得到的抛物线的顶点坐标是________.解答题:19、(2017河西.中考模拟) 如图,将一个正方形纸片OABC放置在平面直角坐标系中,其中A(1,0),C(0,1),P为AB边上一个动点,折叠该纸片,使O点与P 点重合,折痕l与OP交于点M,与对角线AC交于Q点(Ⅰ)若点P的坐标为(1,),求点M的坐标;(Ⅱ)若点P的坐标为(1,t)①求点M的坐标(用含t的式子表示)(直接写出答案)②求点Q的坐标(用含t的式子表示)(直接写出答案)(Ⅲ)当点P在边AB上移动时,∠QOP的度数是否发生变化?如果你认为不发生变化,写出它的角度的大小.并说明理由;如果你认为发生变化,也说明理由.20、(2015厦门.中考真卷) 如图,在平面直角坐标系中,点A(2,n),B(m,n)(m>2),D(p,q)(q<n),点B,D在直线y=x+1上.四边形ABCD的对角线AC,BD相交于点E,且AB∥CD,CD=4,BE=DE,△AEB的面积是2.求证:四边形ABCD是矩形.21、(2015武汉.中考模拟) 已知等边△ABC.(1)如图①,P为等边△ABC外一点,且∠BPC=120°,试猜想线段BP、PC、AP 之间的数量关系,并证明你的猜想;(2)如图②,P为等边△ABC内一点,且∠APD=120°,求证:PA+PD+PC>BD;(3)在(2)的条件下,若∠CPD=30°,AP=4,CP=5,DP=8,求BD的长22、(2019吉林.中考模拟) 在平面直角坐标系中,某个函数图象上任意两点的坐标分别为(﹣t,y1)和(t,y2)(其中t为常数且t>0),将x<﹣t的部分沿直线y=y1翻折,翻折后的图象记为G1;将x>t的部分沿直线y=y2翻折,翻折后的图象记为G2,将G1和G2及原函数图象剩余的部分组成新的图象G.例如:如图,当t=1时,原函数y=x,图象G所对应的函数关系式为y=.(1)当t=时,原函数为y=x+1,图象G与坐标轴的交点坐标是.(2)当t=时,原函数为y=x2﹣2x①图象G所对应的函数值y随x的增大而减小时,x的取值范围是.②图象G所对应的函数是否有最大值,如果有,请求出最大值;如果没有,请说明理由.(3)对应函数y=x2﹣2nx+n2﹣3(n为常数).①n=﹣1时,若图象G与直线y=2恰好有两个交点,求t的取值范围.②当t=2时,若图象G在n2﹣2≤x≤n2﹣1上的函数值y随x的增大而减小,直接写出n的取值范围.23、(2020郑州.中考模拟) 如图所示,直线与反比例函数的图象交于点,,与坐标轴交于A、B两点.(1)求一次函数与反比例函数的解析式;(2)观察图象,当时,直接写出不等式的解集;(3)将直线向下平移个单位,若直线与反比例函数的图象有唯一交点,求的值.一次函数图象与几何变换答案1.答案:B2.答案:B3.答案:C4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:16.答案:17.答案:18.答案:19.答案:20.答案:21.答案:22.答案:23.答案:。
2016年湖北省武汉市中考数学模拟试卷四--附答案解析

2016年湖北省武汉市中考数学模拟试卷(四)一、选择题(共10小题,每小题3分,共30分)1.实数的值在()A.3与4之间B.2与3之间C.1与2之间D.0与1之间2.分式有意义,则x的取值范围是()A.x>﹣2 B.x≠2 C.x≠﹣2 D.x>23.运用乘法公式计算(a﹣2)2的结果是()A.a2﹣4a+4 B.a2﹣2a+4 C.a2﹣4 D.a2﹣4a﹣44.有5名同学参加演讲比赛,以抽签的方式决定每个人的出场顺序,签筒中有5根形状大小相同的纸签,上面分别标有出场的序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机地抽取一根纸签,下列事件是随机事件的是()A.抽取一根纸签,抽到的序号是0B.抽取一根纸签,抽到的序号小于6C.抽取一根纸签,抽到的序号是1D.抽取一根纸签,抽到的序号有6种可能的结果5.下列计算正确的是()A.4x2﹣3x2=1 B.x+x=2x2C.4x6÷2x2=2x3 D.(x2)3=x66.如图,四边形ABCD是菱形,A(3,0),B(0,4),则点C的坐标为()A.(﹣5,4)B.(﹣5,5)C.(﹣4,4)D.(﹣4,3)7.有一种圆柱体茶叶筒如图所示,则它的主视图是()A.B.C.D.8.张大娘为了提高家庭收入,买来10头小猪.经过精心饲养,不到7个月就可以出售了,下表为这些猪出售时的体重:则这些猪体重的平均数和中位数分别是()A.126.8,126 B.128.6,126 C.128.6,135 D.126.8,1359.小用火柴棍按下列方式摆图形,第1个图形用了4根火柴棍,第2个图形用了10根火柴棍,第3个图形用了18根火柴棍.依照此规律,若第n个图形用了70根火柴棍,则n的值为()A.6 B.7 C.8 D.910.如图,Rt△AOB∽△DOC,∠AOB=∠COD=90°,M为OA的中点,OA=6,OB=8,将△COD 绕O点旋转,连接AD,CB交于P点,连接MP,则MP的最大值()A.7 B.8 C.9 D.10二、填空题(共6小题,每小题3分,共18分)11.计算9+(﹣5)的结果为.12.2016年某市有640000初中毕业生.数640000用科学记数法表示为.13.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机取出一个小球,标号为奇数的概率为.14.如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=70°.∠BCD=n°,则∠BED的度数为度.15.如图,Rt△ABC中,AC=BC=8,⊙C的半径为2,点P在线段AB上一动点,过点P作⊙C的一条切线PQ,Q为切点,则切线长PQ的最小值为.16.直线y=m是平行于x轴的直线,将抛物线y=﹣x2﹣4x在直线y=m上侧的部分沿直线y=m 翻折,翻折后的部分与没有翻折的部分组成新的函数图象,若新的函数图象刚好与直线y=﹣x 有3个交点,则满足条件的m的值为.三、解答题(共8小题,共72分)17.解方程5x+2=2(x+7).18.如图,D在AB上,E在AC上,AB=AC,∠B=∠C,求证:AD=AE.19.在学校开展的“学习交通安全知识,争做文明中学生”主题活动月中,学校德工处随机选取了该校部分学生,对闯红灯情况进行了一次调查,调查结果有三种情况:A.从不闯红灯;B.偶尔闯红灯;C经常闯红灯.德工处将调查的数据进行了整理,并绘制了尚不完整的统计图如图,请根据相关信息,解答下列问题.(1)求本次活动共调查了多少名学生;(2)请补全(图二),并求(图一)中B区域的圆心角的度数;(3)若该校有2400名学生,请估算该校不严格遵守信号灯指示的人数.20.将直线y=k1x向右平移3个单位后,刚好经过点A(﹣1,4),已知点A在反比例函数y=的图象上.(1)求直线y=k1x和y=图象的交点坐标;(2)画出两函数图象,并根据图象指出不等式k1x>的解集.21.已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)连接AD并延长交BE于点F,若OB=9,sin∠ABC=,求BF的长.22.某公司生产的A种产品,它的成本是2元,售价是3元,年销售量为100万件,为了获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费是x(10万元)时,产品的年销售量将是原销售量的y倍,且y是x的二次函数,它们的关系如表:(1)求y与x的函数关系式;(2)如果把利润看做是销售总额减去成本费和广告费,试写出年利润S(10万元)与广告费x (10万元)的函数关系式;(3)如果投入的年广告费为10~30万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增大?23.如图,在△ABC中,∠ACB=90°,BC=nAC,CD⊥AB于D,点P为AB边上一动点,PE⊥AC,PF⊥BC,垂足分别为E、F.(1)若n=2,则=;(2)当n=3时,连EF、DF,求的值;(3)若=,求n的值.24.已知抛物线C1:y=ax2+bx+(a≠0)经过点A(﹣1,0)和B(3,0).(1)求抛物线C1的解析式,并写出其顶点C的坐标;(2)如图1,把抛物线C1沿着直线AC方向平移到某处时得到抛物线C2,此时点A,C分别平移到点D,E处.设点F在抛物线C1上且在x轴的下方,若△DEF是以EF为底的等腰直角三角形,求点F的坐标;(3)如图2,在(2)的条件下,设点M是线段BC上一动点,EN⊥EM交直线BF于点N,点P 为线段MN的中点,当点M从点B向点C运动时:①tan∠ENM的值如何变化?请说明理由;②点M到达点C时,直接写出点P经过的路线长.2016年湖北省武汉市中考数学模拟试卷(四)参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.实数的值在()A.3与4之间B.2与3之间C.1与2之间D.0与1之间【考点】估算无理数的大小.【分析】利用二次根式的性质,得出<<,进而得出答案.【解答】解:∵<<,∴2<<3,∴的值在整数2和3之间.故选B.2.分式有意义,则x的取值范围是()A.x>﹣2 B.x≠2 C.x≠﹣2 D.x>2【考点】分式有意义的条件.【分析】直接利用分式有意义的条件进而分析得出答案.【解答】解:∵分式有意义,∴x+2≠0,∴x≠﹣2.故选:C.3.运用乘法公式计算(a﹣2)2的结果是()A.a2﹣4a+4 B.a2﹣2a+4 C.a2﹣4 D.a2﹣4a﹣4【考点】完全平方公式.【分析】原式利用完全平方公式化简得到结果.【解答】解:原式=a2﹣4a+4,故选A4.有5名同学参加演讲比赛,以抽签的方式决定每个人的出场顺序,签筒中有5根形状大小相同的纸签,上面分别标有出场的序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机地抽取一根纸签,下列事件是随机事件的是()A.抽取一根纸签,抽到的序号是0B.抽取一根纸签,抽到的序号小于6C.抽取一根纸签,抽到的序号是1D.抽取一根纸签,抽到的序号有6种可能的结果【考点】随机事件.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:抽取一根纸签,抽到的序号是0是不可能事件;抽取一根纸签,抽到的序号小于6是不可能事件;抽取一根纸签,抽到的序号是1是随机事件;抽取一根纸签,抽到的序号有6种可能的结果是不可能事件,故选:B.5.下列计算正确的是()A.4x2﹣3x2=1 B.x+x=2x2C.4x6÷2x2=2x3 D.(x2)3=x6【考点】整式的除法;合并同类项;幂的乘方与积的乘方.【分析】原式各项利用合并同类项法则,幂的乘方与积的乘方,以及整式的除法法则计算得到结果,即可作出判断.【解答】解:A、原式=x2,错误;B、原式=2x,错误;C、原式=2x4,错误;D、原式=x6,正确,故选D6.如图,四边形ABCD是菱形,A(3,0),B(0,4),则点C的坐标为()A.(﹣5,4)B.(﹣5,5)C.(﹣4,4)D.(﹣4,3)【考点】菱形的性质;坐标与图形性质.【分析】由勾股定理求出AB=5,由菱形的性质得出BC=5,即可得出点C的坐标.【解答】解:∵A(3,0),B(0,4),∴OA=3,OB=4,∴AB==5,∵四边形ABCD是菱形,∴BC=AD=AB=5,∴点C的坐标为(﹣5,4);故选:A.7.有一种圆柱体茶叶筒如图所示,则它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:主视图是从正面看,茶叶盒可以看作是一个圆柱体,圆柱从正面看是长方形.故选:D.8.张大娘为了提高家庭收入,买来10头小猪.经过精心饲养,不到7个月就可以出售了,下表为这些猪出售时的体重:则这些猪体重的平均数和中位数分别是()A.126.8,126 B.128.6,126 C.128.6,135 D.126.8,135【考点】加权平均数;频数(率)分布表;中位数.【分析】根据平均数和中位数的概念直接求解,再选择正确选项.【解答】解:平均数=÷10=126.8;数据按从小到大排列:116,116,117,117,117,135,136,136,139,139,∴中位数=÷2=126.故选:A.9.小用火柴棍按下列方式摆图形,第1个图形用了4根火柴棍,第2个图形用了10根火柴棍,第3个图形用了18根火柴棍.依照此规律,若第n个图形用了70根火柴棍,则n的值为()A.6 B.7 C.8 D.9【考点】规律型:图形的变化类.【分析】根据图形中火柴棒的个数得出变化规律得出第n个图形火柴棒为:n(n+3)根,进而求出n的值即可.【解答】解:∵第一个图形火柴棒为:1×(1+3)=4根;第二个图形火柴棒为:2×(2+3)=10根;第三个图形火柴棒为:3×(3+3)=18根;第四个图形火柴棒为:4×(4+3)=28根;…∴第n个图形火柴棒为:n(n+3)根,∵n(n+3)=70,解得:n=7或n=﹣10(舍),故选:B.10.如图,Rt△AOB∽△DOC,∠AOB=∠COD=90°,M为OA的中点,OA=6,OB=8,将△COD 绕O点旋转,连接AD,CB交于P点,连接MP,则MP的最大值()A.7 B.8 C.9 D.10【考点】旋转的性质;相似三角形的性质.【分析】根据相似三角形的判定定理证明△COB∽△DOA,得到∠OBC=∠OAD,得到O、B、P、A共圆,求出MS和PS,根据三角形三边关系解答即可.【解答】解:取AB的中点S,连接MS、PS,则PM≤MS+PS,∵∠AOB=90°,OA=6,OB=8,∴AB=10,∵∠AOB=∠COD=90°,∴∠COB=∠DOA,∵△AOB∽△DOC,∴=,∴△COB∽△DOA,∴∠OBC=∠OAD,∴O、B、P、A共圆,∴∠APB=∠AOB=90°,又S是AB的中点,∴PS=AB=5,∵M为OA的中点,S是AB的中点,∴MS=OB=4,∴MP的最大值是4+5=9,故选:C.二、填空题(共6小题,每小题3分,共18分)11.计算9+(﹣5)的结果为4.【考点】有理数的加法.【分析】原式利用异号两数相加的法则计算即可得到结果.【解答】解:原式=+(9﹣5)=4,故答案为:412.2016年某市有640000初中毕业生.数640000用科学记数法表示为 6.4×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:640000=6.4×105,故答案为:6.4×105.13.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机取出一个小球,标号为奇数的概率为.【考点】概率公式.【分析】直接利用概率公式求出得到奇数的概率.【解答】解:∵1、2、3、4中,奇数有2个,∴随机取出一个小球,标号为奇数的概率为:=.故答案为:14.如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=70°.∠BCD=n°,则∠BED的度数为(35+)度.【考点】平行线的性质;角平分线的定义;三角形内角和定理.【分析】先根据角平分线的定义,得出∠ABE=∠CBE=∠ABC,∠ADE=∠CDE=∠ADC,再根据三角形内角和定理,推理得出∠BAD+∠BCD=2∠E,进而求得∠E的度数.【解答】解:∵BE平分∠ABC,DE平分∠ADC,∴∠ABE=∠CBE=∠ABC,∠ADE=∠CDE=∠ADC,∵∠ABE+∠BAD=∠E+∠ADE,∠BCD+∠CDE=∠E+∠CBE,∴∠ABE+∠BAD+∠BCD+∠CDE=∠E+∠ADE+∠E+∠CBE,∴∠BAD+∠BCD=2∠E,∵∠BAD=70°,∠BCD=n°,∴∠E=(∠D+∠B)=35+.故答案为:35+15.如图,Rt△ABC中,AC=BC=8,⊙C的半径为2,点P在线段AB上一动点,过点P作⊙C的一条切线PQ,Q为切点,则切线长PQ的最小值为2.【考点】切线的性质.【分析】当PC⊥AB时,线段PQ最短;连接CP,根据勾股定理知PQ2=CP2﹣CQ2,先求出CP的长,然后由勾股定理即可求得答案.【解答】解:连接CP,∵PQ是⊙C的切线,∴CQ⊥PQ,∴∠CQP=90°,根据勾股定理得:PQ2=CP2﹣CQ2,∴当PC⊥AB时,线段PQ最短,此时,PC=AB=4,则PQ2=CP2﹣CQ2=28,∴PQ=2,故答案为:2.16.直线y=m是平行于x轴的直线,将抛物线y=﹣x2﹣4x在直线y=m上侧的部分沿直线y=m 翻折,翻折后的部分与没有翻折的部分组成新的函数图象,若新的函数图象刚好与直线y=﹣x有3个交点,则满足条件的m的值为0或﹣.【考点】二次函数图象与几何变换.【分析】根据题意①当m=0时,新的函数B的图象刚好与直线y=x有3个不动点;②翻折后的部分与直线y=x有一个交点时,新的函数B的图象刚好与直线y=x有3个不动点两种情况求得即可.【解答】解:根据题意①当m=0时,新的函数B的图象刚好与直线y=x有3个不动点;②当m<0时,且翻折后的部分与直线y=x有一个交点,∵y=﹣x2﹣4x=﹣(x+4)2+8,∴顶点为(﹣4,8),∴在直线y=m上侧的部分沿直线y=m翻折,翻折后的部分的顶点为(﹣4,﹣8﹣2m),∴翻折后的部分的解析式为y=(x+4)2﹣8﹣2m,∵翻折后的部分与直线y=x有一个交点,∴方程(x+4)2﹣8﹣2m=x有两个相等的根,整理方程得x2+6x﹣4m=0.∴△=36+16m=0,解得m=﹣,综上,满足条件的m的值为0或﹣.故答案为:0或﹣.三、解答题(共8小题,共72分)17.解方程5x+2=2(x+7).【考点】解一元一次方程.【分析】方程去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去括号得:5x+2=2x+14,移项合并得:3x=12,解得:x=4.18.如图,D在AB上,E在AC上,AB=AC,∠B=∠C,求证:AD=AE.【考点】全等三角形的判定与性质.【分析】根据全等三角形的判定定理ASA可以证得△ACD≌△ABE,然后由“全等三角形的对应边相等”即可证得结论.