2015-2016学年度北师大版七年级数学下册第3章变量之间的关系单元试卷及答案
北师大版七年级数学下册--第三章--变量之间的关系-单元试卷(附参考答案)

七年级下册第三章变量之间的关系单元测试题(北师大版)一、选择题(本题共计10 小题,每题3 分,共计30分)1. 某超市某种商品的单价为70元/件,若买x件该商品的总价为y元,则其中的常量是()A.70B.xC.yD.不确定2. 生活中太阳能热水器已进入千家万户,你知道吗,在利用太阳能热水器来加热水的过程中,热水器里的水温所晒时间的长短而变化,这个问题中因变量是()A.水的温度B.太阳光强弱C.所晒时间D.热水器3. 圆的周长公式C=2πR中,下列说法错误的是()A.C、π、R是变量,2是常量B.C、R是变量,2π是常量C.R是自变量,C是R的函数D.当自变量R=2时,函数值C=4π4. 圆周长公式C=2πR中,下列说法正确的是()A.π、R是变量,2为常量B.C、R为变量,2、π为常量C.R为变量,2、π、C为常量D.C为变量,2、π、R为常量5. 圆的周长C与半径r之间的函数关系式C=2πr中,变量是()A.CB.2πC.rD.C和r6. 甲、乙两地相距50千米,若一辆汽车以50千米/时的速度从甲地到乙地,则汽车距乙地的路程s(千米)与行驶的时间t(时)之间的关系式s=50−50t(0≤t≤1)中,常量的个数为()A.1个B.2个C.3个D.4个7. 如果用总长为60m的篱笆围成一个长方形场地,设长方形的面积为S(m2),周长为p(m),一边长为a(m),那么S,p,a中是变量的是()A.S和pB.S和aC.p和aD.S,p,a8. 以固定的速度v0(米/秒)向上抛一个小球,小球的高度ℎ(米)与小球的运动的时间t (秒)之间的关系式是ℎ=v0t−4.9t2,在这个关系式中,常量、变量分别为()A.4.9是常量,t,ℎ是变量B.v0是常量,t,ℎ是变量C.v0,−4.9是常量,t,ℎ是变量D.4.9是常量,v0,t,ℎ是变量9. 下列图象中,不能表示变量y是变量x的函数的是()A. B.C.D.10. 弹簧挂上物体会伸长,测得一弹簧的长度x(cm)与所挂的物体的重量y(kg)间的关系如下表:下列说法不正确的是( )A.x 与y 都是变量,且x 是自变量,y 是因变量B.弹簧不挂物体时的长度为0cmC.物体质量每增加1kg ,弹簧的长度y 增加0.5cmD.所挂的物体的质量为7kg 时,弹簧的长度为13.5cm二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , ) 11. 圆的面积计算公式S =πR 2中________是变量,________是常量.12. 在公式s =50t 中常量是________,变量是________.13. 某市居民用电价格是0.53元/千瓦时,居民生活用电x(千瓦时)与应付电费y (元)之间满足y =0.53x ,则其中的常量为________,变量是________.14. 一般地,在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么就是说x 是________,y 是x 的________.15. 对于圆的周长公式c =2πr ,其中自变量是________,因变量是________.16. 在圆的周长公式C =2πr 中,自变量为________,常量为________.17. 水中涟漪(圆形水波)不断扩大,记它的半径为r ,圆周长为C ,圆周率(圆周长与直径的比)为π,指出其中的变量为________.18. 学校食堂现库存粮食21000kg ,平均每天用粮食200kg ,那么剩余库存粮食ykg ,食用的天数为x ,其中常量是________,变量是________.19. 我们知道,地面有一定的温度,高空也有一定的温度,且高空中的温度是随着距地面高度的变化而变化的,如果t表示温度,ℎ表示距地面的高度,则________是变量.20. 汽车行驶的路程s、行驶时间t和行驶速度v之间有下列关系:s=vt.如果汽车以每时60km的速度行驶,那么在s=vt中,变量是________,常量是________;如果汽车行驶的时间t规定为1小时,那么在s=vt中,变量是________,常量是________;如果甲乙两地的路程s为200km,汽车从甲地开往乙地,那么在s=vt中,变量是________,常量是________.三、解答题(本题共计6 小题,共计60分,)(1)上表反映了哪两个变量间的关系?哪个是自变量?哪个是因变量?(2)如果用x表示时间,y表示电话费,那么随x的变化,y的变化趋势是什么?(3)丽丽打了5分钟电话,那么电话费需付多少元?22. 我国是一个严重缺水的国家,我们都应该倍加珍惜水资源,节约用水.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.5毫升.小燕子同学在洗手时,没有拧紧水龙头,当小燕子离开x(时)后水龙头滴了y(毫升)水.在这段文字中涉及的量中,哪些是常量,哪些是变量?23. 阅读下面这段有关“龟兔赛跑”的寓言故事,并指出所涉及的量中,哪些是常量,哪些是变量.一次乌龟与兔子举行500米赛跑,比赛开始不久,兔子就遥遥领先.当兔子以20米/分的速度跑了10分时,往回一看,乌龟远远地落在后面呢!兔子心想:“我就是睡一觉,你乌龟也追不上我,我为何不在此美美地睡上一觉呢?”可是,当骄傲的兔子正做着胜利者的美梦时,勤勉的乌龟却从它身边悄悄爬过,并以10米/分的速度匀速爬向终点.40分后,兔子梦醒了,而此时乌龟刚好到达终点.兔子悔之晚矣,等它再以30米/分的速度跑向终点时,它比乌龟足足晚了10分.24. 行驶中的汽车,在刹车后由于惯性的作用,还将继续向前滑行一段距离才能停止,这段距离称为“刹车距离”,为了测定某种型号汽车的刹车性能(车速不超过140千米/时),对回答下列问题:(1)上表反映了哪两个变量之间的关系?(2)如果刹车时车速为60千米/时,那么刹车距离是多少米?25. 已知某易拉罐厂设计一种易拉罐,在设计过程中发现符合要求的易拉罐的底面半径与铝用量有如下关系:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当易拉罐底面半径为2.4cm时,易拉罐需要的用铝量是多少?(3)根据表格中的数据,你认为易拉罐的底面半径为多少时比较适宜?说说你的理由.(4)粗略说一说易拉罐底面半径对所需铝质量的影响.参考答案:一、1.A 2.A 3.A 4.B 5.D 6.B 7.B 8.C 9.A 10.B二、11. S R;π 12. 50;S t13. 0.53 y x14.自变量因变量15.r c 16.r 2π17. c r 18.21000 20 x y 19.t h20.s t 60 s v 1 v t 200三.21解:(1)反映时间(分)与电话费(元)的关系;时间(分)是自变量,电话费(元)是因变量。
北师大版七年级数学下册单元试卷-第三章变量之间的关系(包含答案)

北师大版七年级数学下册单元试卷-第三章《变量之间的关系》姓名:班级:座号:一、单选题(共8题;共24分)1. 函数y= x+2x−5中自变量x的取值范围是()。
A. x>5B. x<5C. x≠5D. x=52. 用圆的半径r来表示圆的周长C,其式子为C=2πr,则其中的常量为()。
A. rB. πC. 2D. 2π3. 如果一盒圆珠笔有12支,售价18元,用y(元)表示圆珠笔的售价,x表示圆珠笔的支数,那么y与x之间的解析式为()。
A. y=32x B. y=23x C. y=12x D. y=18x4. 下列说法正确的是()。
