Journal of Mathematical Biology manuscript No. (will
执教全美Top 50大学的中科大毕业生

执教全美Top 50大学的中科大毕业生======麻省理工学院(私立)3人文晓刚,麻省理工学院物理系,Full Professor,物理系82届(772),1981年CUSPEA全国状元/physics/facultyandstaff/faculty/xiaogang_wen.html/~wen/刘洪,麻省理工学院物理系,Assistant Prof,近代物理系93届(894)/physics/facultyandstaff/faculty/hong_liu.html林间,WHOI-MIT Joint Program教授,WHOI Associate Scientist with Tenure,地球与空间科学系(777)/dept/profile.go?id=294/oceanus/viewArticle.do?id=4009======斯坦福大学(私立)5人王善祥,斯坦福大学电子工程系与材料科学系,Full Professor,物理系86届(812)/research/layout.php?sunetid=sxwan骆利群,斯坦福大学神经生物学系,Full Professor,少年班86届(81少)/profiles/Liqun_Luo/范汕洄,斯坦福大学电子工程系,Assistant Prof,00班92届物理(8800)/~shanhui崔屹,斯坦福大学材料科学与工程系,Assistant Prof,化学系98届(9312)/about_faculty/mse_fac_profile2.php?sunetid=yicui崔便晓,斯坦福大学化学系,Assistant Prof,高分子系98届(9314)/dept/chemistry/department/news/archives/2007/04/new_faculty_mem_1.html======加州大学柏克利分校(公立)7+加州大学旧金山分校(公立)2人(注:后者常被认为是前者的医学院)刘奋勇,加州大学柏克利分校公共卫生学院,Full Professor,生物系86届(818)/~microbes/faculty/liu.html周强,加州大学柏克利分校分子与细胞生物学系,Associate Professor,生物系86届(818)/faculty/BMB/zhouq.html肖强,加州大学伯克利分校新闻学院,Lecturer(该院教师都是Lecturer),地球物理86届(817)/program/newmedia/faculty/罗坤忻(女),加州大学柏克利分校分子与细胞生物学系,Associate Professor,生物系86届(828)/faculty/CDB/luok.html郭新(女),加州大学伯克利分校工业工程与运筹学系,Assistant Prof,数学系92届(871)/People/Faculty/xinguo.htm杨培东,加州大学柏克利分校化学系,Associate Professor,应用化学系93届(8812)/faculty/Yang/Peidong-Yang.html陈路(女),加州大学伯克利分校分子与细胞生物学系,Assistant Professor,生物系93届(898),美国麦克阿瑟基金会“天才奖”得主/faculty/NEU/chenl.html汤超,加州大学旧金山分校生物医药系,Full Professor,力学与机械工程系82届(775)/dbps/faculty/pages/tang.html刘立民,加州大学旧金山分校癌症中心,Assistant Professor,生物系86届(818)/people/liu_limin.php======哈佛大学(私立)7人王家槐,哈佛大学医学院,Associate Prof,63届/WhitePagesPublic.asp?task=showperson&id=177271374174279373178273&a=hms&r=96&kw=wang,,,/Collaborators/Wang.html黄旭东,哈佛大学医学院,Assistant Prof,化学87届(823&8212)/staff/xudongHuang.htm/cagn/Faculty/huang.html王瑛(女),哈佛大学医学院,Assistant Prof,应用化学91届(8612)/wang_y.htm/people.php?people_id=767庄小威(女),哈佛大学物理系和化学系,Full Professor,少年班91届物理专业(87 少),女,少年班,美国麦克阿瑟基金会“天才奖”得主,美国Searle学者奖得主。