【解答】证明:在△ABE与△ACD中,,∴△ACD≌△ABE(ASA),∴AD=AE(全等三角形的对应边相等).19.在学校开展的“学习交通安全知识,争做文明中学生”主题活动月中,学校德工处随机选取了该校部分学生,对闯红灯情况进行了一次调查,调查结果有三种情况:A.从不闯红灯;B.偶尔闯红灯;C经常闯红灯.德工处将调查的数据进行了整理,并绘制了尚不完整的统计图如图,请根据相关信息,解答下列问题.(1)求本次活动共调查了多少名学生;(2)请补全(图二),并求(图一)中B区域的圆心角的度数;(3)若该校有2400名学生,请估算该校不严格遵守信号灯指示的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据总数=频数÷百分比,可得共调查的学生数;(2)B区域的学生数=总数减去A、C区域的人数即可;再根据百分比=频数÷总数计算可得最喜爱甲类图书的人数所占百分比,从而求出B区域的圆心角的度数;(3)用总人数乘以样本的概率即可解答.【解答】解:(1)(名).故本次活动共调查了200名学生.(2)补全图二,200﹣120﹣20=60(名)..故B区域的圆心角的度数是108°.(3)(人).故估计该校不严格遵守信号灯指示的人数为960人.20.将直线y=k1x向右平移3个单位后,刚好经过点A(﹣1,4),已知点A在反比例函数y=的图象上.(1)求直线y=k1x和y=图象的交点坐标;(2)画出两函数图象,并根据图象指出不等式k1x>的解集.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据平移可知y=k1(x﹣3),将A点的坐标代入即可求出k1的值,再将A点代入y=,即可求出k2的值;(2)画出一次函数与反比函数的图象即可求出x的范围.【解答】解:(1)将y=k1x向右平移3个单位后所得的直线为y=k1(x﹣3)∵平移后经过点A(﹣1,4)∴k1=﹣1∵点A(﹣1,4)在图象∴k=﹣4∴y=k1x和图象交点坐标为(﹣2,2)和(2,﹣2)(2)画出图象x<﹣2或0<x<221.已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)连接AD并延长交BE于点F,若OB=9,sin∠ABC=,求BF的长.【考点】切线的判定与性质;相似三角形的判定与性质;解直角三角形.【分析】(1)连接OC,先证明△OCE≌△OBE,得出EB⊥OB,从而可证得结论.(2)过点D作DH⊥AB,根据sin∠ABC=,可求出OD=6,OH=4,HB=5,然后由△ADH∽△AFB,利用相似三角形的性质得出比例式即可解出BF的长.【解答】证明:(1)连接OC,∵OD⊥BC,∴∠COE=∠BOE,在△OCE和△OBE中,∵,∴△OCE≌△OBE,∴∠OBE=∠OCE=90°,即OB⊥BE,∵OB是⊙O半径,∴BE与⊙O相切.(2)过点D作DH⊥AB,连接AD并延长交BE于点F,∵∠DOH=∠BOD,∠DHO=∠BDO=90°,∴△ODH∽△OBD,∴==又∵sin∠ABC=,OB=9,∴OD=6,易得∠ABC=∠ODH,∴sin∠ODH=,即=,∴OH=4,∴DH==2,又∵△ADH∽△AFB,∴=,=,∴FB=.22.某公司生产的A种产品,它的成本是2元,售价是3元,年销售量为100万件,为了获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费是x(10万元)时,产品的年销售量将是原销售量的y倍,且y是x的二次函数,它们的关系如表:(1)求y与x的函数关系式;(2)如果把利润看做是销售总额减去成本费和广告费,试写出年利润S(10万元)与广告费x (10万元)的函数关系式;(3)如果投入的年广告费为10~30万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增大?【考点】二次函数的应用.【分析】(1)设二次函数的解析式为y=ax2+bx+c,根据表格数据待定系数法求解可得;(2)根据利润=销售总额减去成本费和广告费,即可列函数解析式;(3)将(2)中函数解析式配方,结合x的范围即可得.【解答】解:(1)设二次函数的解析式为y=ax2+bx+c,根据题意,得,解得∴所求函数的解析式是.(2)根据题意,得S=10y(3﹣2)﹣x=﹣x2+5x+10.(3).由于1≤x≤3,所以当1≤x≤2.5时,S随x的增大而增大.∴当广告费在10~25万元之间,公司获得的年利润随广告费的增大而增大.23.如图,在△ABC中,∠ACB=90°,BC=nAC,CD⊥AB于D,点P为AB边上一动点,PE⊥AC,PF⊥BC,垂足分别为E、F.(1)若n=2,则=;(2)当n=3时,连EF、DF,求的值;(3)若=,求n的值.【考点】相似形综合题.【分析】(1)根据∠ACB=90°,PE⊥AC,PF⊥BC,那么CEPF就是个矩形.得到CE=PF从而不难求得CE:BF的值;(2)可通过构建相似三角形来求解;(3)可根据(2)的思路进行反向求解,即先通过EF,DF的比例关系,求出DE:DF的值.也就求出了CE:BF的值即tanB=AC:BC的值.【解答】解:(1)∵∠ACB=90∘,PE⊥AC,PF⊥BC,∴四边形CEPF是矩形.∴CE=PF.∴CE:BF=PF:BF=tanB=AC:BC=.故答案是:.(2)连DE,∵∠ACB=90°,PE⊥CA,PF⊥BC,∴四边形CEPF是矩形.∴CE=PF.∴CE:BF=CD:BD=PF:BF=tanB.∵∠ACB=90∘,CD⊥AB,∴∠B+∠A=90°,∠ECD+∠A=90°,∴∠ECD=∠B,∴△CED∽△BFD.∴∠EDC=∠FDB.∵∠FDB+∠CDF=90°,∴∠CDE+∠CDF=90°.∴∠EDF=90°.∵=tanB=,设DE=a,DF=3a,在直角三角形EDF中,根据勾股定理可得:EF=a.∴==.(3)可根据(2)的思路进行反向求解,即先通过EF,DF的比例关系,求出DE:DF的值.也就求出了CE:BF的值,即tanB==.24.已知抛物线C1:y=ax2+bx+(a≠0)经过点A(﹣1,0)和B(3,0).(1)求抛物线C1的解析式,并写出其顶点C的坐标;(2)如图1,把抛物线C1沿着直线AC方向平移到某处时得到抛物线C2,此时点A,C分别平移到点D,E处.设点F在抛物线C1上且在x轴的下方,若△DEF是以EF为底的等腰直角三角形,求点F的坐标;(3)如图2,在(2)的条件下,设点M是线段BC上一动点,EN⊥EM交直线BF于点N,点P 为线段MN的中点,当点M从点B向点C运动时:①tan∠ENM的值如何变化?请说明理由;②点M到达点C时,直接写出点P经过的路线长.【考点】二次函数综合题.【分析】(1)根据待定系数法即可求得解析式,把解析式化成顶点式即可求得顶点坐标;(2)根据A、C的坐标求得直线AC的解析式为y=x+1,根据题意求得EF=4,求得EF∥y轴,设F(m,﹣m2+m+),则E(m,m+1),从而得出(m+1)﹣(﹣m2+m+)=4,解方程即可求得F的坐标;(3)①先求得四边形DFBC是矩形,作EG⊥AC,交BF于G,然后根据△EGN∽△EMC,对应边成比例即可求得tan∠ENM==2;②根据勾股定理和三角形相似求得EN=,然后根据三角形中位线定理即可求得.【解答】解:(1)∵抛物线C1:y=ax2+bx+(a≠0)经过点A(﹣1,0)和B(3,0),∴解得,∴抛物线C1的解析式为y=﹣x2+x+,∵y=﹣x2+x+=﹣(x﹣1)2+2,∴顶点C的坐标为(1,2);(2)如图1,作CH⊥x轴于H,∵A(﹣1,0),C(1,2),∴AH=CH=2,∴∠CAB=∠ACH=45°,∴直线AC的解析式为y=x+1,∵△DEF是以EF为底的等腰直角三角形,∴∠DEF=45°,∴∠DEF=∠ACH,∴EF∥y轴,∵DE=AC=2,∴EF=4,设F(m,﹣m2+m+),则E(m,m+1),∴(m+1)﹣(﹣m2+m+)=4,解得m=3(舍)或m=﹣3,∴F(﹣3,﹣6);(3)①tan∠ENM的值为定值,不发生变化;如图2,∵DF⊥AC,BC⊥AC,∴DF∥BC,∵DF=BC=AC,∴四边形DFBC是矩形,作EG⊥AC,交BF于G,∴EG=BC=AC=2,∵EN⊥EM,∴∠MEN=90°,∵∠CEG=90°,∴∠CEM=∠NEG,∴△ENG∽△EMC,∴=,∵F(﹣3,﹣6),EF=4,∴E(﹣3,﹣2),∵C(1,2),∴EC==4,∴==2,∴tan∠ENM==2;∵tan∠ENM的值为定值,不发生变化;②∵直角三角形EMN中,PE=MN,直角三角形BMN中,PB=MN,∴PE=PB,∴点P在EB的垂直平分线上,∴点P经过的路径是线段,如图3,∵△EGN∽△ECB,∴=,∵EC=4,EG=BC=2,∴EB=2,∴=,∴EN=,∵P1P2是△BEN的中位线,∴P1P2=EN=;∴点M到达点C时,点P经过的路线长为.2017年3月10日。
2016届中考数学真题模拟集训:专题16+图形的初步试题(新人教版含解析)(2年中考1年模拟)

专题16 图形的初步知识点名师点晴直线、射线、线段直线的性质理解并掌握直线的性质线段的性质能利用线段的中点和线段的性质进行线段的有关计算相交线对顶角与邻补角理解并掌握对顶角与邻补角的有关性质垂线的性质理解垂线的性质,并能解决相关的实际问题平行线平行线的定义与画法掌握平行公理及平行线的画法平行线的判定定理利用平行线的判定证明两直线互相平行平行线的性质能利用平行线的性质解决有关角的计算问题☞2年中考【2015年题组】1.(2015南宁)如图,一块含30°角的直角三角板ABC的直角顶点A在直线DE上,且BC∥DE,则∠CAE等于()A.30°B.45°C.60°D.90°【答案】A.【解析】试题分析:∵∠C=30°,BC∥DE,∴∠CAE=∠C=30°.故选A.考点:平行线的性质.2.(2015贵港)如图,直线AB∥CD,直线EF与AB,CD相交于点E,F,∠BEF的平分线与CD相交于点N.若∠1=63°,则∠2=()A.64°B.63°C.60°D.54°【答案】D.考点:平行线的性质.3.(2015天水)如图,将矩形纸带ABCD,沿EF折叠后,C.D两点分别落在C′、D′的位置,经测量得∠EFB=65°,则∠AED′的度数是()A.65°B.55°C.50°D.25°【答案】C.【解析】试题分析:∵AD∥BC,∠EFB=65°,∴∠DEF=65°,∴∠DED′=2∠DEF=130°,∴∠AED′=180°﹣130°=50°.故选C.考点:1.平行线的性质;2.翻折变换(折叠问题).4.(2015天水)如图,在四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=22,CD=2,点P在四边形ABCD的边上.若点P到BD的距离为32,则点P的个数为()A.2 B.3 C.4 D.5 【答案】A.考点:1.等腰直角三角形;2.点到直线的距离.5.(2015北海)已知∠A=40°,则它的余角为()A.40°B.50°C.130°D.140°【答案】B.【解析】试题分析:∠A的余角等于90°﹣40°=50°.故选B.考点:余角和补角.6.(2015崇左)下列各图中,∠1与∠2互为余角的是()A.B.C.D.【答案】C.【解析】试题分析:观察图形,互为余角的只能是C,故选C.考点:余角和补角.7.(2015崇左)如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是()A.的B.中C.国D.梦【答案】D.考点:专题:正方体相对两个面上的文字.8.(2015无锡)如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是()A .B .C .D .【答案】D.【解析】试题分析:根据正方体的表面展开图,两条黑线在一列,故A错误,且两条相邻成直角,故B错误,中间相隔一个正方形,故C错误,只有D选项符合条件,故选D.考点:几何体的展开图.9.(2015广元)一副三角板按如图方式摆放,且∠1比∠2大50°,若设∠1=x°,∠2=y°.则可得到的方程组为()A.50180x yx y=-⎧⎨+=⎩B.50180x yx y=+⎧⎨+=⎩C.5090x yx y=-⎧⎨+=⎩D.5090x yx y=+⎧⎨+=⎩【答案】D.考点:1.由实际问题抽象出二元一次方程组;2.余角和补角.10.(2015西宁)如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是()A.74°12′B.74°36′C.75°12′D.75°36′【答案】C.【解析】试题分析:过点D作DF⊥AO交OB于点F.∵入射角等于反射角,∴∠1=∠3,∵CD∥OB,∴∠1=∠2(两直线平行,内错角相等);∴∠2=∠3(等量代换);在Rt△DOF中,∠ODF=90°,∠AOB=37°36′,∴∠2=90°﹣37°36′=52°24′;∴在△DEF中,∠DEB=180°﹣2∠2=75°12′.故选C.考点:1.平行线的性质;2.度分秒的换算;3.跨学科.11.(2015崇左)若直线a∥b,a⊥c,则直线b____c.【答案】⊥.【解析】试题分析:∵a⊥c,∴∠1=90°,∵a∥b,∴∠1=∠2=90°,∴c⊥b.故答案为:⊥.考点:1.平行线的性质;2.垂线.12.(2015梧州)如图,已知直线AB与CD交于点O,ON平分∠DOB,若∠BOC=110°,则∠AON的度数为度.【答案】145.考点:1.对顶角、邻补角;2.角平分线的定义.13.(2015钦州)如图,直线AB和OC相交于点O,∠AOC=100°,则∠1= 度.【答案】80.【解析】试题分析:由邻补角互补,得∠1=180°﹣∠AOC=180°﹣100°=80°,故答案为:80.考点:对顶角、邻补角.14.(2015宿迁)如图,在平面直角坐标系中,点P的坐标为(0,4),直线343-=xy与x轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM长的最小值为.【答案】28 5.考点:1.一次函数图象上点的坐标特征;2.垂线段最短;3.最值问题.15.(2015扬州)如图,已知矩形纸片的一条边经过直角三角形纸片的直角顶点,若矩形纸片的一组对边与直角三角形纸片的两条直角边相交成∠1、∠2,则∠2﹣∠1= .【答案】90°.【解析】试题分析:∵∠2+∠3=180°,∴∠3=180°﹣∠2.∵直尺的两边互相平行,∴∠4=∠3,∴∠4=180°﹣∠2.∵∠4+∠1=90°,∴180°﹣∠2+∠1=90°,即∠2﹣∠1=90°.故答案为:90°.考点:平行线的性质.16.(2015泰州)如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2= .【答案】140°.考点:平行线的性质.17.(2015绵阳)如图,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=130°,则∠F= .【答案】9.5°.【解析】试题分析:∵AB∥CD,∠CDE=119°,∴∠AED=180°﹣119°=61°,∠DEB=119°.∵GF交∠DEB的平分线EF于点F,∴∠GEF=12×119°=59.5°,∴∠GEF=61°+59.5°=120.5°.∵∠AGF=130°,∴∠F=∠AGF﹣∠GEF=130°﹣120.5°=9.5°.故答案为:9.5°.考点:平行线的性质.18.(2015宿迁)如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.【答案】证明见试题解析.考点:1.等腰三角形的性质;2.平行线的性质;3.和差倍分.19.(2015武汉)如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)AB∥DE.【答案】(1)证明见试题解析;(2)证明见试题解析.【解析】试题分析:(1)用SAS证明△ABC≌△DEF;(2)由△ABC≌△DEF,得出∠B=∠DEF,即可得出结论.试题解析:(1)∵AC⊥BC于点C,DF⊥EF于点F,∴∠ACB=∠DFE=90°,在△ABC和△DEF中,∵BC=EF,∠ACB=∠DFE,AC=DF,∴△ABC≌△DEF(SAS);(2)∵△ABC≌△DEF,∴∠B=∠DEF,∴AB∥DE.考点:1.全等三角形的判定与性质;2.平行线的判定.20.(2015益阳)如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.【答案】50°.考点:平行线的性质.21.(2015六盘水)如图,已知,l1∥l2,C1在l1上,并且C1A⊥l2,A为垂足,C2,C3是l1上任意两点,点B在l2上,设△ABC1的面积为S1,△ABC2的面积为S2,△ABC3的面积为S3,小颖认为S1=S2=S3,请帮小颖说明理由.【答案】理由见试题解析.【解析】试题分析:根据两平行线间的距离相等,即可得出结论.试题解析:∵直线l1∥l2,∴△ABC1,△ABC2,△ABC3的底边AB上的高相等,∴△ABC1,△ABC2,△ABC3这3个三角形同底,等高,∴△ABC1,△ABC2,△ABC3这些三角形的面积相等.即S1=S2=S3.考点:1.平行线之间的距离;2.三角形的面积.22.(2015曲靖)如图,过∠AOB平分线上一点C作CD∥OB交OA于点D,E是线段OC 的中点,请过点E画直线分别交射线CD、OB于点M、N,探究线段OD、ON、DM之间的数量关系,并证明你的结论.【答案】①当M在线段CD上时,OD=DM+ON;②当M在线段CD延长线上时,OD=ON -DM,证明见试题解析.考点:1.全等三角形的判定与性质;2.平行线的性质;3.等腰三角形的判定与性质;4.分类讨论;5.探究型;6.综合题.23.(2015金华)图1、图2为同一长方体房间的示意图,图3为该长方体的表面展开图.(1)蜘蛛在顶点A′处.①苍蝇在顶点B处时,试在图1中画出蜘蛛为捉住苍蝇,沿墙面爬行的最近路线;②苍蝇在顶点C处时,图2中画出了蜘蛛捉住苍蝇的两条路线,往天花板ABCD爬行的最近路线A′GC和往墙面BB′C′C爬行的最近路线A′HC,试通过计算判断哪条路线更近;(2)在图3中,半径为10dm的⊙M与D′C′相切,圆心M到边CC′的距离为15dm,蜘蛛P 在线段AB上,苍蝇Q在⊙M的圆周上,线段PQ为蜘蛛爬行路线,若PQ与⊙M相切,试求PQ长度的范围.