A. 周长为10的长方形的长与宽成正比例B. 面积为10的等腰三角形的腰长与底边长成正比例C. 面积为10的长方形的长与宽成反比例D. 等边三角形的面积与它的边长成正比例5. 已知弹簧的长度y(cm)与所挂物体的质量x(kg)之间有如下关系,则()。
A. y随x的增大而增大B. 质量每增加1kg,度增加0.5cmC. 不挂物体时,长度为6cmD. 质量为6kg时,长度为8.cm6. 如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是()。
A. B. C. D.7. 匀速地向一个容器内注水,在注满水的过程中,水面的高度h与时间t之间的函数关系如图所示,则该容器可能是()。
A. B. C. D.8. 如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t的大致图象为()。
A. B. C. D.二、填空题(共6题;共24分)−2y=1,用含x的代数式表示y为:y=______________。
.1. 已知x32. 在函数y=√x−1中,自变量x的取值范围是______________。
北师大七年级下《第三章变量之间的关系》单元测试题(含答案)

第三章自我综合评价本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷36分,第Ⅱ卷64分,共100分,考试时间90分钟.第Ⅰ卷 (选择题 共36分)一、选择题(每小题3分,共36分)1.在以x 为自变量,y 为因变量的关系式y =2πx 中,常量为( )A .2B .πC .2,πD .π,x2.在三角形面积公式S =12ah ,a =2中,下列说法正确的是( ) A .S ,a 是变量,12,h 是常量 B .S ,h 是变量,12是常量 C .S ,h 是变量,12,a 是常量 D .S ,h ,a 是变量,12是常量 3.变量y 与x 之间的关系式为y =2x +5,当自变量x =6时,因变量y 的值为( )A .7B .14C .17D .214.一个正方形的边长为3 cm ,它的各边长减少x cm 后,得到的新正方形的周长为y cm ,则y 与x 之间的关系式是( )A .y =12-4x(0<x<3)B .y =4x -12(0<x<3)C .y =12-x(0<x<3)D .y =(3-x)2(0<x<3)5.图3-Z-1可以近似地刻画下列哪个情景( )A.小明匀速步行上学时离学校的距离与时间的关系B.匀速行驶的汽车的速度与时间的关系C.小亮妈妈到超市购买苹果的总费用与苹果质量的关系D.一个匀速上升的气球的高度与时间的关系图3-Z-16.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):下列说法错误的是( )A.在这个变化过程中,自变量是温度,因变量是声速B.温度越高,声速越快C.当空气温度为20 ℃时,声音5 s可以传播1740 mD.当温度每升高10 ℃,声速增加6 m/s7.右表列出了一项试验的统计数据,表示的是皮球从高处落下时,弹跳高度b与下降高度d的关系,下面能表示这个关系的式子是( )A.b=d2B.b=2d C.b=d2D.b=d+25 8.一根弹簧原长12 cm,它所挂的物体质量不超过10 kg,并且挂重1 kg就伸长1.5 cm,则挂重后弹簧的长度y(cm)与挂重x(kg)之间的关系式是( )A.y=1.5(x+12)(0≤x≤10) B.y=1.5x+12(0≤x≤10)C.y=1.5x+12(x≥0) D.y=1.5(x-12)(0≤x≤10)图3-Z-29.小刘上午从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小刘离家的路程y(米)和所经过的时间x(分)之间的图象如图3-Z-2所示,则下列说法不正确的是( )A.小刘家与超市相距3000米B.小刘去超市途中的速度是300米/分C.小刘在超市停留了30分钟D.小刘从超市返回家比从家里去超市的速度快10.已知三角形ABC的底边BC上的高为8 cm,当BC的长从16 cm 变化到5 cm时,三角形ABC的面积( )A.从20 cm2变化到64 cm2B.从64 cm2变化到20 cm2C.从128 cm2变化到40 cm2D.从40 cm2变化到128 cm211.小亮家与姥姥家相距24千米,小亮8:00从家出发,骑自行车去姥姥家,妈妈8:30从家出发,乘车沿相同路线去姥姥家.小亮和妈妈的行进路程(千米)与时间(时)的图象如图3-Z-3所示.根据图象得到下列结论,其中错误的是( )A.小亮骑自行车的平均速度是12千米/时B.妈妈比小亮提前0.5小时到达姥姥家C.妈妈在距家12千米处追上小亮D.9:30妈妈追上小亮图3-Z-312.如图3-Z-4,某工厂有甲、乙两个大小相同的容器,且中间有管道连通,现要向甲容器注水.若单位时间内的注水量不变,则从注水开始,乙容器水面上升的高度h与注水时间t之间的关系图象可能是( )图3-Z-4图3-Z-5请将选择题答案填入下表:第Ⅱ卷(非选择题共64分)二、填空题(每小题3分,共12分)13.某水果店卖出的香蕉数量(千克)与售价(元)之间的关系如下表:上表反映了两个变量之间的关系,其中,自变量是________,因变量是________.14.张老师带领x名学生到某动物园参观,已知成人票每张10元,学生票每张5元,设门票的总费用为y元,则y=________________,当学生有45人时,需要的总费用为________元.15.一种豆子在市场上出售,豆子的总售价与所售豆子的数量之间的关系如下表:(1)上表反映的变量是____________,________是因变量,______随____________的变化而变化;(2)若出售2.5千克豆子,则总售价应为________元;(3)根据你的预测,出售________千克豆子,可得总售价12元.图3-Z-616.如图3-Z-6描述了某汽车在行驶过程中速度与时间的关系,下列说法中正确的是________.(填序号)①第3分钟时,汽车的速度是40千米/时;②第12分钟时,汽车的速度是0千米/时;③从第3分钟到第6分钟,汽车行驶了120千米;④从第9分钟到第12分钟,汽车的速度从60千米/时减小到0千米/时.三、解答题(共52分)17.(8分)写出下列问题中两个变量之间的关系式:(1)设地面气温是20 ℃,如果每升高1 km,气温下降6 ℃,气温t(℃)与高度h(km)之间的关系式;(2)一盛满30 t水的水箱,每小时流出0.5 t水,试用流水时间t(h)表示水箱中的剩余水量y(t).18.(8分)某生物兴趣小组在四天的试验研究中发现:骆驼的体温会随外部环境温度的变化而变化,而且在这四天中每昼夜的体温变化情况相同.他们将一头骆驼前两昼夜的体温变化情况绘制成如图3-Z-7所示的图象,请根据图象完成下列问题:(1)第一天中,在什么时间范围内这头骆驼的体温是上升的?它的体温从最低上升到最高需要多长时间?(2)第三天12时这头骆驼的体温是多少?图3-Z-719.(8分)心理学家发现,在一定的时间范围内,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足关系式y=-0.1x2+2.6x+43(0≤x≤30),y的值越大,表示接受能力越强.(1)若用10分钟提出概念,则学生的接受能力y的值是多少?(2)如果改用8分钟或15分钟来提出这一概念,那么与用10分钟相比,学生的接受能力是增强了还是减弱了?通过计算来回答.20.(8分)某学校的复印任务原来由甲复印社承包,其收费y(元)与复印页数x(页)的关系如下表:(1)根据表格信息写出y与x之间的关系式;(2)现在乙复印社表示:若学校每月先付200元的承包费,则可按每页0.15元收费.