科技核心期刊科技统计源期刊

BIOCHIMICA ET BIOPHYSICA SINICA生物学基础学科MATHEMATICA SCIENTIA物理学数学MATHEMATICA SINICA ENGLISH SERIES 数学MATHEMATICAE APPLICATAE SINICA 数学MECHANICA SINICA力学METALLURGICA SINICA金属材料OCEANOLOGICA SINICA海洋科学、水文学PHARMACEUTICA SINICA B药学PHARMACOLOGICA SINICA药学IN ATMOSPHERIC SCIENCES大气科学IN POLAR SCIENCE海洋科学、水文学JOURNAL OF ANDROLOGY性医学BIOLOGY & MEDICINE肿瘤学RESEARCH生物学基础学科RESEARCH IN CHINESE UNIVERSITIES 化学COMMUNICATIONS通信技术FOUNDRY机械制造工艺与设备OCEAN ENGINEERING海洋科学、水文学ANNALS OF MATHEMATICS SERIES B 数学CHEMICAL LETTERS化学GEOGRAPHICAL SCIENCE地理学HERBAL MEDICINES中药学JOURNAL OF ACOUSTICS物理学JOURNAL OF AERONAUTICS航空、航天科学技术JOURNAL OF CANCER肿瘤学JOURNAL OF CANCER RESEARCH肿瘤学JOURNAL OF CHEMICAL ENGINEERING化学工程综合JOURNAL OF CHEMICAL PHYSICS化学JOURNAL OF ELECTRONICS电子技术JOURNAL OF OCEANOLOGY AND LIMNOLOGY 海洋科学、水文学JOURNAL OF POLYMER SCIENCE化学JOURNAL OF TRAUMATOLOGY烧伤外科学、整形外科MEDICAL JOURNAL医学综合MEDICAL SCIENCES JOURNAL医学综合OPTICS LETTERS物理学光电子学与激光技术PHYSICS B物理学PHYSICS C物理学PHYSICS LETTERS物理学QUARTERLY JOURNAL OF MATHEMATICS数学IN THEORETICAL PHYSICS物理学JOURNAL OF POWER AND ENERGY SYSTEMS电气工程理论与应用研究工程与技术科学基础学昆虫学、动物学OF BIOLOGY生物学基础学科OF CHEMICAL SCIENCE AND ENGINEERING化学工程综合OF COMPUTER SCIENCE计算机科学技术OF MATERIALS SCIENCE材料科学综合OF MATHEMATICS IN CHINA数学OF MEDICINE医学综合OF OPTOELECTRONICS IN CHINA光电子学与激光技术OF PHYSICS物理学OF STRUCTURAL AND CIVIL ENGINEERING土木工程PROTEOMICS & BIOINFORMATICS生物学基础学科FRONTIERS地球科学综合SCIENCE昆虫学、动物学JOURNAL OF COAL SCIENCE & TECHNOLOGY能源科学综合JOURNAL OF MINING SCIENCE AND TECHNOLOGY 矿山工程技术OF ARID LAND地理学OF BIONIC ENGINEERING机械工程设计OF CHINA ORDNANCE兵器科学与技术OF CHINESE PHARMACEUTICAL SCIENCES药学OF COMPUTER SCIENCE AND TECHNOLOGY计算机科学技术OF EARTH SCIENCE地球科学综合OF ENERGY CHEMISTRY石油天然气工程OF ENVIRONMENTAL SCIENCES环境科学技术及资源科OF FORESTRY RESEARCH林学OF GENETICS AND GENOMICS生物学基础学科OF GEOGRAPHICAL SCIENCES地理学OF HYDRODYNAMICS SERIES B水利工程OF