【答案】(1)①作图见试题解析;②往天花板ABCD爬行的最近路线A′GC更近;(2)206dm≤PQ≤55dm.试题解析:(1)①根据“两点之间,线段最短”可知:线段A′B为最近路线,如图1所示.②Ⅰ.将长方体展开,使得长方形ABB′A′和长方形ABCD在同一平面内,如图2①.在Rt△A′B′C中,∠B′=90°,A′B′=40,B′C=60,∴22406052002013Ⅱ.将长方体展开,使得长方形ABB′A′和长方形BCC′B′在同一平面内,如图2②.在Rt △A′C′C 中,∠C′=90°,A′C′=70,C′C=30,∴A′C=227030+=5800=1058.∵5200<5800,∴往天花板ABCD 爬行的最近路线A′GC 更近;(2)过点M 作MH ⊥AB 于H ,连接MQ 、MP 、MA 、MB ,如图3.∵半径为10dm 的⊙M 与D′C′相切,圆心M 到边CC′的距离为15dm ,BC′=60dm ,∴MH=60﹣10=50,HB=15,AH=40﹣15=25,根据勾股定理可得AM=22AH MH +=222550+=255,MB=22BH MH +=221550+=2725,∴50≤MP≤255.∵⊙M 与D′C′相切于点Q ,∴MQ ⊥PQ ,∠MQP=90°,∴PQ=222210PM QM MP -=-.当MP=50时,PQ=2400=206;当MP=255时,PQ=3025=55. ∴PQ 长度的范围是206dm≤PQ≤55dm .考点:1.圆的综合题;2.几何体的展开图;3.切线的性质;4.综合题;5.压轴题.【2014年题组】1.(2014年福建龙岩)如图,直线a ,b 被直线c 所截,a ∥b ,∠1=∠2,若∠3=40°,则∠4等于( )A .40°B .50°C .70°D .80°【答案】C.考点:平行线的性质;平角定义.2.(2014年甘肃白银)将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行,那么,在形成的这个图中与∠α互余的角共有()A.4个 B.3个C.2个D.1个【答案】C.【解析】试题分析:如答图,∵斜边与这根直尺平行,∴∠α=∠2.又∵∠1+∠2=90°,∴∠1+∠α=90°.又∠α+∠3=90°,∴与α互余的角为∠1和∠3.故选C.考点:1.平行线的性质;2.互余的定义.3.(2014年广东汕尾)如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE 【答案】D.考点:平行线的判定.4(2014抚顺)如图所示,已知AB∥CD,CE平分∠ACD,当∠A=120°时,∠ECD的度数是()A. 45°B. 40°C. 35°D. 30°【答案】D.【解析】试题分析:∵AB∥CD,∠A=120°,∴∠DCA=180°-∠A=60°,∵CE平分∠ACD,∴∠ECD=∠DCA=30°,故选D.考点:平行线的性质.5.(2014·吉林)如图,将三角形的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A.10°B. 15°C. 20°D. 25°【答案】D.考点:平行线的性质.6.(2014年湖南岳阳)如图,若AB∥CD∥EF,∠B=40°,∠F=30°,则∠BCF= .【答案】70°.【解析】试题分析:∵AB∥CD∥EF,∴∠B=∠BCD,∠F=∠DCF.又∠B=40°,∠F=30°,∴∠BCF=∠BCD +∠DCF =70°.考点:平行线的性质.7.(2014镇江)如图,直线m∥n,Rt△ABC的顶点A在直线n上,∠C=90°,若∠1=25º,∠2=70º.则∠B=°.【答案】45.考点:1.平行线的性质;2.直角三角形两锐角的关系.8.(2014长沙)如图,直线a∥b,直线c分别与a,b相交,若∠1=70°,则∠2=.【答案】110°.【解析】试题分析:直线a∥b,直线c分别与a,b相交,根据平行线的性质,以及对顶角的定义可求出.试题解析:如图:∵∠1=70°,∴∠3=∠1=70°,∵a∥b,∴∠2+∠3=180°,∴∠2=180°﹣70°=110°.考点:1.平行线的性质;2.对顶角、邻补角.☞考点归纳归纳1:直线、射线和线段基础知识归纳:1.直线(1)直线公理:经过两个点有一条直线,并且只有一条直线。
湖北省武汉市中考数学模拟试卷(含解析)-人教版初中九年级全册数学试题

2016年某某省某某市中考数学模拟试卷一、选择题1.已知实数x,y满足;,y4+y2=3,则+y4的值为()A.7 B.C.D.52.若n满足(n﹣2015)2+(2016﹣n)2=1,则(n﹣2015)(2016﹣n)=()A.﹣1 B.0 C.D.13.如图,A为DE的中点,设S1=S△DBC,S2=S△ABC,S3=S△EBC,则S1,S2,S3的关系是()A.S2=(S1+S3)B.S2=(S3﹣S1)C.S2=(S1+S3)D.S2=(S3﹣S1)4.图,在矩形ABCD中,AB=3,BC=2,以BC为直径在矩形内作半圆,自点A作半圆的切线AE,则sin∠CBE=()A.B.C.D.5.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP=QO,则的值为()A.B. C.D.二、填空题6.如图,指出第6排第7列的数是,2016是排列的数.7.已知x轴上有点A(﹣1,0),B(3,0)两点,y=x2+2kx+k2﹣3的图象与线段AB有交点时,k 的取值X围是.8.如图,已知正方体的棱长为2cm,沿一个顶点C和两棱的中点的连线AB截取出三棱锥D﹣ABC,则这个三棱锥的表面积为cm2.9.如图,射线AM,BN都垂直于线段AB,点E为AM上一点,过点A作BE的垂线AC分别交BE,BN 于点F,C,过点C作AM的垂线CD,垂足为D,若CD=CF,则=.10.已知t是实数,若a,b是关于x的一元二次方程x2﹣2x+t﹣1=0的两个非负实根,则(a2﹣1)(b2﹣1)的最小值是.三、解答题11.如图,在直角坐标系中有正方形OABC,以OA为直径作⊙M,在半圆上有一动点P,连接PO、PA、PB、PC,已知A(4,0).(1)OP=2时,P点的坐标是;(2)求当OP为多少时,△OPC为等腰三角形;(3)设P(a,b),S△POC=S1,S△POA=S2,S△PAB=S3,求出S=2S1S3﹣S22的最大值,并求出此时P的坐标.12.设a,b,c为互不相等的实数,且满足关系式:b2+c2=2a2+16a+14①bc=a2﹣4a﹣5②.求a的取值X围.13.如图,平面坐标系中,AB交矩形ONCM于E、F,若=(m>1),且双曲线y=也过E、F两点,记S△CEF=S1,S△OEF=S2,用含m的代数式表示.14.如图,PA、PB是⊙O的两条切线,PEC是一条割线,D是AB与PC的交点,若PE=2,CD=1,求DE的长.2016年某某省某某市华中师大一附中中考数学模拟试卷参考答案与试题解析一、选择题1.已知实数x,y满足;,y4+y2=3,则+y4的值为()A.7 B.C.D.5【考点】换元法解分式方程;解一元二次方程﹣公式法.【专题】计算题.【分析】根据方程特点设=m,y2=n,则已知可化为4m2﹣2m﹣3=0,n2+n﹣3=0.解一元二次方程求m、n,再求所求代数式的值即可.【解答】解:因为x2>0,y2≥0,设=m,y2=n,则已知可化为4m2﹣2m﹣3=0,n2+n﹣3=0.解得, =m=,y2=n=,所以=4()2+()2=7故选A.【点评】用换元法解分式方程时常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.2.若n满足(n﹣2015)2+(2016﹣n)2=1,则(n﹣2015)(2016﹣n)=()A.﹣1 B.0 C.D.1【考点】完全平方公式.【分析】根据完全平方公式得出[(n﹣2015+(2016﹣n)]2=(n﹣2015)2+(2016﹣n)2+2(n﹣2015)(2016﹣n)=1+2(n﹣2015)(2016﹣n),即可得出答案.【解答】解:∵(n﹣2015)2+(2016﹣n)2=1,∴[(n﹣2015)+(2016﹣n)]2=(n﹣2015)2+(2016﹣n)2+2(n﹣2015)(2016﹣n)=1+2(n﹣2015)(2016﹣n),∴1=1+2(n﹣2015)(2016﹣n),∴(n﹣2015)(2016﹣n)=0,故选B.【点评】本题考查了完全平方公式,能灵活运用公式进行变形是解此题的关键.3.如图,A为DE的中点,设S1=S△DBC,S2=S△ABC,S3=S△EBC,则S1,S2,S3的关系是()A.S2=(S1+S3)B.S2=(S3﹣S1)C.S2=(S1+S3)D.S2=(S3﹣S1)【考点】三角形的面积.【分析】作DM⊥BC于M,AN⊥BC于N,EH⊥BC于H,根据梯形中位线定理得到AN=(DM+EH),根据三角形的面积公式计算即可判断.【解答】解:作DM⊥BC于M,AN⊥BC于N,EH⊥BC于H,则DM∥AN∥EH,∵A为DE的中点,∴AN是梯形DMHE的中位线,∴AN=(DM+EH),S1+S3=×BC×DM+×BC×EH=×BC×(DM+EH)=×BC×2AN=2S2,∴S2=(S1+S3),故选:C.【点评】本题考查的是三角形的面积计算,掌握三角形的面积公式、梯形的中位线定理是解题的关键.4.图,在矩形ABCD中,AB=3,BC=2,以BC为直径在矩形内作半圆,自点A作半圆的切线AE,则sin∠CBE=()A.B.C.D.【考点】切线长定理;相似三角形的判定与性质;锐角三角函数的定义.【专题】计算题.【分析】取BC的中点O,则O为圆心,连接OE,AO,AO与BE的交点是F,则易证AO⊥BE,△BOF ∽△AOB,则sin∠CBE=,求得OF的长即可求解.【解答】解:取BC的中点O,则O为圆心,连接OE,AO,AO与BE的交点是F∵AB,AE都为圆的切线∴AE=AB∵OB=OE,AO=AO∴△ABO≌△AEO(SSS)∴∠OAB=∠OAE∴AO⊥BE在直角△AOB里AO2=OB2+AB2∵OB=1,AB=3∴AO=易证明△BOF∽△AOB∴BO:AO=OF:OB∴1: =OF:1∴OF=sin∠CBE==故选D.【点评】本题主要考查了切线长定理,以及三角形的相似,求角的三角函数值的问题转化为求线段的比的问题.5.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP=QO,则的值为()A.B. C.D.【考点】相交弦定理;勾股定理.【专题】计算题.【分析】设⊙O的半径为r,QO=m,则QP=m,QC=r+m,QA=r﹣m.利用相交弦定理,求出m与r的关系,即用r表示出m,即可表示出所求比值.【解答】解:如图,设⊙O的半径为r,QO=m,则QP=m,QC=r+m,QA=r﹣m.在⊙O中,根据相交弦定理,得QA•QC=QP•QD.即(r﹣m)(r+m)=m•QD,所以QD=.连接DO,由勾股定理,得QD2=DO2+QO2,即,解得所以,故选D.【点评】本题考查了相交弦定理,即“圆内两弦相交于圆内一点,各弦被这点所分得的两线段的长的乘积相等”.熟记并灵活应用定理是解题的关键.二、填空题6.如图,指出第6排第7列的数是42 ,2016是45 排10 列的数.【考点】规律型:数字的变化类.【分析】先根据图形找到第n行第n+1列的数为:n(n+1),以此确定第6排第7列的数,从表格中发现:第n排第1列的数为n2,第n行递减的数有n个,由此可计算2016是第45排的数,452﹣9=2016,可确定是第几列.【解答】解:由图可知:第1行2列:2=1×2,第2行3列:6=2×3,第3行4列:12=3×4,第4行5列:20=4×5,∴第6排第7列的数是:6×7=42,又知道第n排第1列的数为n2,第n行递减的数有n个,2016=452﹣9,即2016是第45行第10列,故答案为:42,45,10.【点评】本题是数字类的变化题,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况,得出规律解决问题.7.已知x轴上有点A(﹣1,0),B(3,0)两点,y=x2+2kx+k2﹣3的图象与线段AB有交点时,k 的取值X围是3+≤k或﹣3﹣≤k≤1﹣.【考点】二次函数图象上点的坐标特征.【分析】令y=0得出抛物线与x轴的交点坐标,列出不等式即可解决问题.【解答】解:令y=0,得x2+2kx+k2﹣3=0,解得x=﹣k±,∵二次函数y=x2+2ax+3的图象与线段AB有交点,抛物线与x轴交于(﹣k+,0),(﹣k﹣,0),开口向上,∴当﹣1≤﹣k+≤3时,抛物线与线段AB有交点,即﹣3+≤k;或当﹣1≤﹣k﹣≤3时,抛物线与线段AB有交点,即﹣3﹣≤k≤1﹣;故答案为3+≤k或﹣3﹣≤k≤1﹣.【点评】本题考查二次函数图象上的点的坐标特征,解题的关键是学会利用图象解决问题,把问题转化为不等式,属于中考常考题型.8.如图,已知正方体的棱长为2cm,沿一个顶点C和两棱的中点的连线AB截取出三棱锥D﹣ABC,则这个三棱锥的表面积为4 cm2.【考点】勾股定理;认识立体图形;几何体的表面积.【专题】计算题.【分析】求出△ADB、△ADC、△CDB的面积,根据勾股定理求出AB、BC、AC的长,再利用海伦公式求出△ADC的面积,将四个三角形的面积相加即可求出三棱锥的表面积.【解答】解:∵AD=DB=1cm,DC=2cm,∴AB==cm,BC=AC==cm,S△ACB==cm2;S△ADB=×1×1=;S△ADC=S△CDB=×1×2=1;∴这个三棱锥的表面积为1+1++=4cm2.故答案为4cm2.【点评】本题考查了勾股定理、认识立体图形、几何体的表面积,熟悉海伦公式及能将立体图形平面化是解题的关键.9.如图,射线AM,BN都垂直于线段AB,点E为AM上一点,过点A作BE的垂线AC分别交BE,BN 于点F,C,过点C作AM的垂线CD,垂足为D,若CD=CF,则=.【考点】矩形的性质;相似三角形的判定与性质.【分析】由于AD∥BC,易得△AEF∽△CBF,那么AE:BC=AF:FC,因此只需求得AF、FC的比例关系即可.可设AF=a,FC=b;在Rt△ABC中,由射影定理可知AB2=AF•AC,联立CD=CF=AB,即可求得AF、FC的比例关系,由此得解.【解答】解:设AF=a,FC=b;∵AM⊥AB,BN⊥AB,∴AM∥BN;∴△AEF∽△CBF;∴AE:BC=AF:FC=a:b;Rt△ABC中,BF⊥AC,由射影定理,得:AB2=AF•AC=a(a+b);∵AM⊥AB,BN⊥AB,CD⊥AM,∴四边形ABCD是矩形,∴CD=AB=CF=b;∴b2=a(a+b),即a2+ab﹣b2=0,()2+()﹣1=0解得=(负值舍去);∴==.【点评】此题主要考查了矩形的性质、直角三角形及相似三角形的性质.能够正确的在Rt△ABC中求得AF、FC的比例关系是解答此题的关键.10.已知t是实数,若a,b是关于x的一元二次方程x2﹣2x+t﹣1=0的两个非负实根,则(a2﹣1)(b2﹣1)的最小值是﹣3 .【考点】根与系数的关系;根的判别式.【专题】计算题.【分析】a,b是关于x的一元二次方程x2﹣2x+t﹣1=0的两个非负实根,根据根与系数的关系,化简(a2﹣1)(b2﹣1)即可求解.【解答】解:∵a,b是关于x的一元二次方程x2﹣2x+t﹣1=0的两个非负实根,∴可得a+b=2,ab=t﹣1≥0,∴t≥1,又△=4﹣4(t﹣1)≥0,可得t≤2,∴2≥t≥1,又(a2﹣1)(b2﹣1)=(ab)2﹣(a2+b2)+1=(ab)2﹣(a+b)2+2ab+1,∴(a2﹣1)(b2﹣1),=(t﹣1)2﹣4+2(t﹣1)+1,=t2﹣4,又∵2≥t≥1,∴0≥t2﹣4≥﹣3,故答案为:﹣3.【点评】本题主要考查了根与系数的关系及根的判别式,属于基础题,关键要掌握x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.三、解答题11.如图,在直角坐标系中有正方形OABC,以OA为直径作⊙M,在半圆上有一动点P,连接PO、PA、PB、PC,已知A(4,0).(1)OP=2时,P点的坐标是(1,);(2)求当OP为多少时,△OPC为等腰三角形;(3)设P(a,b),S△POC=S1,S△POA=S2,S△PAB=S3,求出S=2S1S3﹣S22的最大值,并求出此时P的坐标.【考点】圆的综合题.【分析】(1)根据正方形的性质求出OA=AB=BC=CO=4,根据圆周角定理得到∠OPA=90°,根据勾股定理求出OE、PE,得到答案;(2)分PC=PO、CO=CP两种情况,根据等腰三角形的性质以及勾股定理计算即可;(3)用a、b分别表示出S1、S2、S3,根据射影定理求出b2=a(4﹣a),根据二次函数的性质解答即可.【解答】解:(1)∵点A的坐标为(4,0),∴OA=4,∵四边形OABC为正方形,∴OA=AB=BC=CO=4,∵OA为⊙M的直径,∴∠OPA=90°,OP=2,OA=4,∴∠OAP=30°,∴∠OPE=30°,又OP=2,∴OE=1,PE=,∴P(1,);(2)如图2,当PC=PO时此时P位于四边形OABC的中心,过点P作PE⊥OA于E,作PF⊥OC于F,则四边形OEPF是正方形,∴PE=OE=OA=2,∴OP=2,如图3,当CO=CP时,以点C为圆心,CO为半径作圆与弧OA的交点为点P.连PO,连接PM,CM,CM交OP于点G,在△ADO和△PDO中,,∴△ADO≌△PDO,∴CM⊥OP,OG=PG,∵OC=4,OM=2,∴CM=2,∴OG==,则OP=2OG=,当OP为2或时,△OPC为等腰三角形;(3)∵P(a,b),OA=AB=CO=4,∴S1=2a,S3=8﹣2a,b2=4a﹣a2,S2=2b,如图2,P(a,b),由射影定理得,PE2=OE•AE,即b2=a(4﹣a),∴S=2×2a×(8﹣2a)﹣(2b)2=8(4a﹣a2)﹣4b2=﹣4(a﹣2)2+16,当a=2时,S最大=16,当a=2时,b==2,∴P的坐标为(2,2).