乙复印社每月收费y(元)与复印页数x(页)之间的关系式为________________;(3)若学校每月复印页数在1200页左右,应选择哪个复印社?21.(10分)小明同学骑自行车去郊外春游,骑行1小时后,自行车出现故障,维修好后继续骑行,如图3-Z-8表示他离家的距离y(千米)与所用的时间x(时)之间关系的图象.(1)根据图象回答:小明到达离家最远的地方用了多长时间?此时离家多远?(2)求小明出发2.5小时后离家多远;(3)求小明出发多长时间离家12千米.图3-Z-822.(10分)某市为了节约用水,采用分段收费标准.若某户居民每月应交水费y(元)与用水量x(吨)之间关系的图象如图3-Z-9所示,根据图象回答:(1)该市自来水收费时,若使用不足5吨,则每吨收费多少元?超过5吨部分每吨收费多少元?(2)若某户居民每月用水3.5吨,应交水费多少元?若某月交水费17元,该户居民用水多少吨?图3-Z-9详解详析1.C2.C3.C4.A5.[解析] A 该图象是因变量随着自变量的增大而减小.A.小明匀速步行上学时离学校的距离与时间的关系是距离随着时间的增加而减小,符合题意,故本选项正确;B.匀速行驶的汽车的速度与时间的关系的图象是平行于横轴的一条直线,不符合题意,故本选项错误;C.小亮妈妈到超市购买苹果的总费用与苹果质量的关系是总费用随着苹果质量的增加而增加,不符合题意,故本选项错误;D.一个匀速上升的气球的高度与时间的关系是高度随着时间的增加而增加,不符合题意,故本选项错误.6.[解析] C 因为在这个变化过程中,自变量是温度,因变量是声速,所以选项A正确;因为根据表中数据,可得温度越高,声速越快,所以选项B正确;因为342×5=1710(m),所以当空气温度为20 ℃时,声音5 s可以传播1710 m,所以选项C错误;因为324-318=6(m/s),330-324=6(m/s),336-330=6(m/s),342-336=6(m/s),348-342=6(m/s),所以当温度每升高10 ℃,声速增加6 m/s,所以选项D正确.故选C.7.C8.[解析] B 挂重x kg时弹簧伸长1.5x cm,挂重后弹簧的长度y(cm)与挂重x(kg)之间的关系式是y=1.5x+12(0≤x≤10).故选B.9.[解析] D A项,观察图象发现:小刘家距离超市3000米,故正确;B项,小刘去超市共用了10分钟,行程3000米,速度为3000÷10=300(米/分),故正确;C项,小刘在超市停留了40-10=30(分),故正确;D项,小刘去时用了10分钟,回时用了15分钟,所以小刘从超市返回的速度比去时的速度慢,故错误.故选D.10.B11.D12.D13.[答案] 香蕉数量售价[解析] 因为香蕉的售价随着卖出的香蕉数量的变化而变化,所以表中反映了两个变量之间的关系,其中,自变量是香蕉数量,因变量是售价.14.10+5x(x为正整数) 23515.(1)所售豆子数量和总售价总售价总售价所售豆子数量(2)5 (3)616.[答案] ①②④[解析] 横轴表示时间,纵轴表示速度.在第3分钟时,对应的速度是40千米/时,故①对;第12分钟的时候,对应的速度是0千米/时,故②对;从第3分钟到第6分钟,汽车的速度保持不变,是40千米/时,行驶的路程为40×120=2(千米),故③错;在第9分钟和第12分钟,汽车对应的速度分别是60千米/时,0千米/时,所以汽车的速度从60千米/时减小到0千米/时,故④对.综上可得:正确的是①②④.故答案为①②④.17.解:(1)t=20-6h(h≥0).(2)y=30-0.5t(0≤t≤60).18.[解析] 解答本题的关键是要弄清横轴和纵轴上的数据所表示的意义,明白图象上的点所表示的实际意义.解: (1)第一天中,从4时到16时这头骆驼的体温是上升的,它的体温从最低上升到最高需要12小时.(2)第三天12时这头骆驼的体温是39 ℃.19.解:(1)当x=10时,y=-0.1x2+2.6x+43=-0.1×102+2.6×10+43=59.(2)当x=8时,y=-0.1x2+2.6x+43=-0.1×82+2.6×8+43=57.4<59,所以用8分钟提出概念与用10分钟提出概念相比,学生的接受能力减弱了.当x =15时,y =-0.1x 2+2.6x +43=-0.1×152+2.6×15+43=59.5>59.所以用15分钟提出概念与用10分钟提出概念相比,学生的接受能力增强了.20.解:(1)y =0.4x (x ≥0且x 为整数).(2)y =0.15x +200(x ≥0且x 为整数).(3)当x =1200时,甲复印社的收费为480元,乙复印社的收费为380元.480>380,故若学校每月复印页数在1200页左右,应选择乙复印社.21.解:(1)小明到达离家最远的地方用了3小时,此时离家30千米.(2)CD 段的速度为30-153-2=15(千米/时), 15+152=22.5(千米), 即小明出发2.5小时后离家22.5千米.(3)AB 段的速度为15-01=15(千米/时),1215=0.8(时). EF 段的速度为307-4=10(千米/时),4+30-1210=5.8(时). 即小明出发0.8小时或5.8小时离家12千米.22.解: (1)观察图象可以发现当用水5吨时,刚好交水费10元,所以用水不足5吨时,每吨收费105=2(元);而当用水量为8吨时,交水费20.5元,所以超过5吨的部分收费20.5-10=10.5(元),故超过5吨部分每吨收费10.58-5=3.5(元). (2)由(1)可知每月用水3.5吨应交水费3.5×2=7(元);交17元水费,则用水5+17-5×23.5=7(吨).。
北师大版七年级下册数学第三章《变量之间的关系》测试题

2015—2016学年度第二学期中山二中七年级数学单元测试卷第三章变量之间的关系(说明:本试题考试时间90分钟,满分150分)班级:姓名:成绩:一、选择题:(每小题4分,共48分)1、骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中,因变量是()A、沙漠B、体温C、时间D、骆驼2、弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的重量x(kg)间有下下列说法不正确的是()A、x与y都是变量,且x是自变量,y是因变量B、弹簧不挂重物时的长度为0cmC、物体质量每增加1kg,弹簧长度y增加0.5cmD、所挂物体质量为7kg时,弹簧长度为13.5cm3、在关系式y=3x+5中,下列说法:①x是自变量,y是因变量;②x的数值可以任意选择;③y是变量,它的值与x无关;④用关系式表示的不能用图象表示;⑤y与x的关系还可以用列表法和图象法表示,其中说法正确的是()A、①②⑤B、①②④C、①③⑤D、①④⑤4、如果每盒圆珠笔有12支,售价18元,用y(元)表示圆珠笔的售价,x表示圆珠笔的支数,那么y与x之间的关系应该是()A、y=12xB、y=18xC、y=D、y=5、已知△ABC的底边BC上的高为8cm,当它的底边BC从16cm变化到5cm时,△ABC的面积()A、从20cm2变化到64cm2B、从64c m2变化到20cm2C、从128cm2变化到40cm2D、从40cm2变化到128cm26、“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉。
当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点……。