INTEGRATIVE AGRICULTURE农业综合OF INTEGRATIVE MEDICINE中西医结合医学OF INTEGRATIVE PLANT BIOLOGY植物学OF IRON AND STEEL RESEARCH, INTERNATIONAL 金属材料OF MARINE SCIENCE AND APPLICATION水路运输OF MATERIALS SCIENCE & TECHNOLOGY材料科学综合OF MOLECULAR CELL BIOLOGY生物学基础学科OF MOUNTAIN SCIENCE地理学OF OCEAN UNIVERSITY OF CHINA自然科学综合大学学报海洋科学、水文学OF RARE EARTHS材料科学综合OF RESOURCES AND ECOLOGY环境科学技术及资源科OF ROCK MECHANICS AND GEOTECHNICAL ENGINEERING (JRMGE)土木工程OF SEMICONDUCTORS电子技术物理学OF SYSTEMATICS AND EVOLUTION植物学OF TRAFFIC AND TRANSPORTATION ENGINEERING ENGLISH EDITION 交通运输工程OF WUHAN UNIVERSITY OF TECHNOLOGY MATERIALS SCIENCE EDITION工程技术大学学报材料科学综合OF ZHEJIANG UNIVERSITY SCIENCE A自然科学综合大学学报OF ZHEJIANG UNIVERSITY SCIENCE B生物学基础学科自然科学综合大学学报SCIENCE & APPLICATIONS物理学PLANT植物学RESEARCH材料科学综合SCIENCE REVIEW自然科学综合REGENERATION RESEARCH神经病学、精神病学BULLETIN神经病学、精神病学AND TRANSLATIONAL MEDICINE肿瘤学化学工程综合土壤学DIVERSITY植物学& CELL生物学基础学科METALS金属材料IN ASTRONOMY AND ASTROPHYSICS天文学SCIENCE农艺学CROP JOURNAL农艺学OF NANJING UNIVERSITY OF AERONAUTICS & ASTRONAUTICS 航空、航天科学技术工程技术大学学报OF NONFERROUS METALS SOCIETY OF CHINA金属材料SINICA微生物学、病毒学SCIENCE AND ENGINEERING水利工程UNIVERSITY JOURNAL OF NATURAL SCIENCES自然科学综合大学学报108.癌变·畸变·突变肿瘤学109.癌症进展肿瘤学110.安徽大学学报自然科学版自然科学综合大学学报111.安徽工业大学学报自然科学版工程技术大学学报112.安徽农业大学学报农业大学学报113.安徽师范大学学报自然科学版自然科学师范大学学报114.安徽医科大学学报医药大学学报115.安徽医学医学综合116.安徽医药医学综合117.安徽中医药大学学报中医药大学学报118.安全与环境学报安全科学技术119.桉树科技林学120.半导体光电光电子学与激光技术电子技术121.半导体技术电子技术122.蚌埠医学院学报医药大学学报123.包装与食品机械食品科学技术124.保鲜与加工农业工程园艺学125.暴雨灾害安全科学技术大气科学126.爆破兵器科学与技术127.爆破器材兵器科学与技术128.爆炸与冲击兵器科学与技术129.北华大学学报自然科学版自然科学综合大学学报130.北京大学学报医学版医药大学学报131.北京大学学报自然科学版自然科学综合大学学报132.北京工业大学学报工程技术大学学报133.北京航空航天大学学报航空、航天科学技术工程技术大学学报134.北京化工大学学报自然科学版化学工程综合工程技术大学学报135.北京交通大学学报工程技术大学学报136.北京口腔医学口腔医学137.北京理工大学学报工程技术大学学报138.北京林业大学学报农业大学学报林学139.北京农学院学报农业大学学报140.北京生物医学工程生物医学工程学141.北京师范大学学报自然科学版自然科学师范大学学报142.北京石油化工学院学报石油天然气工程工程技术大学学报143.北京医学医学综合144.北京邮电大学学报工程技术大学学报通信技术145.北京中医药中药学中医学146.北京中医药大学学报中医药大学学报147.变压器电气工程148.标记免疫分析与临床核医学、医学影像学149.