【点评】本题考查的是圆周角定理、全等三角形的判定和性质、正方形的性质、二次函数的解析式的求法以及二次函数的性质的综合运用,灵活运用相关的定理、正确作出辅助线是解题的关键.12.(2011•富阳市校级自主招生)设a,b,c为互不相等的实数,且满足关系式:b2+c2=2a2+16a+14①bc=a2﹣4a﹣5②.求a的取值X围.【考点】解一元二次方程﹣公式法;根的判别式.【专题】方程思想.【分析】先通过代数式变形得(b+c)2=2a2+16a+14+2(a2﹣4a﹣5)=4a2+8a+4=4(a+1)2,即有b+c=±2(a+1).有了b+c与bc,就可以把b,c可作为一元二次方程x2±2(a+1)x+a2﹣4a﹣5=0③的两个不相等实数根,由△=4(a+1)2﹣4(a2﹣4a﹣5)=24a+24>0,得到a>﹣1.再排除a=b和a=c 时的a的值.先设a=b和a=c,分别代入方程③,求得a的值,则题目要求的a的取值X围应该是在a>﹣1的前提下排除求得的a值.【解答】解:∵b2+c2=2a2+16a+14,bc=a2﹣4a﹣5,∴(b+c)2=2a2+16a+14+2(a2﹣4a﹣5)=4a2+8a+4=4(a+1)2,即有b+c=±2(a+1).又bc=a2﹣4a﹣5,所以b,c可作为一元二次方程x2±2(a+1)x+a2﹣4a﹣5=0③的两个不相等实数根,故△=4(a+1)2﹣4(a2﹣4a﹣5)=24a+24>0,解得a>﹣1.若当a=b时,那么a也是方程③的解,∴a2±2(a+1)a+a2﹣4a﹣5=0,即4a2﹣2a﹣5=0或﹣6a﹣5=0,解得,或.当a=c时,同理可得或.所以a的取值X围为a>﹣1且且.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的求根公式:x=(b2﹣4ac≥0).同时考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式b2﹣4ac和根与系数的关系.13.如图,平面坐标系中,AB交矩形ONCM于E、F,若=(m>1),且双曲线y=也过E、F两点,记S△CEF=S1,S△OEF=S2,用含m的代数式表示.【考点】相似三角形的判定与性质;反比例函数系数k的几何意义.【分析】过点F作FG⊥y轴于点G,根据平行线证出三角形相似得出ME:MC的值,设出点C的坐标,表示出点E、F的坐标,结合三角形的面积公式找出S1、S2的值,二者相比即可得出结论.【解答】解:过点F作FG⊥y轴于点G,如图所示:∵CM⊥y轴,FG⊥y轴,∴CM∥FG,MC=FG,∴△BME∽△BGF,∴===,设点C的坐标为(a,b),则E(,b),F(a,),∴S1=×(a﹣)•(b﹣)=ab;S2=a•b﹣•﹣•﹣ab=ab.∴=.【点评】此题主要考查了相似三角形的判定与性质、反比例函数的综合应用以及三角形面积求法,根据已知表示出E,F的点坐标是解题关键.14.如图,PA、PB是⊙O的两条切线,PEC是一条割线,D是AB与PC的交点,若PE=2,CD=1,求DE的长.【考点】切割线定理;勾股定理;切线的性质.【专题】计算题;综合题.【分析】连接PO交AB于H,设DE=x,由勾股定理得,(x+2)2+x=2(x+3),从而求出x的值即可.【解答】解:连接PO交AB于H,由切线长定理可知,OP平分∠APB,而PA=PB,∴PO⊥AB,设DE=x,则PA2=PE•PC=2(x+3).在Rt△APH中,AP2=AH2+PH2,即AH2+PH2=2(x+3)①,在Rt△PHD中,PH2+DH2=(x+2)2②,又AD•DB=ED•DC,而AD•DB=(AH﹣DH)(AH+DH)=AH2﹣DH2,∴AH2﹣DH2=x•1③,由①②③得(x+2)2+x=2(x+3),解得DE=x=.【点评】本题考查的是切割线定理,切线的性质定理,勾股定理.。
湖北省武汉市东西湖区2016年中考数学模拟试卷(解析版)

2016年湖北省武汉市东西湖区中考数学模拟试卷一、选择题(共10小题,每小题3分,共30分)1.实数的值在()A.0与1之间B.1与2之间C.2与3之间D.3与4之间2.使分式有意义的x的取值范围是()A.x≥1 B.x≤1 C.x>1 D.x≠13.运用乘法公式计算(m+2)(m﹣2)的结果是()A.m2﹣2 B.m2﹣4 C.m2+4 D.m2+24.五名同学参加演讲比赛,以抽签的方式决定每个人的出场顺序.把背面完全相同,正面写有1、2、3、4、5的五张卡片洗均后正面向下放在桌子上,小军从中随机抽取一张,下列事件是随机事件的是()A.抽到的数字是0 B.抽到的数字是7C.抽到的数字大于5 D.抽到的数字是15.下列计算正确的是()A.2x+x=2x2B.2x2﹣x2=2 C.2x2•3x2=6x4D.2x6÷x2=2x36.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,2)重合,则点A的坐标是()A.(2,5) B.(﹣8,5)C.(﹣8,﹣1) D.(2,﹣1)7.如图,在一个长方体上放着一个小正方体,若这个组合体的俯视图如图所示,则这个组合体的左视图是()A.B.C.D.8.某车间工人的日加工零件数如表:那么工人日加工零件数的中位数和众数分别是()A.6和6 B.5和6 C.9和4 D.5.5和49.根据如图所示的三个图所表示的规律,依次下去第n个图中平行四边形的个数是()A.3n B.3n(n+1)C.6n D.6n(n+1)10.如图,AB是⊙的直径,CD是∠ACB的平分线交⊙O于点D,过D作⊙O的切线交CB的延长线于点E.若AB=4,∠E=75°,则CD的长为()A.B.2 C.2 D.3二、填空题(本大题共6个小题,每小题3分,共18分)11.计算(﹣4)+6的结果为.12.荆楚网消息,今年“五一”小长假武汉接待游客4100000人次,数4100000用科学记数法表示为.13.一个不透明的袋子中装有5个红球和3个绿球,这些球除了颜色外都相同,从袋子中随机摸出一个球,它是红球的概率为.14.如图,在菱形ABCD中,对角线长AC=2,BD=2,点E、F在边AD、CD上,以直线EF为折痕折叠,若ED⊥ED′,则∠D′FC的度数为.15.如图,在Rt△ABC中,∠CAB=30°,CD⊥AB于D点,BC=1,点P是直线BC上一动点,连结AP.若点E是AP的中点,则DE的最小值是.16.直线y=x+b与函数y=x2+|2x2﹣1|的图象有且只有三个交点,则b的值为.三、解答题(共8题,共72分)17.解方程:2(x+3)=5x.18.如图,D在AB上,E在BC上,AB=AC,∠B=∠C,求证:BD=CE.19.国民体质监测中心等机构开展了青少年形体测评,专家组随机抽查了某市若干名初中学生坐姿、站姿、走姿的好坏情况.我们对专家的测评数据作了适当处理(如果一个学生有一种以上不良姿势,我们以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:(1)在这次形体测评中,一共抽查了名学生,请将条形统计图补充完整;(2)坐姿不良的扇形图的圆心角的度数是;(3)如果全市有8万名初中生,那么全市初中生中,三姿良好的学生约有.20.如图,已知A(4,2)、B(n,﹣4)是一次函数y=kx+b的图象与反比例函数y=的图象的两个交点(1)求m的值和一次函数的解析式;(2)结合图象直接写出不等式﹣kx﹣b>0的解集;(3)若点M(t,y1)、N(1,y2)是反比例函数y=上两点,且y1<y2,请你借助图象,直接写出t的取值范围.21.如图,直线AB经过⊙O上点C,并且OA=OB,CA=CB.(1)求证:直线AB是⊙O切线.(2)OA、OB分别交⊙O于D、E,延长线AO交⊙O于点F,连接EF、FC.若AB=4,tan∠CFE=,求AD的长.22.如图,某校园内有一块菱形的空地ABCD,为了美化环境,现要进行绿化,计划在中间建设一个面积为S的矩形绿地EFGH.其中,点E、F、G、H分别在菱形的四条边上,AB=a米,BE=BF=DG=DH=x 米,∠A=60°(1)求S关于x的函数关系式,并直接写出自变量x的取值范围;(2)若a=100,求S的最大值,并求出此时的值;(3)若S的最大值是10000,则a至少要多长?23.在△ABC中,D、E、F分别为BC、AB、AC上的点.(1)如图1,若EF∥BC、DF∥AB,连CE、AD分别交DF、EF于N、M,且E为AB的中点,求证:EM=MF;(2)如图2,在(1)中,若E不是AB的中点,请写出与MN平行的直线,并证明;(3)若BD=DC,∠B=90°,且AE:AB:BC=1:3:2,AD与CE相交于点Q,直接写出tan∠CQD 的值.24.已知抛物线y=x2上有两动点A(x1,y1),B(x2,y2),其中0<x1<x2),过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,OA的延长线交BD于点E.(1)如图1,若点A的坐标为(1,1),点B的坐标为(2,4),则点E的坐标为.(2)如图2,过A作AF⊥BD于F.若BE=AE,试求BF的长;(3)如图3,延长CA交OB于点H.若S△OEH=S四边形OHED,试探究x1和x2之间的数量关系,并证明你的结论.2016年湖北省武汉市东西湖区中考数学模拟试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.实数的值在()A.0与1之间B.1与2之间C.2与3之间D.3与4之间【考点】估算无理数的大小.【分析】根据2<<3,即可解答.【解答】解:∵2<<3,∴在2和3之间.故选:C.【点评】本题考查了估算无理数的大小,解决本题的关键是熟记2<<3.2.使分式有意义的x的取值范围是()A.x≥1 B.x≤1 C.x>1 D.x≠1【考点】分式有意义的条件.【分析】分母不为零,分式有意义,依此求解.【解答】解:由题意得x﹣1≠0,解得x≠1.故选D.【点评】考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.3.运用乘法公式计算(m+2)(m﹣2)的结果是()A.m2﹣2 B.m2﹣4 C.m2+4 D.m2+2【考点】平方差公式.【分析】将原式直接套用平方差公式展开即可得.【解答】解:(m+2)(m﹣2)=m2﹣22=m2﹣4.故选:B.【点评】本题主要考查平方差公式,熟练掌握(a+b)(a﹣b)=a2﹣b2是关键.4.五名同学参加演讲比赛,以抽签的方式决定每个人的出场顺序.把背面完全相同,正面写有1、2、3、4、5的五张卡片洗均后正面向下放在桌子上,小军从中随机抽取一张,下列事件是随机事件的是()A.抽到的数字是0 B.抽到的数字是7C.抽到的数字大于5 D.抽到的数字是1【考点】随机事件.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:抽到的数字是0是不可能事件,A错误;抽到的数字是7是不可能事件,A错误;抽到的数字大于5是不可能事件,A错误;抽到的数字是1是随机事件,D正确,故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.下列计算正确的是()A.2x+x=2x2B.2x2﹣x2=2 C.2x2•3x2=6x4D.2x6÷x2=2x3【考点】整式的除法;合并同类项;单项式乘单项式.【分析】分别利用合并同类项法则以及单项式与单项式的乘除运算法则计算得出答案.【解答】解:A、2x+x=3x,故此选项错误;B、2x2﹣x2=x2,故此选项错误;C、2x2•3x2=6x4,故此选项正确;D、2x6÷x2=2x4,故此选项错误.故选:C.【点评】此题主要考查了合并同类项以及单项式与单项式的乘除运算等知识,正确掌握运算法则是解题关键.6.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,2)重合,则点A的坐标是()A.(2,5) B.(﹣8,5)C.(﹣8,﹣1) D.(2,﹣1)【考点】坐标与图形变化﹣平移.【分析】逆向思考,把点(﹣3,2)先向右平移5个单位,再向下平移3个单位后可得到A点坐标.【解答】解:在坐标系中,点(﹣3,2)先向右平移5个单位得(2,2),再把(2,2)向下平移3个单位后的坐标为(2,﹣1),则A点的坐标为(2,﹣1).故选:D.【点评】本题考查了坐标与图形变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a 个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.7.如图,在一个长方体上放着一个小正方体,若这个组合体的俯视图如图所示,则这个组合体的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】先细心观察原立体图形和俯视图中长方体和正方体的位置关系,结合四个选项选出答案.【解答】解:由原立体图形和俯视图中长方体和正方体的位置关系,可排除A、C、D.故选B.【点评】本题考查了学生的观察能力和对几何体三种视图的空间想象能力.8.某车间工人的日加工零件数如表:那么工人日加工零件数的中位数和众数分别是()A.6和6 B.5和6 C.9和4 D.5.5和4【考点】众数;中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案.【解答】解:在这一组数据中日加工件数6件的最多,有9人,故众数是6件;排序后处于中间位置的那个数是6,6,那么由中位数的定义可知,这组数据的中位数是6件;故选:A.【点评】本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.9.根据如图所示的三个图所表示的规律,依次下去第n个图中平行四边形的个数是()A.3n B.3n(n+1)C.6n D.6n(n+1)【考点】平行四边形的性质.【专题】压轴题;规律型.【分析】从图中这三个图形中找出规律,可以先找出这三个图形中平行四边形的个数,分析三个数字之间的关系.从而求出第n个图中平行四边形的个数.【解答】解:从图中我们发现(1)中有6个平行四边形,6=1×6,(2)中有18个平行四边形,18=(1+2)×6,(3)中有36个平行四边形,36=(1+2+3)×6,∴第n个中有3n(n+1)个平行四边形.故选B.【点评】本题为找规律题,从前三个图形各自找出有多少个平行四边形,从中观察出规律,然后写出与n有关的代数式来表示第n个中的平行四边形的数目.10.如图,AB是⊙的直径,CD是∠ACB的平分线交⊙O于点D,过D作⊙O的切线交CB的延长线于点E.若AB=4,∠E=75°,则CD的长为()A.B.2 C.2 D.3【考点】切线的性质.【分析】如图连接OC、OD,CD与AB交于点F.首先证明∠OFD=60°,再证明∠FOC=∠FCO=30°,求出DF、CF即可解决问题.【解答】解:如图连接OC、OD,CD与AB交于点F.∵AB是直径,∴∠ACB=90°,∵CD平分∠ACB,∴=,∴OD⊥AB,∵DE是切⊙O切线,∴DE⊥OD,∴AB∥DE,∵∠E=75°,∴∠ABC=∠E=75°,∠CAB=15°,∴∠CFB=∠CAB+∠ACF=15°+45°=60°,∴∠OFD=∠CFB=60°,在RT△OFD中,∵∠DOF=90°,OD=2,∠ODF=30°,∴OF=OD•tan30°=,DF=2OF=,∵OD=OC,∴∠ODC=∠OCD=30°,∵∠COB=∠CAB+∠ACO=30°,∴∠FOC=∠FCO,∴CF=FO=,∴CD=CF+DF=2,故选C.【点评】本题考查了切线的性质,含30°角的直角三角形性质的应用,能求出DF、OF是解此题的关键,注意:圆的切线垂直于过切点的半径.二、填空题(本大题共6个小题,每小题3分,共18分)11.计算(﹣4)+6的结果为 2 .【考点】有理数的加法.【专题】计算题;实数.【分析】原式利用异号两数相加的法则计算即可得到结果.【解答】解:原式=+(6﹣4)=2,故答案为:2【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.12.荆楚网消息,今年“五一”小长假武汉接待游客4100000人次,数4100000用科学记数法表示为 4.1×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数4100000用科学记数法表示为4.1×106,故答案为:4.1×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.一个不透明的袋子中装有5个红球和3个绿球,这些球除了颜色外都相同,从袋子中随机摸出一个球,它是红球的概率为.【考点】概率公式.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解;布袋中球的总数为:5+3=8,取到红球的概率为:.故答案为:.【点评】此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.如图,在菱形ABCD中,对角线长AC=2,BD=2,点E、F在边AD、CD上,以直线EF为折痕折叠,若ED⊥ED′,则∠D′FC的度数为30°.【考点】菱形的性质.【分析】首先连接AC,BD,相较于点O,由在菱形ABCD中,对角线长AC=2,BD=2,可求得∠ADC=60°,又由以直线EF为折痕折叠,若ED⊥ED′,即可求得∠DEF的度数,继而求得答案.【解答】解:连接AC,BD,相较于点O,∵在菱形ABCD中,对角线长AC=2,BD=2,∴OA=1,0D=,AC⊥BD,∴tan∠ADO===,∴∠ADO=30°,∴∠ADC=2∠ADO=60°,∴∠DEF=∠DED′=45°,∴∠DFE=180°﹣∠DEF﹣∠ADC=75°,∴∠D′FE=′DFE=75°,∴∠D′FC=180°﹣∠DFE﹣∠D′FE=30°.故答案为:30°.【点评】此题考查了菱形的性质、折叠的性质以及三角函数等知识.注意准确作出辅助线是解此题的关键.15.如图,在Rt△ABC中,∠CAB=30°,CD⊥AB于D点,BC=1,点P是直线BC上一动点,连结AP.若点E是AP的中点,则DE的最小值是.【考点】三角形中位线定理;等腰三角形的判定与性质.【专题】计算题.