用S1、S2分别表示乌龟和兔子所行的路程,t为时间,则下列图象中与故事情节相吻合的是()7、下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b 与下降高度A 、2b d = B 、2b d = C 、D 、25b d =+8、小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车。
北师版七年级数学下册第三章《变量之间的关系》单元测试题(含答案)

北师版七年级数学下册第三章《变量之间的关系》单元测试题(含答案)一、选择题1.雪橇手从斜坡顶部滑了下来,下图中可以大致刻画出雪橇手下滑过程中速度与时间变化情况的是A.B.C.D.2.对于关系式,下列说法:① 是自变量,是因变量;② 的数值可以任意选择;③ 是变量,它的值与无关;④这个关系式表示的变量之间的关系不能用图象表示;⑤ 与的关系还可以用列表格和图象法表示.其中正确的是A.①②③B.①②④C.①②⑤D.①④⑤3.如图所示的图象(折线)描述了某汽车在行驶过程中速度与时间的关系,下列说法中错误的是A.第时汽车的速度是B.第时汽车的速度是C.从第到第,汽车行驶了D.从第到第,汽车的速度从减少到4.在物理学中,导线的电阻随温度的变化而变化,有一段导线时电阻为欧姆,温度每增加,电阻会增加欧姆,则电阻与温度的关系是A.B.C.D.5.某工程队修筑A村到B村的公路,前期修筑的是平路,后期修筑的是坡路,修筑的公路长度()与时间(天)之间的函数关系如图,则下列结论中错误的是A.平路长B.平路上每天修筑C.坡路长D.坡路上每天修筑6.某校举行趣味运动会,甲、乙两名学生同时从A地到B地,甲先骑自行车到B地后跑步回A地,乙先跑步到B地再骑自行车回到A地(骑自行车的速度快于跑步的速度),最后两人恰好同时回到A地.已知甲骑自行车的速度比乙骑自行车的速度快.若学生离开A地的距离与所用的时间的关系用图象表示(实线表示甲的图象,虚线表示乙的图象),则下面中正确的是A.B.C.D.7.今年五一期间,小丽同学从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店购买一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是A.小丽在便利店时间为B.公园离小丽家的距离为C.小丽从家到达公园共用时间D.便利店离小丽家的距离为8.某市推出电脑上网课包月制,每月收取上网费用(元)与上网时间之间的关系如图,其中是线段,且轴,是射线.小芳三月份在家上网课费用为元,则她家三月份上网时间是A.B.C.D.二、填空题9.如图,在一个半径为的圆面上,从中心挖去一个小圆面,当挖去小圆的半径由小变大时,剩下的一个圆环面积也随之发生变化.()在这个变化过程中,自变量、因变量是;()如挖去的圆半径为,圆环的面积与的关系式是;()当挖去圆的半径由变化到时,圆环面的面积由变化到.10.小强与父亲同时出发,到达同一目的地后都立即返回.小强去时骑自行车,返回时步行;父亲往返都是步行.两人的步行速度不等,每个人的往返路程与时间的关系分别是图中两个图象中的一个.请你根据图象回答下列问题:()一个往返的距离是;()完成一个往返,小强用,父亲用;()小强骑车的速度是,小强步行的速度是父亲步行的速度是.11.小斌从家骑车上学,先经过一段平路到达地后,再上坡到达地,最后下坡到达学校,所行驶路程与时间的关系如图所示,如果返回时,上坡、下坡、平路的速度仍然保持不变,那么小斌从学校回到家需要的时间是.三、解答题12.如图,已知正方形的边长为,有一点在上运动梯形的面积会发生变化.(1) 在这个变化过程中,自变量、因变量各是什么?(2) 如果长为,那么梯形的面积可以表示为什么关系式?(3) 已知,试确定点的位置.13.在某次大型的活动中,用无人机进行航拍,在操控无人机时根据现场状况调节高度,已知无人机在上升和下降过程中速度相同.设无人机的飞行高度与操控无人机的时间之间的关系如图中的实线所示,根据图象回答下列问题:(1) 图中的自变量是,因变量是 ;(2) 无人机在高的上空停留的时间是;(3) 在上升或下降过程中,无人机的速度为;(4) 图中表示的数是;表示的数是;(5) 求第时无人机的飞行高度是多少米?14.绵州大剧院矩形专场音乐会,成人票每张元,学生票每张元.暑假期间,为了丰富广大师生的业余文化生活,影剧院制定了两种优惠方案,方案:购买一张成人票赠送一张学生票;方案:按总价的付款.某校有名老师与若干名(不少于人)学生听音乐会.(1) 设学生人数为(人),付款总金额为(元),分别建立两种优惠方案中与的关系式;(2) 请计算并确定出最节省费用的购票方案.15.小红与小兰从学校出发到距学校的书店买书,下图反应他们两人离开学校的路程与时间的关系.根据图形尝试解决提出的下列问题:(1) 小红与小兰谁先出发?谁先达到?(2) 描述小兰离学校的路程与时间的变化关系;(3) 小兰前的速度和最后的速度是多少?怎样从图象上直观地反映速度的大小?(4) 小红与小兰从学校到书店的平均速度各是多少?16.如图(),已知是三角形边上的高,且,是一个动点,由点向点移动,其速度与时间的变化关系如图()所示,已知.(1) 当点在运动过程中,求三角形的面积与运动时间之间的关系式;(2) 当点停止后,求的面积.17.如图,正方形的边长为,动点从点出发,在正方形的边上由运动,设运动的时间为(),三角形的面积为(),与的图象如图.(1) 求点在上运动的时间范围;(2) 当为何值时,三角形的面积为.答案一、选择题1. A2. C3. C4. A6. B7. A8. B二、填空题9. 小圆半径;圆环面积;;;10. ;;;;;11.【解析】根据图象可知:小明从家骑车上学,上坡的路程是,用,则上坡速度是;下坡路长是,用,则速度是,他从学校回到家需要的时间为.三、解答题12. 【答案】(1) 自变量是的长度,因变量是梯形的面积;(2) ;(3) 根据等式建立方程,,解得即点在距离点处.13. 【答案】(1) 时间(或);飞行高度(或)(2)(3)(4) ;(5) .答:第时无人机的飞行高度是.【解析】(2) 无人机在高的上空停留的时间是.(3) 在上升或下降过程中,无人机的速度.(4) 图中表示的数是;表示的数是.14. 【答案】(1) 按优惠方案①可得,,按优惠方案②可得,.(2) ①当时,,当购买张票时,两种优惠方案付款一样多;②当时,,优惠方案①付款较少;③当时,,优惠方案②付款较少.15. 【答案】(1) 小兰先出发,她们同时到达.(2) 小兰从学校出发,经走了后遇到事情停下来,后继续出发,最后骑车花时间与小红同时到达书店.(3) 小兰前速度为,后速度为.(4) 小红平均速度为,小兰的平均速度为.16. 【答案】(1) 由图()可知,点的速度为,,即.(2) 当点停止后,即点与点重合时的面积,当时,.三角形面积为.17. 【答案】(1) 根据图象得:点在上运动的时间范围为.(2) 点在上时,三角形的面积;点在时,三角形的面积;点在上时,,三角形的面积当时,,三角形的面积为,即时,,;当时,,;当为时,三角形的面积为.。
北师大版初一数学下册第三章《变量之间的关系》单元测试卷 含答案

17.在小明和小强进行百米赛跑,小明比小强跑得快,如果两人同时起跑,小明肯定赢,如图所示,现在小明让小强先跑米,直线表示小明的路程与时间的关系,大约秒时,小明追上了小强,小强在这次赛跑中的速度是。
印刷数量x(张)
…
100
200
300
400
…
收费y(元)
…
15
30
45
60
…
(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)从上表可知:收费y(元)随印刷数量x(张)的增加而 ;
(3)若要印制1 000张宣传单,收费多少元?