表面技术精细化学工程150.冰川冻土地理学151.兵工学报兵器科学与技术152.兵工自动化兵器科学与技术153.兵器材料科学与工程兵器科学与技术154.兵器装备工程学报兵器科学与技术155.病毒学报微生物学、病毒学156.波谱学杂志物理学157.渤海大学学报自然科学版自然科学综合大学学报158.材料保护材料科学综合159.材料导报材料科学综合160.材料工程材料科学综合161.材料开发与应用材料科学综合162.材料科学与工程学报材料科学综合163.材料科学与工艺材料科学综合164.材料热处理学报材料科学综合165.材料研究学报材料科学综合166.材料与冶金学报冶金工程技术167.采矿与安全工程学报矿山工程技术168.蚕业科学畜牧、兽医科学169.草地学报草原学170.草业科学草原学171.草业学报草原学172.草原与草坪草原学173.测绘地理信息测绘科学技术174.测绘工程测绘科学技术175.测绘科学测绘科学技术176.测绘科学技术学报测绘科学技术177.测绘通报测绘科学技术178.测绘学报测绘科学技术179.测井技术石油天然气工程180.测控技术航空、航天科学技术181.测试技术学报工程与技术科学基础学182.茶叶科学园艺学183.长安大学学报自然科学版工程技术大学学报公路运输184.长春理工大学学报自然科学版工程技术大学学报185.长春中医药大学学报中医药大学学报186.长江科学院院报水利工程187.长江流域资源与环境环境科学技术及资源科188.长沙理工大学学报自然科学版工程技术大学学报189.肠外与肠内营养普通外科学、胸外科学190.车用发动机191.沉积学报地质学192.成都理工大学学报自然科学版自然科学综合大学学报地球科学综合193.成都医学院学报医药大学学报194.成都中医药大学学报中医药大学学报195.城市规划建筑科学与技术196.城市规划学刊建筑科学与技术197.城市轨道交通研究铁路运输198.城市交通公路运输199.储能科学与技术能源科学综合200.川北医学院学报医药大学学报201.传感技术学报电子技术202.传感器与微系统电子技术203.传染病信息感染性疾病学、传染病204.船舶工程水路运输205.船舶力学力学水路运输206.船海工程水路运输207.创伤外科杂志烧伤外科学、整形外科208.创伤与急危重病医学临床医学综合209.磁共振成像210.催化学报化学211.大地测量与地球动力学测绘科学技术地球物理学212.大地构造与成矿学地质学213.大电机技术电气工程214.大豆科学农艺学215.大连工业大学学报工程技术大学学报216.大连海事大学学报工程技术大学学报水路运输217.大连海洋大学学报水产学农业大学学报218.大连交通大学学报交通运输工程工程技术大学学报219.大连理工大学学报工程技术大学学报220.大连医科大学学报医药大学学报221.大气科学大气科学222.大气科学学报大气科学223.单片机与嵌入式系统应用计算机科学技术224.弹道学报兵器科学与技术225.弹性体高聚物工程226.淡水渔业水产学227.当代化工化学工程综合228.导弹与航天运载技术航空、航天科学技术229.导航与控制航空、航天科学技术230.低温工程机械制造工艺与设备231.低温物理学报物理学232.地层学杂志地质学233.地理科学地理学234.地理科学进展地理学235.地理空间信息地理学测绘科学技术236.地理信息世界地理学237.地理学报地理学238.地理研究地理学239.地理与地理信息科学地理学240.地球化学地球科学综合241.地球环境学报地球科学综合242.地球科学地球科学综合243.地球科学进展地球科学综合244.地球科学与环境学报地球科学综合245.地球物理学报地球物理学246.地球物理学进展地球物理学247.地球信息科学学报测绘科学技术248.地球学报地球科学综合249.地球与环境地球科学综合250.地下空间与工程学报土木工程251.地学前缘地球科学综合252.地域研究与开发地理学253.地震地球物理学254.地震地质地球物理学255.地震工程学报地球物理学256.地震工程与工程振动地球物理学257.地震学报地球物理学258.地震研究地球物理学259.地质科技情报地质学260.地质科学地质学261.地质力学学报力学地质学262.地质论评地质学263.地质通报地质学264.地质学报地质学265.地质与勘探地质学266.地质与资源267.地质找矿论丛地质学268.第二军医大学学报医药大学学报269.第三军医大学学报医药大学学报270.第四纪研究地质学271.电波科学学报通信技术272.