【分析】连接CE,如图,先利用含30度的直角三角形三边的关系计算出AC=BC=,再利用CD⊥AB得到∠ACD=60°,CD=AC=,接着根据直角三角形斜边上的中线性质得CE=AE,利用三角形三边的关系得到DE≥CE﹣CD(当C、D、E共线时取等号),于是DE的值最小时,△ACE为等边三角形,所以CE=AC=,则DE=CE﹣CD=.【解答】解:连接CE,如图,在Rt△ABC中,∵∠CAB=30°,∴AC=BC=,∴∠ACD=60°,CD=AC=∵E点AP的中点,∴CE=AE,∵DE≥CE﹣CD(当C、D、E共线时取等号),∴当C、D、E共线时,DE的值最小,此时△ACE为等边三角形,CE=AC=,则DE=CE﹣CD=,∴DE的最小值为.故答案为.【点评】本题考查了三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.也考查了含30度的直角三角形三边的关系和直角三角形斜边上的中线性质.16.直线y=x+b与函数y=x2+|2x2﹣1|的图象有且只有三个交点,则b的值为或.【考点】二次函数的性质.【分析】首先作出函数y=x2+|2x2﹣1|的图象,根据函数的图象即可确定b的取值.【解答】解:当2x2﹣1≤0时,即﹣≤x≤,y=x2+|2x2﹣1|=﹣x2+1;当2x2﹣1>0时,即x<﹣或x>,y=x2+|2x2﹣1|=3x2﹣1;作出函数的图象如图:故要使函数y=x+b与函数y=x2+|2x2﹣1|的图象有且只有三个交点,则×(﹣)+b=0,解得b=;或x+b=﹣x2+1,即x2+x+b﹣1=0,△=﹣4(b﹣1)=0,解得b=.故b的值为或.故答案为:或.【点评】本题考查了二次函数的图象及一次函数的图象,首先作出分段函数的图象是解决本题的关键,采用数形结合的方法确定答案是数学上常用的方法之一.三、解答题(共8题,共72分)17.解方程:2(x+3)=5x.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】方程去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去括号得:2x+6=5x,移项合并得:3x=6,解得:x=2.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.18.如图,D在AB上,E在BC上,AB=AC,∠B=∠C,求证:BD=CE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】要证BD=CE只要证明AD=AE即可,而证明△ABE≌△ACD,则可得AD=AE.【解答】证明:∵AB=AC,∠B=∠C,∠A=∠A,∴△ABE≌△ACD.∴AD=AE.∴BD=CE.【点评】考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.本题得出三角形全等后,再根据全等三角形的性质可得线段相等.19.国民体质监测中心等机构开展了青少年形体测评,专家组随机抽查了某市若干名初中学生坐姿、站姿、走姿的好坏情况.我们对专家的测评数据作了适当处理(如果一个学生有一种以上不良姿势,我们以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:(1)在这次形体测评中,一共抽查了500 名学生,请将条形统计图补充完整;(2)坐姿不良的扇形图的圆心角的度数是72°;(3)如果全市有8万名初中生,那么全市初中生中,三姿良好的学生约有5000人.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据走姿不良的人数是190,所占的百分比是38%,据此求得调查的总人数,利用总人数减去其它组的人数求得站姿不良的人数,从而补全直方图;(2)利用360°乘以对应的比例即可求得扇形统计图的圆心角度数;(3)利用总人数5万乘以对应的比分比即可求得.【解答】解:(1)抽查的总人数是190÷38%=500(人).站姿不良的人数是500﹣190﹣100﹣50=160(人).,故答案是:500;(2)坐姿不良的扇形图的圆心角的度数是:360°×=72°,故答案是:72°;(3)全市初中生中,三姿良好的学生约有50000×=5000(人).【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.如图,已知A(4,2)、B(n,﹣4)是一次函数y=kx+b的图象与反比例函数y=的图象的两个交点(1)求m的值和一次函数的解析式;(2)结合图象直接写出不等式﹣kx﹣b>0的解集;(3)若点M(t,y1)、N(1,y2)是反比例函数y=上两点,且y1<y2,请你借助图象,直接写出t的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)由点A的坐标利用反比例函数图象上点的坐标特征即可求出m的值;由点B的坐标结合反比例函数图象上点的坐标特征即可得出关于n的一元一次方程,解方程即可求出点B的坐标,再由点A、B的坐标利用待定系数法即可求出一次函数解析;(2)结合函数图象的上下位置关系结合交点的横坐标,即可得出不等式的解集;(3)根据反比例函数的性质结合函数图象,即可得出当y1<y2时,t的取值范围.【解答】解:(1)∵点A(4,2)在反比例函数y=的图象上,∴m=4×2=8,∴反比例函数的解析式为y=.∵点B(n,﹣4)在反比例函数y=的图象上,∴8=﹣4n,解得:n=﹣2,∴点B的坐标为(﹣2,﹣4).将点A(4,2)、点B(﹣2,﹣4)代入到y=kx+b中,得:,解得:,∴一次函数的解析式为y=x﹣2.(2)观察函数图象,发现:当x<﹣2或0<x<4时,反比例函数图象在一次函数图象的上方,∴不等式﹣kx﹣b>0的解集为x<﹣2或0<x<4.(3)令y=中x=1,则y=8,∴y2=8.当点M在第三象限内时,y1<0,显然y1<y2,此时t<0;当点M的第一象限内时,∵y=中8>0,∴反比例函数在第一象限内单调递减,∴若y1<y2,则t>1.综上可知:当y1<y2时,t的取值范围为t<0或t>1.【点评】本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征以及待定系数法求函数解析式,解题的关键是:(1)求出A、B点的坐标利用待定系数法求函数解析式;(2)利用函数图象的上下位置关系解不等式;(3)根据函数性质找出函数单调性.本题属于中档题,难度不大,但解题过程稍显繁琐,解决该题型题目时,找出点的坐标利用待定系数法求出函数解析式是关键.21.如图,直线AB经过⊙O上点C,并且OA=OB,CA=CB.(1)求证:直线AB是⊙O切线.(2)OA、OB分别交⊙O于D、E,延长线AO交⊙O于点F,连接EF、FC.若AB=4,tan∠CFE=,求AD的长.【考点】切线的判定;解直角三角形.【分析】(1)连接OC,证明OC⊥AB即可;(2)先证明∠AFC=∠CFE,连接CD,可证明△ADC∽△ACF,利用相似三角形的性质可求得=,则可求得AD.【解答】(1)证明:如图1,连接OC,∵OA=OB,AC=BC,∴OC⊥AB,且OC为圆的半径,∴AB是圆的切线;(2)解:如图2,连接OC、CD,由(1)可知∠COD=∠EOC,∴=,∴∠DFC=∠CFE,∵DE为直径,∴∠DCF为直角三角形,∴=tan∠DFC=tan∠CFE=,由(1)可知AC为⊙O的切线,∴∠ACD=∠AFC,且∠A=∠A,∴△ACD∽△ACF,∴==,∵AB=4,∴AC=2,∴=,解得AD=.【点评】本题主要考查切线的判定及相似三角形的判定和性质,掌握切线的判定方法是解题的关键,即有切点时连接圆心和切点,然后证明垂直,没有切点时,过圆心作垂直,证明圆心到直线的距离等于半径.在(2)中把三角函数值化为线段的比是解题的关键.22.如图,某校园内有一块菱形的空地ABCD,为了美化环境,现要进行绿化,计划在中间建设一个面积为S的矩形绿地EFGH.其中,点E、F、G、H分别在菱形的四条边上,AB=a米,BE=BF=DG=DH=x 米,∠A=60°(1)求S关于x的函数关系式,并直接写出自变量x的取值范围;(2)若a=100,求S的最大值,并求出此时的值;(3)若S的最大值是10000,则a至少要多长?【考点】二次函数的应用.【分析】(1)根据菱形的性质得△AHE是等边三角形,即HE=(a﹣x)米,过点P作DP⊥HG于点P,则HG=2HP=2DHsin∠HDP=x米,由矩形面积公式可得;(2)将a=100代入上式,配方成顶点式可得其最值情况;(3)将(1)中函数解析式配方后,根据其最值可得关于a的方程,解方程即可得.【解答】解:(1)∵四边形ABCD是菱形,∴AB=AD=a米,∵BE=BF=DH=DG=x米,∠A=60°∴AE=AH=(a﹣x)米,∠ADC=120°,∴△AHE是等边三角形,即HE=(a﹣x)米,如图,过点P作DP⊥HG于点P,∴HG=2HP,∠HDP=∠ADC=60°,则HG=2HP=2DHsin∠HDP=2x×=x米,∴S=x(a﹣x)=﹣x2+ax (0<x<a);(2)当a=100时,S=﹣x2+100x=﹣(x﹣50)2+2500,∴当x=50时,S取得最大值,最大值为2500.(3)S=﹣x2+ax=﹣(x﹣)2+a2,根据题意,得: a2=10000,解得:a=200或a=﹣200(舍),故a至少需要200米.【点评】本题主要考查二次函数的实际应用,根据菱形的性质及等腰三角形性质、三角函数表示出矩形的长宽是求得函数解析式的前提,熟练掌握二次函数的性质是求函数最值的关键.23.在△ABC中,D、E、F分别为BC、AB、AC上的点.(1)如图1,若EF∥BC、DF∥AB,连CE、AD分别交DF、EF于N、M,且E为AB的中点,求证:EM=MF;(2)如图2,在(1)中,若E不是AB的中点,请写出与MN平行的直线,并证明;(3)若BD=DC,∠B=90°,且AE:AB:BC=1:3:2,AD与CE相交于点Q,直接写出tan∠CQD 的值.【考点】三角形综合题.【分析】(1)先证明BD=DC,再证明EM、MF分别是△ABD,△ADC的中位线即可.(2)结论:MN∥AC,只要证明=即可.(3)如图3中,作DN∥AB交CE于N,CM⊥AD交AD的延长线于M,不妨设AE=a.则AB=3a,EB=2a.BC=2a,BD=DC=a,由tan∠BAD═=,推出∠BAD=30°,∠DCM=30°,再证明△AEQ≌△DNQ,得AQ=QD,求出QD即可解决问题.【解答】(1)证明:如图1中,∵AE=EB,EF∥AC,∴AF=FC,AM=MD,∵FD∥AB,∴BD=CD,∴EM=BD,MF=CD,∴EM=MF.(2)结论:MN∥AC.证明:如图2中,∵AE∥DF,∴=,∵MF∥BC,∴=,∵FN∥AE,∴=,∴=,∴MN∥CF.(3)如图3中,作DN∥AB交CE于N,CM⊥AD交AD的延长线于M.∵AE:AB:BC=1:3:2,不妨设AE=a.则AB=3a,EB=2a.BC=2a,BD=DC=a,∴tan∠BAD═=,∴∠BAD=30°,∠ADB=∠CDM=60°,∴∠DCM=30°,∴DM=a,CM=a,'∵BD=DC,DN∥EB,∴EN=NC,∴DN=EB=a=AE,∵AE∥DN,∴∠EAQ=∠NDQ,在△AEQ和△DNQ中,,∴△AEQ≌△DNQ,∴AQ=QD,∵AD===2a,∴DQ=a,QM=DQ+DM=a,∴tan∠CQD===.【点评】本题考查三角形综合题、平行线分线段成比例定理、三角形的中位线定理、全等三角形的判定和性质、勾股定理、平行线的判定等知识,解题的关键是学会利用比例式证明两条直线平行,学会添加常用辅助线,构造三角形中位线解决问题,属于中考压轴题.24.已知抛物线y=x2上有两动点A(x1,y1),B(x2,y2),其中0<x1<x2),过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,OA的延长线交BD于点E.(1)如图1,若点A的坐标为(1,1),点B的坐标为(2,4),则点E的坐标为(2,2).(2)如图2,过A作AF⊥BD于F.若BE=AE,试求BF的长;(3)如图3,延长CA交OB于点H.若S△OEH=S四边形OHED,试探究x1和x2之间的数量关系,并证明你的结论.【考点】二次函数综合题.【分析】(1)如图1中,求出直线OA的解析式,根据点B坐标即可求出点E坐标.(2)如图2中,根据AE=BE,列出关于y1,y2的方程,求出y2﹣y1即可解决问题.(3)如图3中,先证明四边形HCDE是矩形,再证明S△HOC=S△HCD=S△HDE即可解决问题.【解答】解:(1)如图1中,∵点A坐标(1,1),∴直线OA解析式为y=x,∵点B坐标(2,4),∴点E坐标(2,2).故答案为(2,2).(2)如图2中,∵点A(x1,y1),∴直线OA解析式y=x,∵点B坐标(x2,y2),∴点E坐标(x2,),∵AE=EB,∴=y2﹣,∴(x2﹣x1)=y2﹣,∵y1=x12,y2=x22,∴x1=,x2=,∴(﹣)•=(﹣),∴=,∴1+y1=y2,∴y2﹣y1=1,∴BF=y2﹣y1=1.(3)结论x2=2x1.理由:如图3中,∵点A(x1,y1),B(x2,y2),∴直线OA解析式为y=x,直线OB解析式为y=x,∴点H坐标(x1,),点E坐标(x2,),∵y2=x22,y1=x12,∴=x1x2, =x1x2,∴HC=ED,∵HC∥ED,∴四边形HCDE是平行四边形,∵∠HCD=90°,∴四边形HCDE是矩形,∴HE∥OD,∴S△HOE=S△HED=S△HCD,∵S△OEH=S四边形OHED,∴S△HOC=S△HCD=S△HDE,∴OC=CD,∴x2=2x1.【点评】本题考查二次函数综合题、一次函数、两点间距离公式、平行线的性质等知识,解题的关键是学会利用参数解决问题,本题目有一定的代数运算技巧,解题的突破口是发现HE∥OD,属于中考压轴题.。
武汉市中考数学模拟试卷分类汇编易错易错压轴选择题精选:勾股定理选择题(4)

武汉市中考数学模拟试卷分类汇编易错易错压轴选择题精选:勾股定理选择题(4)一、易错易错压轴选择题精选:勾股定理选择题1.在ABC 中,AB 边上的中线3,6,8CD AB BC AC ==+=,则ABC 的面积为( ) A .6B .7C .8D .92.在平面直角坐标系内的机器人接受指令“[α,A]”(α≥0,0°<A<180°)后的行动结果为:在原地顺时针旋转A 后,再向正前方沿直线行走α.若机器人的位置在原点,正前方为y 轴的负半轴,则它完成一次指令[4,30°]后位置的坐标为( ) A .(-2,23)B .(-2,-23)C .(-2,-2)D .(-2,2)3.如图,已知AB 是⊙O 的弦,AC 是⊙O 的直径,D 为⊙O 上一点,过D 作⊙O 的切线交BA 的延长线于P,且DP⊥BP 于P.若PD+PA=6,AB=6,则⊙O 的直径AC 的长为( )A .5B .8C .10D .124.如图,OP =1,过点P 作PP 1⊥OP ,且PP 1=1,得OP 1=2;再过点P 1作P 1P 2⊥OP 1且P 1P 2=1,得OP 2=3;又过点P 2作P 2P 3⊥OP 2且P 2P 3=1,得OP 3=2……依此法继续作下去,得OP 2018的值为( )A .2016B .2017C .2018D .2019 5.将6个边长是1的正方形无缝隙铺成一个矩形,则这个矩形的对角线长等于( ) A .37B .13C .37或者13D .37或者1376.如图是一块长、宽、高分别为6cm 、4cm 、3cm 的长方体木块,一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面到长方体上和A 相对的顶点B 处吃食物,那么它需要爬行的最短路径的长是( )A .cmB .cmC .cmD .9cm7.如图,是一长、宽都是3 cm ,高BC =9 cm 的长方体纸箱,BC 上有一点P ,PC =23BC ,一只蚂蚁从点A 出发沿纸箱表面爬行到点P 的最短距离是( )A .62cmB .33cmC .10 cmD .12 cm8.如图,在四边形ABCD 中,∠DAB =30°,点E 为AB 的中点,DE ⊥AB ,交AB 于点E ,DE =3,BC =1,CD =13,则CE 的长是( )A .14B .17C .15D .139.如图,在长方形纸片ABCD 中,8AB cm =,6AD cm =. 把长方形纸片沿直线AC 折叠,点B 落在点E 处,AE 交DC 于点F ,则AF 的长为( )A .254cmB .152cmC .7cmD .132cm10.如图,在△ABC 中,∠C =90°,AD 是△ABC 的一条角平分线.若AC =6,AB =10,则点D 到AB 边的距离为( )A .2B .2.5C .3D .411.已知三角形的三边长分别为a ,b ,c ,且a+b=10,ab=18,c=8,则该三角形的形状是( ) A .等腰三角形B .直角三角形C .钝角三角形D .等腰直角三角形12.如图,小巷左右两侧是竖直的墙壁,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面1.5米,则小巷的宽度为( )A .0.8米B .2米C .2.2米D .2.7米13.如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,BD 平分∠ABC ,E 是AB 中点,连接DE ,则DE 的长为( )A .102B .2C .512+D .3214.如图,长方体的长为15cm ,宽为10cm ,高为20cm ,点B 离点C5cm ,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B 去吃一滴蜜糖,需要爬行的最短距离是( )cm .A .25B .20C .24D .10515.如图,BD 为ABCD 的对角线,45,DBC DE BC ︒∠=⊥于点E ,BF ⊥DC 于点F ,DE 、BF 相交于点H ,直线BF 交线段AD 的延长线于点G ,下列结论:①12CE BE = ;②A BHE ∠=∠;③AB=BH;④BHD BDG ∠=∠;⑤222BH BG AG +=;其中正确的结论有( )A .