22. (8分)某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用-支出费用)y(元)的变化关系如下表所示(每位乘客的公交票价是固定不变的):
B.x与y都是变量,且x是自变量,y是因变量
C.物体质量每增加1 kg,弹簧长度y增加0.5 cm
D.所挂物体质量为7 kg时,弹簧长度为23.5 cm
3.一辆汽车以平均速度60km/h的速度在公路上行驶,则它所走的路程s(km)与所用的时间t(h)之间的关系式为 ()
A.s=60tB.s= C.s= D.s=60t
4. 某地区用电量与应缴电费之间的关系如表:
用电量(千瓦·时)
1
2
3
4
…
应缴电费(元)
0.55
1.10
1.65
2.20
…
则下列叙述错误的是( )
A.若所缴电费为2.75元,则用电量为6千瓦·时
北师大版七年级数学(下) 第3章 变量之间的关系 单元测试卷 含答案

北师大版七年级数学(下)第3章变量之间的关系单元测试卷含答案一.选择题(共12小题)1.下列函数中,表示是同一函数的是()A.y=x与y=B.y=x与y=()2C.y=x与y=D.y=x与y=2.函数y=|x|﹣1中的自变量x的取值范围是()A.x≠±1 B.x≠1C.x≠﹣1 D.x为全体实数3.已知f(x)=10x+1,如:当x=3时,f(3)=3×10+1=31,则当f(x)=21时,x 的值为()A.﹣2 B.3 C.2 D.74.下列图象中,表示y不是x的函数的是()A.B.C.D.5.已知函数,当y=6时,x的值是()A.B.C.D.6.根据如图所示的程序计算函数y的值,若输入x的值是2,则输出y的值是1,若输入x 的值是7,则输出y的值是()A.1 B.﹣1 C.2 D.﹣27.邮购一种图书,每册定价36元,另加书价的4%作为邮费,若购书x册,则付款y(元)与x(册)的函数解析式为()A.y=36x+4%x B.y=36(1+4%)xC.y=36.04x D.y=35.96x8.一个弹簧不挂重物时长8cm,挂上重物后伸长的长度与所挂重物的质量成正比.如果挂上1kg的物体后,弹簧伸长2cm.则弹簧总长y(单位:cm)关于所挂物体质量x(单位:kg)的函数解析式为()A.y=2x B.y=0.5x C.y=2x+8 D.y=0.5x+89.某水果商店规定:如果购买苹果不超过10千克,那么每千克售价3元;如果超过10千克,那么超过的部分每千克降低10%,某单位购买48千克水果,则应付的钱数为()A.129.6元B.132.6元C.141元D.144元10.如图所示,在一个玻璃器中,放有一个正方形铁块,用同样的速度向容器注水,则下列函数的图象,能表示水面的高度h与注水时间t的关系式的是()A.B.C.D.11.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用时间为t(分钟),所走路程为s(米),s与t之间的函数关系如图所示,则下列说法中,错误的是()A.小明中途休息用了20分钟B.小明在上述过程中所走路程为7200米C.小明休息前爬山的速度为每分钟60米D.小明休息前后爬山的平均速度相等12.电话卡上存有4元话费,通话时每分钟话费0.4元,则电话卡上的余额y(元)与通话时间t(分钟)之间的函数图象是图中的()A.B.C.D.二.填空题(共4小题)13.为了加强公民的节水意识,某市制定了如下用水收费标准,每户每月的用水不超过10t 时,水价为每吨2.2元;超过10t时,超过部分按每吨2.8元收费,该市每户居民5月份用水xt(x>10),应交水费y元,则y关于x的关系式.14.如图所示,为一个沙漏在计时过程中所剩沙子质量(克)与时间(小时)之间关系的图象,则从开始计时到沙子漏光所需的时间为小时.15.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.则下列说法中,正确的序号为.①小明中途休息用了20分钟.②小明休息前爬山的平均速度为每分钟70米.③小明在上述过程中所走的路程为6600米.④小明休息前爬山的平均速度大于休息后爬山的平均速度.16.某地出租车行驶里程x(km)与所需费用y(元)的关系如图.若某乘客一次乘坐出租车里程12km,则该乘客需支付车费元.三.解答题(共2小题)17.为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未超过7m3时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过7m3的部分每立方米收费1.5元,并加收0.4元的城市污水处理费,设某户每月用水量为x(m3),应交水费为y(元).(1)写出用水未超过7m3时,y与x之间的函数关系式;(2)写出用水多于7m3时,y与x之间的函数关系式.18.如图,在矩形MNPQ中,MN=6,PN=4,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,(1)当x=3时,y=;当x=12时,y=;当y=6时,x=;(2)分别求当0<x<4、4≤x≤10、10<x<14时,y与x的函数关系式.参考答案与试题解析一.选择题(共12小题)1.【解答】解:A、y=x与y=中,第二个函数x≠0,故不是表示同一函数;B、y=x与y=()2中,第二个函数x≥0,故不是表示同一函数;C、y=x与y==x,故表示同一函数;D、y=x与y=的值域不同,故不是表示同一函数;故选:C.2.【解答】解:函数y=|x|﹣1中的自变量x的取值范围是x为全体实数.故选:D.3.【解答】解:∵f(x)=10x+1,f(x)=21,∴10x+1=21,解得x=2.故选:C.4.【解答】解:A、C、D对于x的每一个确定的值,y都有唯一的值与其对应,符合函数的定义,只有B选项对于x的每一个确定的值,有两个y与之对应,不符合函数的定义.故选:B.5.【解答】解:∵函数y=,∴当x<2时,x2+1=6,得x1=﹣,x2=(不合题意,舍去),当x≥2时,=6,得x=(不合题意,舍去),故当y=6时,x的值是﹣,故选:A.6.【解答】解:若输入x的值是2,则输出y的值是1,∴1=﹣2×2+b,解得b=5,∴当x=7时,y==﹣1,故选:B.7.【解答】解:由题意得;购买一册书需要花费(36+36×4%)元∴购买x册数需花费(36+36×4%)x元即:y=(36+36×4%)x=36(1+4%)x,故选:B.8.【解答】解:∵挂上1kg的物体后,弹簧伸长2cm,∴挂上xkg的物体后,弹簧伸长2xcm,∴弹簧总长y=2x+8.故选:C.9.【解答】解:由题意可知:3×10+(48﹣10)×3×0.9=132.6元,故选:B.10.【解答】解:在未淹住正方形铁块时,水面高度会比较快速的上升,而超过铁块后,速度会减慢.故选:D.11.【解答】解:A、小明中途休息的时间是:60﹣40=20分钟,故本选项正确;B、小明在上述过程中所走路程为4800米,故本选项错误;C、小明休息前爬山的速度为=60(米/分钟),故本选项正确;D、因为小明休息后爬山的速度是=60(米/分钟),所以小明休息前后爬山的平均速度相等,故本选项正确;故选:B.12.