电池电气工程273.电镀与环保环境科学技术及资源科274.电镀与精饰化学工程综合275.电镀与涂饰精细化学工程276.电工电能新技术电气工程277.电工技术学报电气工程278.电光与控制航空、航天科学技术279.电焊机机械制造工艺与设备280.电化学化学281.电机与控制学报电气工程282.电机与控制应用电气工程283.电加工与模具机械制造工艺与设备284.电力电子技术电气工程285.电力建设286.电力科学与技术学报电气工程287.电力系统保护与控制电气工程288.电力系统及其自动化学报电气工程289.电力系统自动化电气工程290.电力需求侧管理电气工程291.电力自动化设备电气工程292.电气传动电气工程293.电气自动化电气工程294.电网技术电气工程295.电网与清洁能源电气工程296.电信科学通信技术297.电讯技术通信技术298.电源技术电气工程299.电子测量技术电子技术300.电子测量与仪器学报电子技术301.电子技术应用电子技术302.电子科技大学学报电子技术工程技术大学学报303.电子器件电子技术304.电子设计工程305.电子显微学报电子技术306.电子学报电子技术307.电子与信息学报电子技术308.电子元件与材料电子技术309.东北大学学报自然科学版工程技术大学学报310.东北林业大学学报林学农业大学学报311.东北农业大学学报农业大学学报312.东北师大学报自然科学版自然科学师范大学学报313.东北石油大学学报石油天然气工程工程技术大学学报314.东华大学学报自然科学版工程技术大学学报315.东南大学学报医学版医药大学学报316.东南大学学报自然科学版工程技术大学学报317.东南国防医药医学综合318.动力工程学报动力工程319.动力学与控制学报力学320.动物分类学报昆虫学、动物学321.动物学研究昆虫学、动物学322.动物学杂志昆虫学、动物学323.动物医学进展畜牧、兽医科学324.动物营养学报畜牧、兽医科学325.都市快轨交通铁路运输326.毒理学杂志预防医学与公共卫生学327.断块油气田石油天然气工程328.锻压技术机械制造工艺与设备329.儿科药学杂志儿科学药学330.发光学报物理学331.法医学杂志军事医学与特种医学332.纺织高校基础科学学报纺织科学技术333.纺织学报纺织科学技术334.放射学实践核医学、医学影像学335.飞航导弹兵器科学与技术336.飞行力学航空、航天科学技术337.非金属矿矿山工程技术338.分析测试学报化学仪器仪表技术339.分析化学化学340.分析科学学报化学341.分析试验室冶金工程技术化学342.分析仪器仪器仪表技术343.分子催化化学344.分子科学学报化学345.分子诊断与治疗杂志临床诊断学346.分子植物育种农艺学347.粉煤灰综合利用建筑科学与技术348.粉末冶金工业冶金工程技术349.粉末冶金技术冶金工程技术350.福建农林大学学报自然科学版农业大学学报351.福建农业学报农业综合352.福建师范大学学报自然科学版自然科学师范大学学报353.福建医科大学学报医药大学学报354.福州大学学报自然科学版自然科学综合大学学报355.辐射防护核科学技术356.辐射研究与辐射工艺学报核科学技术357.腐蚀科学与防护技术材料科学综合358.腐蚀与防护材料科学综合359.复旦学报医学版医药大学学报360.复旦学报自然科学版自然科学综合大学学报361.复合材料学报材料科学综合362.复杂系统与复杂性科学信息科学与系统科学363.腹部外科普通外科学、胸外科学364.腹腔镜外科杂志普通外科学、胸外科学365.干旱地区农业研究农业综合366.干旱气象大气科学地理学367.干旱区地理地理学368.干旱区研究地理学369.甘肃科学学报自然科学综合370.甘蔗糖业农艺学371.肝胆外科杂志普通外科学、胸外科学372.肝胆胰外科杂志普通外科学、胸外科学373.肝脏消化病学374.钢铁金属材料375.钢铁钒钛金属材料376.钢铁研究金属材料377.钢铁研究学报金属材料378.高等学校化学学报化学379.高等学校计算数学学报数学380.高电压技术电气工程381.高分子材料科学与工程材料科学综合382.高分子通报化学383.高分子学报化学384.高技术通讯自然科学综合385.高科技纤维与应用高聚物工程386.高校地质学报地质学387.高校化学工程学报化学工程综合388.高校应用数学学报数学389.高压电器电气工程390.高压物理学报物理学391.高原气象大气科学392.给水排水建筑科学与技术393.工程爆破工程与技术科学基础学394.工程地质学报地质学395.