①②③B .②③⑤C .①⑤D .③④16.如图,△ABC 中,AB=10,BC=12,AC=213,则△ABC 的面积是( ).A .36B .1013C .60D .121317.如图,分别以直角ABC ∆三边为边向外作三个正方形,其面积分别用123,,S S S 表示,若27S =,32S =,那么1S =( )A .9B .5C .53D .4518.在Rt△ABC 中,∠C=90°,AC=3,BC=4,则点C 到AB 的距离是( )A .34B .35C .45D .12519.如图,已知数轴上点P 表示的数为1-,点A 表示的数为1,过点A 作直线l 垂直于PA ,在l 上取点B ,使1AB =,以点P 为圆心,以PB 为半径作弧,弧与数轴的交点C 所表示的数为( )A .5B .51-C .51+D .51-+20.如图,在矩形ABCD 中,AB =3,BC =4,在矩形内部有一动点P 满足S △PAB =3S △PCD ,则动点P 到点A ,B 两点距离之和PA +PB 的最小值为( )A .5B .35C .332+D .21321.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为16cm ,在容器内壁离容器底部4cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿4cm 的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为20cm ,则该圆柱底面周长为( )A .12cmB .14cmC .20cmD .24cm22.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm23.如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形构成的大正方形,若直角三角形的两直角边长分别为5和3,则小正方形的面积为( )A .4B .3C .2D .124.为了庆祝国庆,八年级(1)班的同学做了许多拉花装饰教室,小玲抬来一架2.5米长的梯子,准备将梯子架到2.4米高的墙上,则梯脚与墙角的距离是( ) A .0.6米B .0.7米C .0.8米D .0.9米25.我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为( ) A .7.5平方千米B .15平方千米C .75平方千米D .750平方千米26.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .111,4,5222C .3,4,5D .114,7,82227.如图,已知ABC 中,4AB AC ==,6BC =,在BC 边上取一点P (点P 不与点B 、C 重合),使得ABP △成为等腰三角形,则这样的点P 共有( ).A .1个B .2个C .3个D .4个28.如图,在23⨯的正方形网格中,AMB ∠的度数是( )A .22.5°B .30°C .45°D .60°29.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1、S 2、S 3.若S 1+S 2+S 3=15,则S 2的值是( )A .3B .154C .5D .15230.如图,是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=10,BE=24,则EF 的长是( )A .14B .13C .143D .142【参考答案】***试卷处理标记,请不要删除一、易错易错压轴选择题精选:勾股定理选择题 1.B 解析:B 【分析】本题考查三角形的中线定义,根据条件先确定ABC 为直角三角形,再根据勾股定理求得228AC BC = ,最后根据12ABC AC BC ∆=⋅求解即可. 【详解】解:如图,在ABC 中,AB 边上的中线, ∵CD=3,AB= 6, ∴CD=3,AB= 6, ∴CD= AD= DB ,12∠∠∴=,34∠=∠ , ∵1234180∠+∠+∠+∠=︒, ∴1390∠+∠=︒,∴ABC 是直角三角形,∴22236AC BC AB +==, 又∵8AC BC +=,∴22264AC AC BC BC +⋅+=,∴22264()643628AC BC AC BC ⋅=-+=-=,又∵12ABC AC BC ∆=⋅, ∴128722ABCS∆=⨯=, 故选B.【点睛】本题考查三角形中位线的应用,熟练运用三角形的中线定义以及综合分析、解答问题的能力,关键要懂得:在一个三角形中,如果获知一条边上的中线等于这一边的一半,那么就可考虑它是一个直角三角形,通过等腰三角形的性质和内角和定理来证明一个三是直角三角形.2.B解析:B 【解析】根据题意,如图,∠AOB=30°,OA=4,则AB=2,OB=23,所以A(-2,-23),故选B.3.C解析:C 【解析】分析:通过切线的性质表示出EC 的长度,用相似三角形的性质表示出OE 的长度,由已知条件表示出OC 的长度即可通过勾股定理求出结果. 详解:如图:连接BC ,并连接OD 交BC 于点E :∵DP ⊥BP ,AC 为直径; ∴∠DPB=∠PBC=90°. ∴PD ∥BC,且PD 为⊙O 的切线. ∴∠PDE=90°=∠DEB,∴四边形PDEB 为矩形,∴AB ∥OE ,且O 为AC 中点,AB=6. ∴PD=BE=EC. ∴OE=12AB=3. 设PA=x ,则OD=DE-OE=6+x-3=3+x=OC ,EC=PD=6-x. .在Rt △OEC 中:222OE EC OC +=,即:()()222363x x +-=+,解得x=2. 所以AC=2OC=2×(3+x )=10.点睛:本题考查了切线的性质,相似三角形的性质,勾股定理.4.D解析:D 【解析】【分析】由勾股定理求出各边,再观察结果的规律.【详解】∵OP=1,OP 1=2 OP 2=3,OP 3=4=2, ∴OP 4=5,…,OP 2018=2019. 故选D【点睛】本题考查了勾股定理,读懂题目信息,理解定理并观察出被开方数比相应的序数大1是解题的关键.5.C解析:C 【分析】如图1或图2所示,分类讨论,利用勾股定理可得结论. 【详解】当如图1所示时,AB=2,BC=3,∴AC=2223=13 ; 当如图2所示时,AB=1,BC=6,∴AC=221+6=37; 故选C . 【点睛】本题主要考查图形的拼接,数形结合,分类讨论是解答此题的关键.6.C解析:C 【解析】 【分析】本题中蚂蚁要跑的路径有三种情况,知道当蚂蚁爬的是一条直线时,路径才会最短.蚂蚁爬的是一个长方形的对角线.展开成平面图形,根据两点之间线段最短,可求出解. 【详解】解:如图1,当爬的长方形的长是(4+6)=10,宽是3时,需要爬行的路径的长==cm ;如图2,当爬的长方形的长是(3+6)=9,宽是4时,需要爬行的路径的长==cm ;如图3,爬的长方形的长是(3+4)=7时,宽是6时,需要爬行的路径的长==cm.所以要爬行的最短路径的长cm.故选C. 【点睛】本题考查平面展开路径问题,本题关键知道蚂蚁爬行的路线不同,求出的值就不同,有三种情况,可求出值找到最短路线.7.A解析:A 【解析】 【分析】将图形展开,可得到安排AP 较短的展法两种,通过计算,得到较短的即可. 【详解】解:(1)如图1,AD=3cm ,DP=3+6=9cm , 在Rt △ADP 中,AP=2239 =310cm((2)如图2, AC=6cm ,CP=6cm ,Rt △ADP 中,AP=2266 =62 cm综上,蚂蚁从点A 出发沿纸箱表面爬行到点P 的最短距离是62cm .故选A.【点睛】题考查了平面展开--最短路径问题,熟悉平面展开图是解题的关键.8.D解析:D【解析】【分析】连接BD ,作CF ⊥AB 于F ,由线段垂直平分线的性质得出BD=AD ,AE=BE ,得出∠DBE=∠DAB=30°,由直角三角形的性质得出BD=AD=2DE=23,AE=BE=3DE=3,证出△BCD 是直角三角形,∠CBD=90°,得出∠BCF=30°,得出BF=12BC=12,CF=3BF=32,求出EF=BE+BF=72,在Rt △CEF 中,由勾股定理即可得出结果. 【详解】解:连接BD ,作CF ⊥AB 于F ,如图所示:则∠BFC=90°,∵点E 为AB 的中点,DE ⊥AB ,∴BD=AD ,AE=BE ,∵∠DAB=30°,∴∠DBE=∠DAB=30°,BD=AD=2DE=23,AE=BE=3DE=3,∵BC 2+BD 2=12+(23)2=13=CD 2,∴△BCD 是直角三角形,∠CBD=90°,∴∠CBF=180°-30°-90°=60°,∴∠BCF=30°,∠BFC=90°,∴∠BCF=30°,∴BF=12BC=12,CF=3BF=32, ∴EF=BE+BF=72,在Rt △CEF 中,由勾股定理得:CE=22731322⎛⎫⎛⎫+= ⎪ ⎪ ⎪⎝⎭⎝⎭; 故选D .【点睛】本题考查了勾股定理、勾股定理的逆定理、线段垂直平分线的性质、等腰三角形的性质;熟练掌握勾股定理和逆定理是解题的关键.9.A解析:A【分析】由已知条件可证△CFE≌△AFD,得到DF=EF,利用折叠知AE=AB=8cm,设AF=xcm,则DF=(8-x)cm,在Rt△AFD 中,利用勾股定理即可求得x 的值.【详解】∵四边形ABCD 是长方形,∴∠B=∠D=900,BC=AD,由翻折得AE=AB=8m,∠E=∠B=900,CE=BC=AD又∵∠CFE=∠AFD∴△CFE≌△AFD∴EF=DF设AF=xcm,则DF=(8-x)cm在Rt△AFD 中,AF 2=DF 2+AD 2,AD=6cm,222(8)6x x =-+254x cm = 故选择A.【点睛】此题是翻折问题,利用勾股定理求线段的长度.10.C解析:C【分析】作DE ⊥AB 于E ,由勾股定理计算出可求BC=8,再利用角平分线的性质得到DE=DC ,设DE=DC=x ,利用等等面积法列方程、解方程即可解答.【详解】解:作DE ⊥AB 于E ,如图,在Rt △ABC 中,BC =22106-=8,∵AD 是△ABC 的一条角平分线,DC ⊥AC ,DE ⊥AB ,∴DE =DC ,设DE =DC =x ,S △ABD =12DE •AB =12AC •BD , 即10x =6(8﹣x ),解得x =3,即点D 到AB 边的距离为3.故答案为C .【点睛】本题考查了角平分线的性质和勾股定理的相关知识,理解角的平分线上的点到角的两边的距离相等是解答本题的关键..11.B解析:B【解析】【分析】根据完全平方公式利用a+b=10,ab=18求出22a b +,即可得到三角形的形状.【详解】∵a+b=10,ab=18,∴22a b +=(a+b )2-2ab=100-36=64,∵,c=8,∴2c =64,∴22a b +=2c ,∴该三角形是直角三角形,故选:B.【点睛】此题考查勾股定理的逆定理,完全平方公式,能够利用完全平方公式由已知条件求出22a b +是解题的关键.12.D解析:D【分析】先根据勾股定理求出梯子的长,进而根据勾股定理可得出小巷的宽度.【详解】解:如图,由题意可得:AD 2=0.72+2.42=6.25,在Rt △ABC 中,∵∠ABC=90°,BC=1.5米,BC 2+AB 2=AC 2,AD=AC ,∴AB 2+1.52=6.25,∴AB=±2,∵AB >0,∴AB=2米,∴小巷的宽度为:0.7+2=2.7(米).故选:D.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.13.A解析:A【解析】试题解析:如图,过D 作AB 垂线交于K ,∵BD 平分∠ABC ,∴∠CBD=∠ABD∵∠C=∠DKB=90°,∴CD=KD ,在△BCD 和△BKD 中,CD KD BD BD⎧⎨⎩== ∴△BCD ≌△BKD ,∴BC=BK=3∵E 为AB 中点∴BE=AE=2.5,EK=0.5,∴AK=AE-EK=2,设DK=DC=x ,AD=4-x ,∴AD 2=AK 2+DK 2即(4-x )2=22+x 2 解得:x=32 ∴在Rt △DEK 中,DE=2222310=+0.5=22DK KE +()(). 故选A .14.A解析:A【分析】分三种情况讨论:把左侧面展开到水平面上,连结AB ;把右侧面展开到正面上,连结AB ,;把向上的面展开到正面上,连结AB ;然后利用勾股定理分别计算各情况下的AB ,再进行大小比较.【详解】把左侧面展开到水平面上,连结AB ,如图1()2210205925537AB =++==把右侧面展开到正面上,连结AB ,如图2()()222010562525AB =++==把向上的面展开到正面上,连结AB ,如图3()()2210205725529AB =++==∵925725625>>∴53752925>>∴需要爬行的最短距离为25cm故选:A .【点睛】本题考查了平面展开及其最短路径问题:先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.15.B解析:B【分析】根据直角三角形的意义和性质可以得到解答.【详解】解:由题意,90BHE HBE C HBE A C ∠+∠=∠+∠=︒∠=∠,∴A BHE C ∠=∠=∠,②正确;∵∠DBC=45°,DE ⊥BC ,∴∠EDB=∠DBC=45°,∴BE=DE∴Rt BEH Rt DEC ≅,∴BH=CD=AB ,③正确;∵AB CD BF CD ⊥,,∴AB ⊥CD ,∴222AB BG AG +=即 222BH BG AG +=,⑤正确,∵没有依据支持①④成立,∴②③⑤正确故选B .【点睛】本题考查直角三角形的意义和性质,灵活应用有关知识求解是解题关键.16.A解析:A【分析】作AD BC ⊥于点D ,设BD x =,得222AB BD AD -=,222AC CD AD -=,结合题意,经解方程计算得BD ,再通过勾股定理计算得AD ,即可完成求解.【详解】如图,作AD BC ⊥于点D设BD x =,则12CD BC x x =-=-∴222AB BD AD -=,222AC CD AD -=∴2222AB BD AC CD -=-∵AB=10,AC=213∴()()22221021312x x -=-- ∴8x =∴22221086AD AB BD =-=-=∴△ABC 的面积111263622BC AD =⨯=⨯⨯= 故选:A .【点睛】本题考察了直角三角形、勾股定理、一元一次方程的知识,解题的关键是熟练掌握勾股定理的性质,从而完成求解.17.A解析:A【分析】根据勾股定理与正方形的性质解答.【详解】解:在Rt △ABC 中,AB 2=BC 2+AC 2,∵S 1=AB 2,S 2=BC 2,S 3=AC 2,∴S 1=S 2+S 3.∵S 2=7,S 3=2,∴S 1=7+2=9.故选:A .【点睛】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.18.D解析:D【解析】在Rt △ABC 中 ∠C=90°,AC=3,BC=4,根据勾股定理求得AB=5,设点C 到AB 的距离为h ,即可得12h×AB=12AC×BC ,即12h×5=12×3×4,解得h=125,故选D. 19.B解析:B【分析】由数轴上点P 表示的数为1-,点A 表示的数为1,得PA=2,根据勾股定理得5PB =,进而即可得到答案.【详解】∵数轴上点P 表示的数为1-,点A 表示的数为1,∴PA=2,又∵l ⊥PA ,1AB =,∴225PB PA AB =+=, ∵PB=PC=5,∴数轴上点C 所表示的数为:51-.故选B .【点睛】本题主要考查数轴上点表示的数与勾股定理,掌握数轴上两点之间的距离求法,是解题的关键.20.B解析:B【分析】首先由PAB PCD S =3S △△,得知动点P 在与AB 平行且与AB 的距离为3的直线l 上,作点A关于直线l 的对称点E ,连接AE 、BE ,则BE 的长就是所求的最短距离,然后在直角三角形ABE 中,由勾股定理求得BE 的值,即PA+PB 的最小值.【详解】解:∵PAB PCD S =3S △△, 设点P 到CD 的距离为h ,则点P 到AB 的距离为(4-h ),则11AB (4-h)=3CD h 22⋅⋅⨯⋅⋅,解得:h=1,∴点P 到CD 的距离1,到AB 的距离为3, ∴如下图所示,动点P 在与AB 平行且与AB 的距离为3的直线l 上,作点A 关于直线l 的对称点E ,连接AE 、BE ,且两点之间线段最短,∴PA+PB 的最小值即为BE 的长度,AE=6,AB=3,∠BAE=90°,根据勾股定理:22222BE =AE AB =63=35++,故选:B .【点睛】本题考查了轴对称—最短路线问题(两点之间线段最短),勾股定理,得出动点P 所在的位置是解题的关键.21.D解析:D【分析】将容器侧面展开,建立A 关于EG 的对称点A ′,根据两点之间线段最短可知A ′B 的长度即为所求.【详解】解:如图:将圆柱展开,EG 为上底面圆周长的一半,作A 关于E 的对称点A',连接A'B 交EG 于F ,则蚂蚁吃到蜂蜜需爬行的最短路径为AF+BF 的长,即AF+BF=A'B=20cm ,延长BG ,过A'作A'D ⊥BG 于D ,∵AE=A'E=DG=4cm ,∴BD=16cm ,Rt △A'DB 中,由勾股定理得:A'D=22201612-=cm∴则该圆柱底面周长为24cm .故选:D .【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.22.B解析:B【分析】根据翻折的性质可知:AC =AE =6,CD =DE ,设CD =DE =x ,在Rt △DEB 中利用勾股定理解决.【详解】解:在Rt △ABC 中,∵AC =6,BC =8,∴AB =22AC BC +=2268+=10,△ADE 是由△ACD 翻折,∴AC =AE =6,EB =AB−AE =10−6=4,设CD =DE =x ,在Rt △DEB 中,∵222DE EB DB +=,∴()22248x x +=-,∴x =3,∴CD =3.故答案为:B .