【解答】解:由题意可知:当通话时间为0时,余额为4元;当通话时间为10时,余额为0元.∴y=4﹣0.4t(0≤t≤10),故只有选项D符合题意.故选:D.二.填空题(共4小题)13.【解答】解:∵该市每户居民5月份用水xt(x>10),∴应交水费y元关于x的关系式为:y=10×2.2+2.8(x﹣10)=2.8x﹣6.故答案为:y=2.8x﹣6.14.【解答】解:沙漏漏沙的速度为:15﹣6=9(克/小时),∴从开始计时到沙子漏光所需的时间为:15÷9=(小时).故答案为:15.【解答】解:①、根据图象可知,在40~60分钟,路程没有发生变化,所以小明中途休息的时间为:60﹣40=20分钟,故正确;②、根据图象可知,当t=40时,s=2800,所以小明休息前爬山的平均速度为:2800÷40=70(米/分钟),故B正确;③、根据图象可知,小明在上述过程中所走的路程为3800米,故错误;④、小明休息后的爬山的平均速度为:(3800﹣2800)÷(100﹣60)=25(米/分),小明休息前爬山的平均速度为:2800÷40=70(米/分钟),70>25,所以小明休息前爬山的平均速度大于休息后爬山的平均速度,故正确;综上所述,正确的有①②④.故答案为:①②④16.【解答】解:由图象知,y与x的函数关系为一次函数,并且经过点(2,5)、(4,8),设该一次函数的解析式为y=kx+b,则有:,解得:,∴y=x+2.将x=12代入一次函数解析式,得y=18+2=20,故出租车费为20元.故答案为:20.三.解答题(共2小题)17.【解答】解:(1)未超出7立方米时:y=x×(1+0.2)=1.2x;(2)超出7立方米时:y=7×1.2+(x﹣7)×(1.5+0.4)=1.9x﹣4.9.18.【解答】解:(1)如图1,∵点R运动的路程为x,△MNR的面积为y,∴当x=3时,y=MN×RN=×6×3=9,如图2,当x=12时,y=RM×MN=×2×6=6,根据以上计算可以得出当y=6时,x=2或12,故答案为:9,6,2或12;(2)当0≤x<4时,R在PN上运动,y=MN×RN=×6×x=3x;当4≤x≤10时,R在QP上运动,y=MN×PN=×6×4=12;当10<x≤14时,R在QM上运动,y=MN×RM=×6×[4﹣(x﹣10)]=42﹣3x.。
北师大版七年级数学下第3章变量之间关系单元测试卷含答案

第3章变量之间的关系一.选择题〔共10小题〕1.李师傅到单位附近的加油站加油,如图是所用的加油机上的数据显示牌,那么其中的常量是〔〕A.金额B.数量C.单价D.金额和数量2.以下关于变量x、y的关系式中,y不是x的函数是〔〕A.y+x=0B.y=C.y2=16x D.y=|2x+4|3.正方形的边长为4,假设边长增加x,那么面积增加y,那么y关于x的函数表达式为〔〕A.y=x2+16B.y=〔x+4〕2C.y=x2+8x D.y=16﹣4x24.小明从家到学校5公里,那么小明骑车时间t与平均速度v之间的函数关系式是〔〕A.v=5t B.v=t+5C.D.5.如图,以下各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是〔〕A.y=2n+1B.y=2n+1+n C.y=2n+nD.y=2n+n+16.在函数y=中,自变量x的取值范围是〔〕A.x>0B.x≥﹣5C.x≥﹣5且x≠0 D.x≥0且x≠07.假设定义f〔x〕=3x﹣2,如f〔﹣2〕=3×〔﹣2〕﹣2=﹣8,以下说法中:①当f 〔x〕=1时,x=1;②对于正数x,f〔x〕>f〔﹣x〕均成立;③f〔x﹣1〕+f〔1﹣x〕=0;④当a=2时,f〔a﹣x〕=a﹣f〔x〕.其中正确的选项是〔〕A.①②B.①③C.①②④D.①③④8.如图反映的过程是小明从家去食堂吃早餐,接着去图书馆读报,然后回家,其中x表示时间,y表示小明离家的距离,小明家、食堂、图书馆在同一直线上,根据图中提供的信息,以下说法正确的选项是〔〕A.食堂离小明家B.小明在图书馆呆了20minC.小明从图书馆回家的平均速度是.图书馆在小明家和食堂之间9.在矩形ABCD中,E点为AB上的一点,AB=8,AD=6,连接CE,作DF⊥CE于F点,令CE=x,DF=y,以下关于y与x的函数关系图象大致是〔〕A.B.C.D.10.甲、乙两队举行了一年一度的赛龙舟比赛,两队在比赛时的路程y〔米〕与时间/〔分钟〕之间的函数关系图象如下列图,请你根据图象判断,以下说法正确的有〔〕①甲队率先到达终点;②甲队比乙队多走了200米路程;③乙队比甲队少用分钟;④比赛中两队从出发到分钟时间段,乙队的速度比甲队的速度快.A.1个B.2个C.3个D.4个二.填空题〔共5小题〕11.将长为25cm、宽为10cm的长方形白纸,按如下列图的方法粘合起来,粘合局部的宽为2cm,设x张白纸粘合后的总长度为ycm,y与x的函数关系式为.12.函数y=中,自变量x的取值范围是.13.函数y=,那么当函数值x=﹣1时,y=.14.如图,是甲、乙两家商店销售同一种产品的销售价数图象.以下说法:①售2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时买甲家的合算;④买乙家的1件售价约为3元.其中正确的说法是.y〔元〕与销售量x〔件〕之间的函15.某地出租车的收费标准如下:路程在3千米以下收费8元;路程超过3千米的,超过的路程按元/千米收费.例如:行驶10千米那么收费为:8+〔10﹣3〕×小明坐出租车到14千米外的少年宫去,他所付的车费是元.三.解答题〔共5小题〕16.如图表示甲骑电动自行车和乙驾驶汽车沿相同路线行驶45千米,由A地到B地时,行驶的路程y〔千米〕与经过的时间x〔小时〕之间的函数关系.根据这个行驶过程中的图象填空:〔1〕汽车出发小时与电动自行车相遇;〔2〕当时间x时,甲在乙的前面;当时间x〔3〕电动自行车的速度为千米/小时;汽车的速度为电动自行车早小时到达B地.时,甲在乙的后面;千米/小时;汽车比17.一列快车、一列慢车同时从相距300km的两地出发,相向而行.如图,分别表示两车到目的地的距离s〔km〕与行驶时间t〔h〕的关系.〔1〕快车的速度为km/h,慢车的速度为km/h;2〕经过多久两车第一次相遇?3〕当快车到达目的地时,慢车距离目的地多远?(18.司机小王开车从A地出发去B地送信,其行驶路s与行驶时间t之间的关系如下列图,(当汽车行驶假设干小时到达C地时,汽车发生了故障,需停车检修,修理了几小时后,为了按时赶到B地,汽车加快了速度,结果正好按时赶到,根据题意结合图答复以下问题:(1〕上述问题中反映的是哪两个变量之间的关系?指出自变量和因变量.(2〕汽车从A地到C地用了几小时?平均每小时行驶多少千米?3〕汽车停车检修了多长时间?车修好后每小时走多少千米?19.某市电力公司采用分段计费的方法计算电费.每月用电不超过100度时,按每度元计算费用,每月用电超过100度时,超过局部按每度元计算.1〕设每月用电x度时,应交电费y元,写出y与x之间的函数关系式,并写出自变量的取值范围;2〕小王家一月份用了125度电,应交电费多少元?3〕小王家三月份交纳电费45元6角,求小王家三月份用了多少度电?20.某中学为筹备校庆活动,准备印制一批校庆纪念册.该纪念册每册需要10张8K大小的纸,其中4张为彩页,6张为黑白页.