工程管理学报管理学建筑科学与技术396.工程勘察土木工程397.工程抗震与加固改造建筑科学与技术398.工程科学学报工程与技术科学基础学399.工程力学工程与技术科学基础学力学400.工程热物理学报动力工程物理学401.工程设计学报机械工程设计402.工程数学学报工程与技术科学基础学数学403.工程塑料应用高聚物工程404.工程研究-跨学科视野中的工程管理学405.工具技术工程与技术科学基础学406.工矿自动化矿山工程技术407.工业催化化学工程综合408.工业工程工程与技术科学基础学409.工业工程与管理管理学410.工业加热动力工程411.工业建筑建筑科学与技术412.工业炉动力工程413.工业水处理环境科学技术及资源科414.工业卫生与职业病流行病学、环境医学415.工业仪表与自动化装置仪器仪表技术416.工业用水与废水环境科学技术及资源科417.公共卫生与预防医学预防医学与公共卫生学418.公路公路运输419.功能材料材料科学综合420.功能高分子学报化学421.古地理学报地质学422.古脊椎动物学报地质学423.古生物学报地质学424.骨科骨外科学425.固体电子学研究与进展电子技术426.固体火箭技术航空、航天科学技术427.固体力学学报力学428.管理工程学报管理学429.管理科学管理学430.管理科学学报管理学431.管理评论管理学432.管理世界管理学433.管理现代化管理学434.管理学报管理学435.灌溉排水学报农业工程436.光电工程光电子学与激光技术437.光电子技术光电子学与激光技术438.光谱学与光谱分析化学物理学439.光散射学报物理学440.光学技术物理学光电子学与激光技术441.光学精密工程仪器仪表技术442.光学学报物理学443.光学与光电技术物理学光电子学与激光技术444.光子学报物理学445.广东电力电气工程446.广东海洋大学学报农业大学学报水产学447.广东农业科学农业综合448.广东药学院学报药学医药大学学报449.广西大学学报自然科学版自然科学综合大学学报450.广西科学自然科学综合451.广西林业科学林学452.广西师范大学学报自然科学版自然科学师范大学学报453.广西医科大学学报医药大学学报454.广西医学医学综合455.广西植物植物学456.广州中医药大学学报中医药大学学报457.规划师建筑科学与技术458.硅酸盐通报化学工程综合459.硅酸盐学报化学工程综合460.贵金属金属材料461.贵州大学学报自然科学版自然科学综合大学学报462.贵州农业科学农业综合463.贵州师范大学学报自然科学版自然科学师范大学学报464.贵州医科大学学报医药大学学报465.贵州医药医学综合466.桂林理工大学学报工程技术大学学报467.国防科技大学学报工程技术大学学报468.国际病毒学杂志微生物学、病毒学469.国际城市规划建筑科学与技术470.国际儿科学杂志儿科学471.国际耳鼻咽喉头颈外科杂志耳鼻咽喉科学472.国际放射医学核医学杂志核医学、医学影像学473.国际妇产科学杂志妇产科学474.国际骨科学杂志骨外科学475.国际呼吸杂志呼吸病学、结核病学476.国际检验医学杂志临床诊断学477.国际口腔医学杂志口腔医学478.国际老年医学杂志保健医学479.国际流行病学传染病学杂志感染性疾病学、传染病流行病学、环境医学480.国际麻醉学与复苏杂志外科学综合481.国际泌尿系统杂志泌尿外科学482.国际免疫学杂志基础医学483.国际内分泌代谢杂志内分泌病学与代谢病学484.国际脑血管病杂志神经病学、精神病学485.国际皮肤性病学杂志皮肤病学486.国际神经病学神经外科学杂志神经病学、精神病学487.国际生物医学工程杂志生物医学工程学488.国际生殖健康/计划生育杂志优生学、计划生育学489.国际输血及血液学杂志临床医学综合血液病学、肾脏病学490.国际外科学杂志外科学综合491.国际消化病杂志消化病学492.国际心血管病杂志心血管病学493.国际眼科杂志眼科学494.国际药学研究杂志药学495.国际医学放射学杂志核医学、医学影像学496.国际遗传学杂志基础医学497.国际中医中药杂志中医学中药学498.国际肿瘤学杂志肿瘤学499.国土资源科技管理地理学500.国土资源遥感测绘科学技术501.国外电子测量技术电子技术502.果树学报园艺学503.过程工程学报化学工程综合504.哈尔滨工程大学学报工程技术大学学报505.哈尔滨工业大学学报工程技术大学学报506.哈尔滨理工大学学报工程技术大学学报507.哈尔滨医科大学学报医药大学学报508.