【点睛】本题考查翻折的性质、勾股定理,利用翻折不变性是解决问题的关键,学会转化的思想去思考问题.23.A解析:A【分析】根据直角三角形的两直角边长分别为5和3,可计算出正方形的边长,从而得出正方形的面积.【详解】解:3和5为两条直角边长时,小正方形的边长=5-3=2,∴小正方形的面积22=4;综上所述:小正方形的面积为4;故答案选A.【点睛】本题考查了勾股定理及其应用,正确表示出直角三角形的面积是解题的关键.解析:B【解析】 试题解析:依题意得:梯子、地面、墙刚好形成一直角三角形,梯高为斜边,利用勾股定理得:梯脚与墙角距离:222.5 2.4-=0.7(米).故选B .25.A解析:A【解析】分析:直接利用勾股定理的逆定理进而结合直角三角形面积求法得出答案.详解:∵52+122=132,∴三条边长分别为5里,12里,13里,构成了直角三角形,∴这块沙田面积为:12×5×500×12×500=7500000(平方米)=7.5(平方千米). 故选A .点睛:此题主要考查了勾股定理的应用,正确得出三角形的形状是解题关键.26.B解析:B【分析】根据勾股定理的逆定理分别计算各个选项,选出正确的答案.【详解】A 、22272425+=,能组成直角三角形,故正确;B 、22211145222⎛⎫⎛⎫⎛⎫+≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,不能组成直角三角形,故错误; C 、222345+=,能组成直角三角形,故正确; D 、2221147822⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,能组成直角三角形,故正确; 故选:B .【点睛】本题考查了勾股定理的逆定理:已知三角形ABC 的三边满足a 2+b 2=c 2,则三角形ABC 是直角三角形.27.B解析:B【分析】在BC 边上取一点P (点P 不与点B 、C 重合),使得ABP △成为等腰三角形,分三种情况分析:AP BP =、AB BP =、AB AP =;根据等腰三角形的性质分别对三种情况逐个分析,即可得到答案.根据题意,使得ABP △成为等腰三角形,分AP BP =、AB BP =、AB AP =三种情况分析:当AP BP =时,点P 位置再分两种情况分析:第1种:点P 在点O 右侧,AO BC ⊥于点O ∴22172AO AB BC ⎛⎫=-= ⎪⎝⎭设OP x =∴2227AP AO OP x =+=+∵4AB AC ==∴132BO BC == ∴3BP BO OP x =+=+∴27=3x x ++∴2x =-,不符合题意;第2种:点P 在点O 左侧,AO BC ⊥于点O设OP x =∴2227AP AO OP x =+=+∴3BP BO OP x =-=-∴273x x +=-∴2x =,点P 存在,即1BP =;当AB BP =时,4BP AB ==,点P 存在;当AB AP =时,4AP AB ==,即点P 和点C 重合,不符合题意;∴符合题意的点P 共有:2个故选:B .【点睛】本题考查了等腰三角形、勾股定理、一元一次方程的知识;解题的关键是熟练掌握等腰三角形、勾股定理、一元一次方程的性质,从而完成求解.解析:C【分析】连接AB ,求出AB 、BM 、AM 的长,根据勾股定理逆定理即可求证AMB ∆为直角三角形,而AM=BM ,即AMB ∆为等腰直角三角形,据此即可求解.【详解】连接AB∵22125AM =+=,22125AB =+=,221310BM =+=∴22210AM AB BM +==∴AMB ∆为等腰直角三角形∴45AMB ∠=︒故选C .【点睛】本题考查了勾股定理的逆定理,重点是求出三条边的长,然后证明AMB ∆为直角三角形.29.C解析:C【解析】将四边形MTKN 的面积设为x ,将其余八个全等的三角形面积一个设为y ,∵正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3,S 1+S 2+S 3=15, ∴得出S 1=8y+x ,S 2=4y+x ,S 3=x ,∴S 1+S 2+S 3=3x+12y=15,即3x+12y=15,x+4y=5, 所以S 2=x+4y=5,故答案为5.点睛:将四边形MTKN 的面积设为x ,将其余八个全等的三角形面积一个设为y ,用x ,y 表示出S 1,S 2,S 3,再利用S 1+S 2+S 3=15求解是解决问题的关键.30.D解析:D【分析】24和10为两条直角边长时,求出小正方形的边长14,即可利用勾股定理得出EF 的长.【详解】解:∵AE=10,BE=24,即24和10为两条直角边长时, 小正方形的边长=24-10=14, ∴EF=221414142+=.故选D .【点睛】本题考查了勾股定理、正方形的性质;熟练掌握勾股定理是解决问题的关键.。
2015~2016学年度武汉市九年级中考数学模拟试卷

2015~2016学年度武汉市九年级中考数学模拟试卷武汉市东山中学教学九年级组 2016.5.5第Ⅰ卷 (选择题 共30分)一、选择题(共10小题,每小题3分,共30分) 1.下列实数落在7与8之间的是( )A.41B.51C.31D.61 2.分式xx222-有意义,则x 的取值范围是( )A. x ≠2B. x ≤2.C. x ≠1D. x ≥1 3.运用乘法公式计算)3)(3(a a +--的结果是( )A.29a -B..932-+-a a C..92-a D..962---a a4.下列事件是确定性...事件的是( ). A.掷一次骰子,在骰子向上的一面上的点数大于0. B.买一张福利彩票,中100万.C.武汉市地铁5号线今年年底通车.D.明天天气晴朗.5.下列计算正确的是( ).A.x x x =÷232B.2532x x x =⋅C.422624x x x =+ D.124=⋅xx 6.在平面直角坐标系xoy 中,将△ABC 绕着原点o 逆时针旋转90,得到△'''C B A ,已知)3,2(A 、)5,4(B 、)1,6(-C ,且A 、B 、C 的对应点对应为A 、B 、C ,已知P 是线段AC的中点,则点'P 的坐标为( ).A.(4,1).B.(4,-1)C.(1,4)D.(-1,4).7.如图所示,一个斜插吸管的盒装饮料从正面看的图形是( )8.某校九年级兴趣小组在课后就本校学生对中考的看法做了如下调查:该兴趣小组随机抽查了本校部分学生,进行了问卷调查,问卷内容包括如下四类,A 类:一定要竭尽全力考进高中,B 类:中考好坏都无所谓,C 类:没想过,D 类:基础较差,力不从心。
该兴趣小组将调查结果绘制成了下列图表:根据上述图表中的信息,请你计算扇形图中的值为( ). A.6 B. 108 C.%12 D.2.439.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,...,依次规律,第6个图形有( )个小圆.......A.3B.5C.8D.1310.如图,已知O 是四边形ABCD 内一点,OA=OB=OC ,∠ABC=∠ADC=70,则∠DAO+∠DCO 的大小是( )A.70B.110C.140D.150第Ⅱ卷(非选择题,共90分)二、填空题(共6小题,每小题3分,共18分) 11.计算-10-(+3)的结果为.12.天文单位(英文:Astronomical Unit ,简写AU )是长度的单位,历史上约等于地球跟太阳的平均距离。
2016年湖北省武汉外国语学校中考数学模拟试卷带答案解析

2016年湖北省武汉外国语学校中考数学模拟试卷(三)一、选择题(共10小题,每小题3分,共30分)1.(3分)实数的值在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间2.(3分)若分式有意义,则x的取值范围是()A.x≠1 B.x=1 C.x>1 D.x<13.(3分)运用乘法公式计算(a﹣2)2的结果是()A.a2﹣4a+4 B.a2﹣2a+4 C.a2﹣4 D.a2﹣4a﹣44.(3分)签筒中有4根纸签,上面分别标有数字1,2,3,4,从中随机抽取一根,下列事件属于必然事件的是()A.抽到的纸签上标有的数字小于0B.抽到的纸签上标有的数字是3C.抽到的纸签上标有的数字不小于1D.抽到的纸签上标有的数字大于45.(3分)下列计算正确的是()A.3a2+2a2=5a4B.a•a=a2C.4a6÷2a2=2a3D.2a﹣a=26.(3分)如图,△ABC的顶点都在正方形网格格点上,点A的坐标为(﹣1,4).将△ABC沿y轴翻折到第一象限,则点C的对应点C′的坐标是()A.(3,1) B.(﹣3,﹣1)C.(1,﹣3)D.(3,﹣1)7.(3分)有个零件(正方体中间挖去一个圆柱形孔)如图放置,它的左视图是()A .B .C .D .8.(3分)小明记录了半个月的最高气温如表:那么这半个月每天的最高气温的中位数是()A .22 B.23 C.23.5 D.249.(3分)如图,以下各图都是由同样大小的图形①按一定规律组成,其中第①个图形中共有1个完整菱形,第②个图形中共有5个完整菱形,第③个图形中共有13个完整菱形,…,则第⑦个图形中完整菱形的个数为()A.83 B.84 C.85 D.8610.(3分)如图,AC是⊙O的直径,∠ACB=90°,CA=CB,连接BO交⊙O于点D,连接AD,则tan∠ADO的值为()A.B.C.3﹣D.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算:8+(﹣3)的结果为.12.(3分)中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法可表示为.13.(3分)一个袋子中装有6个黑球和3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为.14.(3分)如图,将一副三角板和一张对边平行的纸条按如图方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是.15.(3分)如图,线段AB=4,M为AB的中点,动点P到点M的距离是1,连接PB,线段PB绕点P逆时针旋转90°得到线段PC,连接AC,则线段AC长度的最大值是.16.(3分)将抛物线y=x2﹣2x﹣3向上平移n个单位(n>0),得到抛物线C,若当0≤x≤时,抛物线C与x轴只有一个公共点,则n的取值范围是.三、解答题(共8题,共72分)17.(8分)解方程:25x﹣(x﹣5)=29.18.(8分)如图,∠1=∠2,∠D=∠B,AD=AB,求证:AE=AC.19.(8分)初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;(3)请将频数分布直方图补充完整;(4)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?20.(8分)如图,已知A(﹣4,2)、B(n,﹣4)是一次函数y=kx+b的图象与反比例函数y=的图象的两个交点.(1)求此反比例函数和一次函数的解析式.(2)若点M(t,y1)、N(1,y2)是反比例函数y=上两点,且y1>y2,请你借助图象,直接写出t的取值范围.21.(8分)如图,AB为⊙O的直径,AE是⊙O的弦,C是弧AE的中点,弦CG ⊥AB于点D,交AE于点F,过点C作⊙O的切线,交BA延长线于点P,连接BE(1)求证:PC∥AE(2)若sinP=,CF=5,求BE的长.22.(10分)为了节省材料,某水产养殖户利用水库的岸堤为一边,用总长为a米(a为大于21的常数)的围网在水库中围成了如图所示的①②两块矩形区域.已知岸堤的可用长度不超过21米.设AB的长为x米,矩形区域ABCD的面积为y 平方米(1)求y与x之间的函数关系,并直接写出自变量x的取值范围(用含a的式子表示).(2)若a=30,求y的最大值,并求出此时x的值.(3)若a=48,请求出y的最大值.23.(10分)如图,AD、BE是△ABC的两条高,过点D作DF⊥AB,垂足为F,FD交BE于M,FD、AC的延长线交于点N(1)求证:△BFM∽△NFA;(2)若DF=3,求FM•FN的值;(3)若AC=BC,DN=12,tanN=,求线段AC的长.24.(12分)在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于点A,B,与y轴交于点C,直线y=x+4经过A,C两点.(1)求抛物线的解析式;(2)在AC上方的抛物线上有一动点P.①如图1,当点P运动到某位置时,以AP,AO为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点P的坐标;②如图2,过点O,P的直线y=kx交AC于点E,若PE:OE=3:8,求k的值.2016年湖北省武汉外国语学校中考数学模拟试卷(三)参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)实数的值在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间【解答】解:∵1<<2,∴实数的值在:1和2之间.故选:B.2.(3分)若分式有意义,则x的取值范围是()A.x≠1 B.x=1 C.x>1 D.x<1【解答】解:由题意得,x﹣1≠0,解得x≠1.故选A.3.(3分)运用乘法公式计算(a﹣2)2的结果是()A.a2﹣4a+4 B.a2﹣2a+4 C.a2﹣4 D.a2﹣4a﹣4【解答】解:原式=a2﹣4a+4,故选A4.(3分)签筒中有4根纸签,上面分别标有数字1,2,3,4,从中随机抽取一根,下列事件属于必然事件的是()A.抽到的纸签上标有的数字小于0B.抽到的纸签上标有的数字是3C.抽到的纸签上标有的数字不小于1D.抽到的纸签上标有的数字大于4【解答】解:抽到的纸签上标有的数字不小于1是必然事件,故选:C.5.(3分)下列计算正确的是()A.3a2+2a2=5a4B.a•a=a2C.4a6÷2a2=2a3D.2a﹣a=2【解答】解:A、原式=5a2,不符合题意;B、原式=a2,符合题意;C、原式=2a4,不符合题意;D、原式=a,不符合题意,故选B6.(3分)如图,△ABC的顶点都在正方形网格格点上,点A的坐标为(﹣1,4).将△ABC沿y轴翻折到第一象限,则点C的对应点C′的坐标是()A.(3,1) B.(﹣3,﹣1)C.(1,﹣3)D.(3,﹣1)【解答】解:由A点坐标,得C(﹣3,1).由翻折,得C′与C关于y轴对称,C′(3,1).故选:A.7.(3分)有个零件(正方体中间挖去一个圆柱形孔)如图放置,它的左视图是()A.B.C.D.【解答】解:从左边看一个正方形被分成三部分,两条分式是虚线,故C正确;故选:C.8.(3分)小明记录了半个月的最高气温如表:那么这半个月每天的最高气温的中位数是( )A .22B .23C .23.5D .24【解答】解:这组数据按照从小到大的顺序排列为:21,22,22,23,23,23,24,24,24,25,25,25,25,26,26,中位数为:24.故选D .9.(3分)如图,以下各图都是由同样大小的图形①按一定规律组成,其中第①个图形中共有1个完整菱形,第②个图形中共有5个完整菱形,第③个图形中共有13个完整菱形,…,则第⑦个图形中完整菱形的个数为( )A .83B .84C .85D .86【解答】解:第①个图形中共有1个完整菱形,S 1=1,第②个图形中共有5个完整菱形,S 2﹣S 1=5﹣1=4,第③个图形中共有13个完整菱形,S 3﹣S 2=13﹣5=8=4×2,第④个图形中共有25个完整菱形,S 4﹣S 3=25﹣13=12=4×3,…, 依此类推,S n ﹣S n ﹣1=4(n ﹣1),所以,S 1+S 2﹣S 1+S 3﹣S 2+S 4﹣S 3+…+S n ﹣S n ﹣1=1+4+4×2+4×3+…+4(n ﹣1), 所以,S n =1+4[1+2+3+…+(n ﹣1)]=1+4×=2n 2﹣2n +1,即S n =2n 2﹣2n +1,当n=7时,S 7=2×72﹣2×7+1=85.故选:C .10.(3分)如图,AC 是⊙O 的直径,∠ACB=90°,CA=CB ,连接BO 交⊙O 于点D ,连接AD,则tan∠ADO的值为()A.B.C.3﹣D.【解答】解:过点D作DE⊥AC于E,∵AC=BC=2OB,∵∠ACB=∠DEO=90°,∴BC∥DE,∴∠ODE=∠OBC,∴tan∠ODE=tan∠OBC===,设OE=x,DE=2x,则OD=OA=x,∴AE=OA+OE=(1+)x,∵OD=OA,∴tan∠ADO=tan∠DOA====;故选A.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算:8+(﹣3)的结果为5.【解答】解:8+(﹣3)=5.故答案为:5.12.(3分)中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法可表示为 6.75×104.【解答】解:67 500=6.75×104.故答案为:6.75×104.13.(3分)一个袋子中装有6个黑球和3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为.【解答】解:因为个袋子中装有6个黑球3个白球,共9个球,所以随机地从这个袋子中摸出一个球,摸到白球的概率为.14.(3分)如图,将一副三角板和一张对边平行的纸条按如图方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是15°.【解答】解:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故答案为15°.15.(3分)如图,线段AB=4,M为AB的中点,动点P到点M的距离是1,连接PB,线段PB绕点P逆时针旋转90°得到线段PC,连接AC,则线段AC长度的最大值是3.【解答】解:如图所示:过点C作CD⊥y轴,垂足为D,过点P作PE⊥DC,垂足为E,延长EP交x轴于点F.∵AB=4,O为AB的中点,∴A(﹣2,0),B(2,0).设点P的坐标为(x,y),则x2+y2=1.