印制该纪念册的总费用由制版费和印刷费两局部组成,制版费与印数无关,价格为:彩页300元/张,黑白页50元/张;印刷费与印数的关系见下表.印数a〔单位:千册〕1≤a<55≤a<10彩色〔单位:元/张〕黑白〔单位:元 /张〕〔1〕印制一本纪念册的制版费为元;〔2〕假设印制2千册,那么共需多少费用?参考答案一.选择题〔共10小题〕1.C.2.C.3.C.4.C.5.C.6.C.7.C.8..9.B.10.A.二.填空题〔共5小题〕11.y=23x+2.12.x≥﹣1.13.6.14.①②③.15..三.解答题〔共5小题〕16.解:〔1〕汽车出发小时与电动自行车相遇;〔2〕当时间x<时,甲在乙的前面;当时间x>时,甲在乙的后面;〔3〕V自行车==9km/h,V汽车==45km/h.汽车3时到,电动自行车5时到,汽车比电动自行车早2小时到达B地.故答案为:;<,>;9,45,2.17.解:〔1〕快车的速度为300÷=45km/h,慢车的速度为300÷10=30km/h,故答案为:45,30;〔2〕=4h答:经过4h两车第一次相遇;3〕〔10﹣〕×30=100km,答:当快车到达目的地时,慢车距离目的地多100km.18.解:〔1〕路程与时间之间的关系.自变量是时间,因变量是路程;〔2〕3小时,50千米/小时;〔3〕检修了1小时,修后的速度为75千米/小时.19.解:〔1〕由题意得,当0≤x≤100时,y=;当x>100时,y=100×0.57+〔x﹣100〕×=﹣3;那么y关于x的函数关系式y=;2〕由x=125代入y=﹣3,可得y=72元.答:小王家一月份用了125度电,应交电费72元;〔3〕设小王家三月份用了x度电,由题意得=,解得x=80.答:小王家三月份用了80度电.(20.解:〔1〕4×300+6×50=1500〔元〕;2〕假设印制2千册,那么印刷费为:〔××6〕×2000=26000〔元〕,∴总费用为:26000+1500=27500〔元〕.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章《变量之间的关系》水平测试(满分:120分 时间:90分钟)一、选择题(每题3分,共30分)1.如果没盒圆珠笔有12支,售价18元,用y (元)表示圆珠笔的售价,x 表示圆珠笔的支数,那么y 与x 之间的关系应该是( ) (A )y=12x (B )y=18x (C )y=23x (D )y=32x 2.已知△ABC 的底边BC 上的高为8cm ,当它的底边BC 从16cm 变化到5cm 时,△ABC 的面积( )(A )从20cm 2变化到64cm 2(B )从64c m 2变化到20cm 2(C )从128cm 2变化到40cm 2(D )从40cm 2变化到128cm 23.小王利用计算机设计了一个程序,输入和输出的数据如下表: 输入 (1)2345… 输出…12 25 310 417 526…那么,当输入数据8时,输出的数据是( ) (A )861(B )863(C )865(D )867 4.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉。
当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点……。
用S 1、S 2分别表示乌龟和兔子所行的路程,t 为时间,则下列图象中与故事情节相吻合的是 ( )5.下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b 与下降高度d 的关系, 下面能表示这种关系的式子是( ) d 50 80 100 150 b25405075(A )2b d =(B )2b d =(C )2db =(D )25b d =+ 6.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车。
车修好后,因怕耽误上课,他比修车前加快了骑车速度匀速行驶。
下面是行驶路程s(米)关于时间t(分)的函数图像,那么符合这个同学行驶情况的图像大致是 ( )第7题图7.为了增强抗旱能力,保证今年夏粮丰收,某村新修建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同)一个进水管和一个出水管的进出水速度如图1所示,某天0点到6点(到少打开一个水管),该蓄水池的蓄水量如图2所示,并给出以下三个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水.则一定正确的论断是( ) A 、①③ B 、②③ C 、③ D 、①②8.用一水管向图中容器内持续注水,若单位时间内注入的水量保持不变,则在注满容器的过程中,容器内水面升高的速度( )A 、保持不变B 、越来越慢C 、越来越快D 、快慢交替变化9.甲、乙两同学从A 地出发,骑自行车在同一条路上行驶到B 地,他们离出发地的距离s (千米)和行驶时间t (小时)之间的函数关系的图象如图所示,根据图中提供的信息,有下列说法:( )(1) 他们都行驶了18千米; (2) 甲在途中停留了0.5小时;(3) 乙比甲晚出发了0.5小时;(4) 相遇后,甲的速度小于乙的速度; (5) 甲、乙两人同时到达目的地。
其中,符合图象描述的说法有 A.2个 B.4个 C.3个 D.5个10.是饮水机的图片。
饮水桶中的水由图4的位置下降到图5的位置的过程中,如果水减少的体积是y ,水位下降的高度是x ,那么能够表示y 与x 之间函数关系的图象可能是( )A B C D图 2 水池蓄水量时间6418542111进水量时间进水量时间图1 水池蓄水量时间6418542111进水量时间进水量时间出水量进水量S (千米)18t (小时) 甲 乙 O 第9题图 0.5 1 2 2.5二、填空题(每题3分,共30分) 11.根据图示的程序计算函数值,若输入的x 的值为32,则输出的结果为 12.某城市自来水收费实行阶梯水价,收费标准如下表所示,用户5月份交水费45元, 则所用水为 度.月用水量 不超过12度的部分 超过12度不超过18度的部分超过18度的部分收费标准(元/度)2.002.503.0013.如图,是甲、乙两家商店销售同一种产品的销售价y (元)与销售量x (件)之间的函数图象.下列说法:①售2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时买甲家的合算;④买乙家的1件售价约为3元,其中正确的说法是14.如图,某计算装置有一数据输入口A 和一运算结果的输出口B ,B 2 5 10 17 26 输入x 值2y x =+(-2≤x ≤-1)2y x =(-1<x ≤1)2y x =-+(1<x ≤2)输出y 值xy 4 3211 2 (2,4甲 乙 第13题y y y yO O O O x x x xABC DA B 输入输出(第14题)(1) (2) (3) (4)下表是小明输入的一些数据和这些数据经该装置计算后输出的相应结果:15.下表是某报纸公布的我国“九五”期间国内生产总值(GDP)的统计表,那么这几年间我国国内生产总值平均每年比上一年增长万亿元.年份1996 1997 1998 1999 2000GDP(万亿元) 6.6 7.3 7.9 8.2 8.916.如图,都是由边长为1的正方体叠成的图形.例如第(1)个图形的表面积为6个平方单位,第(2)个图形的表面积为18个平方单位,第(3)个图形的表面积是36个平方单位,。