∵∠EPC+∠BPF=90°,∠EPC+∠ECP=90°,∴∠ECP=∠FPB.由旋转的性质可知:PC=PB.在△ECP和△FPB中,∴△ECP≌△FPB.∴EC=PF=y,FB=EP=2﹣x.∴C(x+y,y+2﹣x).∵AB=4,O为AB的中点,∴AC==.∵x2+y2=1,∴AC=.∵﹣1≤y≤1,∴当y=﹣1时,AC有最大值,AC的最大值为=3.故答案为:3.16.(3分)将抛物线y=x2﹣2x﹣3向上平移n个单位(n>0),得到抛物线C,若当0≤x≤时,抛物线C与x轴只有一个公共点,则n的取值范围是n=4或≤n<3.【解答】解:如图.∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线C的解析式为y=(x﹣1)2﹣4+n,当抛物线C经过点(,0)时,(﹣1)2﹣4+n=0,解得n=,当抛物线C经过点(0,0)时,(0﹣1)2﹣4+n=0,解得n=3,∵当0≤x≤时,抛物线C与x轴只有一个公共点,∴由图象可得≤n<3时,满足条件;当抛物线C的顶点在x轴上,则n=4,此时顶点坐标为(1,4),满足条件,综上所述,n的取值范围为n=4或≤n<3.故答案为n=4或≤n<3.三、解答题(共8题,共72分)17.(8分)解方程:25x﹣(x﹣5)=29.【解答】解:去括号得:25x﹣x+5=29,移项合并得:24x=24,解得:x=1.18.(8分)如图,∠1=∠2,∠D=∠B,AD=AB,求证:AE=AC.【解答】证明:∵∠1=∠2,∴∠DAE=∠BAC,在△DAE和△BAC中,,∴△DAE≌△BAC,∴AE=AC.19.(8分)初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了560名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为54度;(3)请将频数分布直方图补充完整;(4)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?【解答】解:(1)调查的总人数是:224÷40%=560(人),故答案是:560;(2)“主动质疑”所在的扇形的圆心角的度数是:360×=54°,故答案是:54;(3)“讲解题目”的人数是:560﹣84﹣168﹣224=84(人).;(4)在试卷评讲课中,“独立思考”的初三学生约有:6000×=1800(人).20.(8分)如图,已知A(﹣4,2)、B(n,﹣4)是一次函数y=kx+b的图象与反比例函数y=的图象的两个交点.(1)求此反比例函数和一次函数的解析式.(2)若点M(t,y1)、N(1,y2)是反比例函数y=上两点,且y1>y2,请你借助图象,直接写出t的取值范围.【解答】解:(1)∵点A(﹣4,2)在反比例函数y=的图象上,∴m=﹣4×2=﹣8,∴反比例函数的解析式为y=﹣.∵点B(n,﹣4)在反比例函数y=﹣的图象上,∴﹣8=﹣4n,解得:n=2,∴点B的坐标为(2,﹣4).将点A(﹣4,2)、点B(2,﹣4)代入到y=kx+b中,得:,解得:,∴一次函数的解析式为y=﹣x﹣2.(2)令y=﹣中x=1,则y=﹣8,∴y2=﹣8.当点M在第二象限内时,y1>0,显然y1>y2,此时t<0;当点M的第四象限内时,∵y=﹣中﹣8<0,∴反比例函数在第四象限内单调递增,∴若y1>y2,则t>1.综上可知:当y 1>y2时,t的取值范围为t<0或t>1.21.(8分)如图,AB为⊙O的直径,AE是⊙O的弦,C是弧AE的中点,弦CG ⊥AB于点D,交AE于点F,过点C作⊙O的切线,交BA延长线于点P,连接BE(1)求证:PC∥AE(2)若sinP=,CF=5,求BE的长.【解答】证明:(1)连接OC,如图,∵PC为⊙O的切线,∴OC⊥PC,∵C是弧AE的中点,∴OC⊥AE,∴PC∥AE;(2)设OC与AE交于点H,如图,∵CG⊥AB,∴=,∴=,∴∠ACG=∠CAE,∴AF=CF=5,∵PC∥AE,∴∠EAB=∠P,在Rt△ADF中,∵sin∠P=sin∠FAD==,∴DF=3,AD=4,在△OAH和△OCD中,∴△OAH≌△OCD,∴AH=CD=5+3=8,∴AE=2AH=16,∵∠DAF=∠EAB,∴Rt△ADF∽Rt△AEB,∴DF:BE=AD:AE,即3:BE=4:16,∴BE=12.22.(10分)为了节省材料,某水产养殖户利用水库的岸堤为一边,用总长为a 米(a为大于21的常数)的围网在水库中围成了如图所示的①②两块矩形区域.已知岸堤的可用长度不超过21米.设AB的长为x米,矩形区域ABCD的面积为y 平方米(1)求y与x之间的函数关系,并直接写出自变量x的取值范围(用含a的式子表示).(2)若a=30,求y的最大值,并求出此时x的值.(3)若a=48,请求出y的最大值.【解答】解:(1)设AB的长为x米,则BC的长为(a﹣3x)米,根据题意得:y=x(a﹣3x)=﹣3x2+ax,由a﹣3x≤21可得x≥,由a﹣3x>0得x<,∴≤x<;(2)当a=30时,y=﹣3x2+30x=﹣3(x﹣5)2+75,∵3≤x<10,∴当x=5时,y取得最大值为75;(3)当a=48时,y=﹣3x2+48x=﹣3(x﹣8)2+192,∵当a=48时,9≤x<16,∴当x=9时,y取得最大值为189.23.(10分)如图,AD、BE是△ABC的两条高,过点D作DF⊥AB,垂足为F,FD交BE于M,FD、AC的延长线交于点N(1)求证:△BFM∽△NFA;(2)若DF=3,求FM•FN的值;(3)若AC=BC,DN=12,tanN=,求线段AC的长.【解答】(1)证明:∵AD、BE是△ABC的两条高,DF⊥AB,∴∠BFM=∠BEN=∠AFN=∠AEB=90°,∴∠FBM+∠BAE=90°,∠BAE+∠N=90°,∴∠FBM=∠N,∵∠BFM=∠AFN,∴△BFM∽△NFA.(2)解:∵△BFM∽△NFA,∴=,∴FM•FN=FA•FB,∵∠BAD+∠ABD=90°,∠ABD+∠BDF=90°,∴∠BAD=∠BDF,∵∠AFD=∠BFD=90°,∴△AFD∽△DFB,∴DF2=FA•FB,∴FM•FN=DF2=9.(3)解:作DK⊥AC于K.∵tan∠N==,设DK=a,KN=2a,在Rt△DKN中,DN2=DK2+KN2,∴122=a2+4a2,∴a=,∴DK=,∵AB=AC,AD⊥BC,∴BD=DC,∵DK∥BE,∴KC=EK,∴BE=2DK=,∵∠ABE=∠N,∴tan∠ABE==,∴AE=,在Rt△ABE中,AB==12∴AC=AB=12.24.(12分)在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于点A,B,与y轴交于点C,直线y=x+4经过A,C两点.(1)求抛物线的解析式;(2)在AC上方的抛物线上有一动点P.①如图1,当点P运动到某位置时,以AP,AO为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点P的坐标;②如图2,过点O,P的直线y=kx交AC于点E,若PE:OE=3:8,求k的值.【解答】解:(1)∵直线y=x+4经过A,C两点,∴A点坐标是(﹣4,0),点C坐标是(0,4),又∵抛物线过A,C两点,∴,解得:,∴抛物线的解析式为.(2)①如图1∵,∴抛物线的对称轴是直线x=﹣1.∵以AP,AO为邻边的平行四边形的第四个顶点Q恰好也在抛物线上,∴PQ∥AO,PQ=AO=4.∵P,Q都在抛物线上,∴P,Q关于直线x=﹣1对称,∴P点的横坐标是﹣3,∴当x=﹣3时,,∴P点的坐标是;②过P点作PF∥OC交AC于点F,∵PF∥OC,∴△PEF∽△OEC,∴.又∵,∴,设点F(x,x+4),∴,化简得:x2+4x+3=0,解得:x1=﹣1,x2=﹣3.当x=﹣1时,;当x=﹣3时,,即P点坐标是或.又∵点P在直线y=kx上,∴.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
武汉市2015-2016学年度下学期三月月考九年级数学试卷一、 选择题(每题3分,共30分)1.估计5介于( ) A .0与1之间 B .1与2之间C .2与3之间D .3与4之间2.若分式21-x 在实数范围内有意义,则x 的取值范围是( ) A .x ≥2B .x >2C .x ≥-2D .x ≠23.计算()()33-∙+x x 正确的是( ) A .92+xB .x 2C .92-xD .62-x4.下列事件是必然事件的是( )A .抛掷一枚硬币四次,有二次正面朝上B .打开电视频道,正在播放《我是歌手》C .射击运动员射击一次,命中十环D .方程x 2-2x -1=0必有实数根5.下列代数运算正确的是( ) A .823-=- B .()63282x x = C .326x x x =÷ D .5322x x x =+6.在平面直角坐标系中,点A (﹣1,5),将点A 向右平移2个单位、再向下平移3个单位得到点A 1;再将线段1OA 绕原点O 顺时针旋转90°得到2OA .则2A 的坐标为( ) A .()2,1-B .()1,2C .()1,2-D .()1,3-7.下列几何体中,主视图相同的是( )A .①②B .①③C .①④D .②④8.如上右图,是根据九年级某班50名同学一周的锻炼情况绘制的条形统计图,下面关于该班50名同学一周锻炼时间的说法错误..的是( ) A .中位数是6.5 B .平均数高于众数C .极差为3D .平均每周锻炼超过6小时的人占总数的一半9.小用火柴棍按下列方式摆图形,第1个图形用了4根火柴棍,第2个图形用了10根火柴棍,第3个图形用了18根火柴棍.依照此规律,若第n 个图形用了70根火柴棍,则n 的值为( )A .6B .7C .8D .910.如图,AB 为⊙O 的直径,4=AB ,点C 为半圆AB 上动点,以BC 为边在⊙O 外作正方形BCDE ,(点D 在直线AB 的上方)连接OD ,当点C 运动时,则线段OD 的长(A .随点C 的运动而变化,最大值为222+B .不变C . 随点C 的运动而变化,最小值为22D .随点C 的运动而变化,但无最值二、填空题(每题3分,共18分)11.计算2一(一3)的结果为 .12.羊年春晚在某网站取得了最高同时在线人数超14 000 000的惊人成绩,其中,14 000 000用科学记数法可表示为 .13.袋中装有大小相同的2个红球和3个绿球,从袋中摸出1个球摸到绿球的概率为 . 14.如图,直线l ∥m ,将含有45°角的三角板ABC 的直角顶点C 放在直线m 上.若∠1=25°,则∠2的度数为__________15.如图,点E 为矩形ABCD 的边CD 上一点,将矩形ABCD 沿AE 折叠的一边,使点D 落在BC边的点F 处.若折痕34tan ,105=∠=EFC AE ,则DF 的长为 。
16.对于三个数c b a ,,用{}c b a ,,max 这三个数中最大的数,例如: 232,2,1max =⎭⎬⎫⎩⎨⎧-,若直线k x y +-=21与函数{}32,3,1max 2++--+=x x x x y 的图象有且只有2个交点,则k 的取值条件为 。
三、解答题(共8题,共72分)17.(本题8分)解方程:()413321-=-x x18.(本题8分)已知如图,点D 在AB 上,点E 在AC 上,C B AC AB ∠=∠=,求证:AE AD =第18题图F 第15题第14题A第10题图19.(本题8分)某区八年级有3000名学生参加“爱我中华知识竞赛”活动.为了了解本次知识竞赛的成绩分布情况,从中抽取了m 名学生的得分进行统计请你根据不完整的表格,回答下列问题: (1)请直接写出c b a m ,,,的值(2)若将得分转化为等级,规定50≤x <60评为“D ”,60≤x <70评为“C ”,70≤x <90评为“B ”,90≤x <100评为“A ”.这次全区八年级参加竞赛的学生约有多少学生参赛成绩被评为“D ”?20.(本题8分)如图,x AB ⊥轴于点()0,8B ,53sin =∠AOB , 反比例函数xmy =与OA 、AB 分别相交于点D 、C , 且点D 为OA 的中点, (1)求反比例函数的解析式 (2)过点B 的直线n x y +=53与反比例函数x m y =图象交于第三象限内一点F ,求四边形OABF 的面积21.(本题8分)如图1,AB 为⊙O 的直径,C 为⊙O 上一点,CD 切⊙O 于点C ,CD BD ⊥,BD交⊙O 于点E ,连CE(1)求证:DBC ABC ∠=∠ (2)若2,4==BD CD ,求ECB ∠cos 的值22.(本题10分)某工厂为了对新研发的一种产品进行合理定价,将该产品按拟定的价格进行试销,通过对5天的试销情况进行统计,得到如下数据:第21题图 第20题图(1)通过对上面表格中的数据进行分析,发现销量y (件)与单价x (元/件)之间存在一次函数关系,求y 关于x 的函数关系式(不需要写出函数自变量的取值范围);(2)预计在今后的销售中,销量与单价仍然存在(2)中的关系,且该产品的成本是20元/件.为使工厂获得最大利润,该产品的单价应定为多少?(3)为保证产品在实际试销中销售量不得低于30件,且工厂获得得利润不得低于400元,请直接写出单价x 的取值范围; 23.(本题10分)(1)如图1,在矩形ABCD 中,点P 为边BC 上一点,且B APD BC AB ∠=∠==,10,4,PC BP ,求BP 的长;(2)如图2,在平行四边形ABCD 中,︒=∠=∠==45,5,22B APD BC AB ,求AP 的长;(3)如图3,在四边形ABCD 中,A D ∥BC ,︒=∠=∠45C B ,22=AB ,在BC 边上存在一点P ,使得︒=∠90APD ,则边AD 的长满足的条件为 。
(请直接写出结果)24.(本题12分)已知抛物线()1312:221--+--=m m x m x y C(1)证明:不论m 为何值,抛物线图象的顶点M 均在某一直线l 的图象上,求此直线l 的函数解析式;(2)当2=m 时,点P 为抛物线上一点,且︒=∠90MOP ,求点P 的坐标;(3)将(2)中的抛物线1C 沿x 轴翻折再向上平移1个单位向右平移n 个单位得抛物线2C ,设抛物线2C 的顶点为N ,抛物线2C 与x 轴相交于点B A ,(A 在B 的左边),且AM ∥BN ,求n 的值;第23题图3第23题图1第23题图2武汉市梅苑学校2015-----2016学年度下学期九年级三月月考数学参考答案一、选择题︒=∠=∠45MCA ECD ,22==MD MB ,点D 在以点M 为圆心,MB 为半径的⊙M 上运动,∴OM MD OD OM MD +≤≤-∴222222+≤≤-OD二、填空题三、解答题 17、9-=x18、∵CAD BAE AC AB C B ∠=∠=∠=∠,,(3分)∴()ASA ACD ABE ∆≅∆(6分) ∴AE AD =(8分)19、(1)31.0,4,05.0,200====c b a m (每个1分,共4分) (2)15300005.0=⨯(人) (8分) 20、(1)过点D 作x DM ⊥轴,∵()0,8B ,53sin =∠AOB ,∴()6,8,6A AB =,又点D 为OA 的中点, ∴()3,4D ,∴反比例函数的解析式为xy 12= (4分)(2)易求直线BF 的解析式为52453-=x y ,由xx y 1252453=-=得()6,2--F (6分)过点F 作x FN ⊥轴,则48=∆+∆=BOF S AOB S S O FBA 四边形(平方单位) (8分)21、(1)连接OC ,∵CD 切⊙O 于点C ,CD BD ⊥,∴O C ∥DE ∴CBD OCB ∠=∠ (2分)又CBD ABC OCB OC OB ∠=∠=∠∴=, (4分) (2)连接AC 、AE ,易知ACB ∆∽CDB ∆∽EDC ∆,且2,4==BD CD , ∴8,10,6,52====AE AB BE BC (6分)∴54cos cos ==∠=∠AB AE BAE ECB (8分) 22、(1)1002+-=x y (3分)(2)设定价为x 元时,工厂获得的利润为w 元,则()()4503522000140`22022+--=-+-=∙-=x x x y x w∴当35=x 时,w 的最大值为450元。
(8分) (3)3530≤≤x (10分) 23、(1)易知ABP ∆∽PCD ∆,∴CD PC BP AB =,设x BP =,∴4104xx -= ∴8,221==x x ,又PC BP ,∴2=BP (3分)(2)延长BC 至点E ,使得DE CD ⊥,∵︒=∠=∠==45,5,22B APD BC AB , ∴︒=∠=∠∠=∠45,E B BAP DPE ,∴ABP ∆∽DPE ∆,∴DEPEBP AB =, 设x BP =,42==CD CE ,∴22922xx -=,∴1=BP (7分) 过点P 作AB PF ⊥,则223,22===AF PF BF ,∴5=AP (8分) (3)4≥AD (10分)提示:作BC DF BC AE ⊥⊥,,则AEP ∆∽PFD ∆, ∴4=∙=∙PF PE DF AE ,又PF PE PF PE ∙≥+2,∴4≥+=PF PE AD24、(1)易知抛物线的顶点M 坐标为()2,1---m m ,令2,1--=-=m y m xP则3-=+y x ,∴直线l 的函数解析式为3--=x y (3分)(2)当2=m 时,抛物线为322--=x x y ,点()4,1-M ,将线段OM 绕点O 逆时针旋转90°得线段OC ,与抛物线相交于点P ,则点C 坐标为()1,4,直线OP 的解析式为x y 41=, 由32412--==x x x y 得82739±=x ,∴点P 的坐标为⎪⎪⎭⎫ ⎝⎛±±322739,82739 (7分) (3)由题意可知,抛物线2C 的顶点()5,1+n N ,其解析式为()51:22+---=n x y C过点M 作x ME ⊥轴于点E ,过点N 作x NF ⊥轴于点F , ∵AM ∥BN ,∴AME ∆∽BNF ∆,∴BFNFAE ME = 由()0512=+---=n x y 得,()()0,51,0,51++-+n B n A∴5554=+-n 得55=n (12分)。