依此规律。
则第(5)个图形的表面积个平方单位.17.下面是用棋子摆成的“上”字型图案:按照以上规律继续摆下去,通过观察,可以发现:(1)第五个“上”字需用枚棋子;(2)第n个“上”字需用枚棋子.18.已知正方形ABCD的边长是1,E为CD边的中点,P为正方形ABCD边上的一个动点,动点P从A点出发,沿AB C E运动,到达点E.若点P经过的路程为自变量x,△APE的面积为函数y,则当y=13时,x的值等于___________________.19.右图是护士统计一位病人的体温变化图,这位病人中午12时的体温约为20.某种树木的分枝生长规律如图所示,则预计到第6年时,树木的分枝数为.第一个“上”字第二个“上”字第三个“上”字第17题图第19题图年份分枝数第1年 1第2年 1第3年 2第4年 3三、解答题(共60分)21.(本题5分)为了了解某小区居民的用水情况,随机抽查了该小区10户家庭的月用水量,结果如下:月用水量(吨)10 13 14 17 18户数 2 2 3 2 1(1) 计算这家庭的平均月用水量;(2) 如果该小区有500户家庭,根据上面的计算结果,估计该小区居民每月共用水多少吨?22.(本题5分)初三(2)班同学为了探索泥茶壶盛水喝起来凉的原因,对泥茶壶和塑料茶壶盛水散热情况进行对比试验.在同等的情况下,把稍高于室温(25.5℃)的随访如两户中,每个一小时同时测出两壶水温,所得数据如下表:室温25.5℃时两壶水温的变化时间刚装入时 1 2 3 4 5 6 7名称泥茶壶34 27 25 23.5 23.0 22.5 22.5 22.5 塑料壶34 30 27 26.0 25.5 25.5 25.5 25.5 ⑴塑料壶水温变化曲线如图,请在同一坐标系中,画出泥茶壶水温的变化曲线;⑵比较泥茶壶和塑料壶中水温变化情况的不同点.23. (本题10分)某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年这种蔬菜的销售价格进行了预测,预测情况如图,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系.观察图象,你能得到关于这种蔬菜销售情况的哪些信息?答题要求:(1)请提供四条信息;(2)不必求函数的解析式.(注:此题答案不唯一,以上答案仅供参考.若有其它答案,只要是根据图象得出的信息,并且叙述正确都可以)24.(本题10分)某公司有2位股东,20名工人. 从2000年至2002年,公司每年股东的总利润和每年工人的工资总额如下图所示.(Ⅰ)填写下表:(Ⅱ)假设在以后的若干年中,每年工人的工资和股东的利润都按上图中的速度增长,那么到哪一年,股东的平均利润是工人的平均工资的8倍? 25.(本题10分)某生物兴趣小组在四天的实验研究中发现:骆驼的体温会随外部环境温度的变化而变化,而且在这四天中每昼夜的体温变化情况相同.他们将一头骆驼前两昼夜的体温变化情况绘制成下图.请根据图象回答: ⑴第一天中,在什么时间范围内这头骆驼的体温是上升的?它的体温从最低上升到最高需要多少时间? ⑵第三天12时这头骆驼的体温是多少?26.(本题10分)下面的统计图反映了某中国移动用户5月份手机的使用情况,该用户的通话对象分为三类:市内电话,本地中国移动用户,本地中国联通用户. (1)该用户5月份通话的总次数为 次.(2)已知该用户手机的通话均按0.6元/分钟计费,求该用户5月份的话费(通话时间不满1分钟按1分钟计算。
例如,某次实际通话时间为1分23秒,按通话时间2分钟计费,话费为1.2元);(3)当地中国移动公司推出了名为“越打越便宜”的优惠业务,优惠方式为:若与其它中国移动用户通话,第1分钟为0.4元,第2分钟为0.3元。
第3分钟起就降为每分钟0.2年 份 2000年 2001年2002年工人的平均工资(元) 5000 股东的平均利润(元)250002000 2001 年份 2002 5152.512.5 10 7.5 万元 ·· · · · 工人工资总额 股东总利润 · 第25题元,每月另收取基本费10元,其余通话计费方式不变。
如果使用了该业务,则该用户5月份的话费会是多少?27.(本题10分)某中学为筹备校庆活动,准备印制一批校庆纪念册。
该纪念册每册需要10张8K 大小的纸,其中4张为彩页,6张为黑白页。
印制该纪念册的总费用由制版费和印刷费两部分组成,制版费与印数无关,价格为:彩页300元/张,黑白页50元/张;印刷费与印数的关系见下表.印数a (单位:千册) 1≤a <5 5≤a <10 彩色 (单位:元/张) 2.2 2.0 黑白(单位:元/张)0.70.6(1)印制这批纪念册的制版费为 元; (2)若印制2千册,则共需多少费用?联通移动市话121254715914264321通话时间(分钟)通话次数第26题图参考答案一、选择题 DBCDC CCCBC 二、填空题11.12;12.0;13①②③④;1421n +;15.0.575; 16.90;17.22,41n +;18.53;19.38.2;20.8三、解答题21.(1)14吨(2)7000吨 22.解:⑴ (2)略23.(1)2月份每千克销售价是3.5元;(2)7月份每千克销售价是0.5元;(3)1月到7月的销售价逐月下降;(4)7月到12月的销售价逐月上升; (5)2月与7月的销售差价是每千克3元;(6)7月份销售价最低,1月份销售价最高;(7)6月与8月、5月与9月、4月与10月、3月与11月,2月与12月的销售价相同; 24.解:(I)年份2000年 2001年 2002年 工人的平均工资 5000 6250 7500 股东的平均利润250003750050000(II )设经过x 年每位股东年平均利润是每位工人年平均工资的8倍.由图可知:每位工人年平均工资增长1250元,每位股东年平均利润增长12500元 ,所以 (5000+1250x )×8=25000+12500x . 解得 x =6 . 答:到2006年每位股东年平均利润是每位工人年平均工资的8倍. 25.⑴第一天中,从4时到16时这头骆驼的体温是上升的它的体温从最低上升到最高需要12小时 ⑵第三天12时这头骆驼的体温是39℃ 26.解:(1)86(次) (2)通话时间为:(26+14+9)+(15+7+4)×2+(5+2+1)×3+(2+1)×4 =137(分钟) 话费为:137×0.6=82.2(元)(2) 使用新业务后, 中国移动费用:(14+7+2+1)×0.4+(7+2+1)×0.3+(2+1)× 0.2+1×0.2=13.4(元) . 市话费:(26×1+15×2+5×3+2×4)×0.6=47.4(元) 中国联通费用:(9×1+4×2+1×3)×0.6=12(元) 合计话费为:10+13.4+47.4+12=82.8(元) 答:使用了新业务,则该用户5月份的话费会是82.8(元) 27.解:(1)1 500(元) (2)若印制2千册,则印刷费为:(2.2×4+0.7×6)×2 000=26 000 (元)∴总费用为:26 000+1 500=27 500 (元)。