海军工程大学学报工程技术大学学报509.海军航空工程学院学报工程技术大学学报航空、航天科学技术510.海军医学杂志医学综合511.海南大学学报自然科学版自然科学综合大学学报512.海南医学院学报医药大学学报513.海相油气地质石油天然气工程514.海洋测绘测绘科学技术海洋科学、水文学515.海洋地质前沿海洋科学、水文学516.海洋地质与第四纪地质海洋科学、水文学地质学517.海洋工程海洋科学、水文学518.海洋湖沼通报海洋科学、水文学519.海洋环境科学海洋科学、水文学环境科学技术及资源科520.海洋技术学报海洋科学、水文学521.海洋科学海洋科学、水文学522.海洋科学进展海洋科学、水文学523.海洋通报海洋科学、水文学524.海洋学报海洋科学、水文学525.海洋学研究海洋科学、水文学526.海洋渔业水产学527.海洋与湖沼海洋科学、水文学528.海洋预报海洋科学、水文学529.含能材料兵器科学与技术530.焊接机械制造工艺与设备531.焊接技术机械制造工艺与设备532.焊接学报机械制造工艺与设备533.杭州师范大学学报自然科学版自然科学师范大学学报534.航空兵器航空、航天科学技术兵器科学与技术535.航空材料学报航空、航天科学技术536.航空动力学报航空、航天科学技术537.航空发动机航空、航天科学技术538.航空计算技术航空、航天科学技术539.航空精密制造技术航空、航天科学技术540.航空学报航空、航天科学技术541.航空制造技术航空、航天科学技术542.航天返回与遥感航空、航天科学技术543.航天控制航空、航天科学技术544.航天器工程航空、航天科学技术545.航天器环境工程航空、航天科学技术546.航天医学与医学工程军事医学与特种医学547.合成材料老化与应用材料科学综合548.合成化学化学549.合成树脂及塑料高聚物工程550.合成纤维纺织科学技术551.合成纤维工业纺织科学技术552.合成橡胶工业高聚物工程553.合肥工业大学学报自然科学版工程技术大学学报554.河北大学学报自然科学版自然科学综合大学学报555.河北工程大学学报自然科学版建筑科学与技术工程技术大学学报556.河北工业大学学报工程技术大学学报557.河北工业科技工程与技术科学基础学558.河北科技大学学报自然科学综合大学学报559.河北农业大学学报农业大学学报560.河北师范大学学报自然科学版自然科学师范大学学报561.河北医科大学学报医药大学学报562.河北医学医学综合563.河北医药医学综合564.河北中医中医学565.河北中医药学报中药学中医学566.河海大学学报自然科学版水利工程工程技术大学学报567.河南大学学报自然科学版自然科学综合大学学报568.河南工业大学学报自然科学版食品科学技术工程技术大学学报569.河南科技大学学报自然科学版自然科学综合大学学报570.河南科学自然科学综合571.河南理工大学学报自然科学版工程技术大学学报572.河南农业大学学报农业大学学报573.河南农业科学农业综合574.河南师范大学学报自然科学版自然科学师范大学学报575.核动力工程核科学技术576.核化学与放射化学化学577.核技术核科学技术578.核聚变与等离子体物理物理学579.核科学与工程核科学技术580.核农学报农业综合581.黑龙江大学自然科学学报自然科学综合大学学报582.黑龙江科技大学学报工程技术大学学报583.红外技术光电子学与激光技术584.红外与毫米波学报物理学585.红外与激光工程光电子学与激光技术586.湖北大学学报自然科学版自然科学综合大学学报587.湖北农业科学农业综合588.湖北中医药大学学报中医药大学学报589.湖泊科学海洋科学、水文学590.湖南大学学报自然科学版工程技术大学学报591.湖南科技大学学报自然科学版工程技术大学学报592.湖南农业大学学报自然科学版农业大学学报593.湖南师范大学学报医学版医药大学学报594.湖南师范大学自然科学学报自然科学师范大学学报595.湖南中医药大学学报中医药大学学报596.护理学报护理学597.护理学杂志护理学598.护理研究护理学599.花生学报农艺学600.华北地震科学地球物理学601.华北电力大学学报工程技术大学学报电气工程602.华北农学报农业综合603.华东交通大学学报交通运输工程工程技术大学学报604.华东理工大学学报自然科学版工程技术大学学报605.华东师范大学学报自然科学版自然科学师范大学学报606.华南地震地球物理学607.华南国防医学杂志医学综合608.华南理工大学学报自然科学版。
mathematical biosciences 影响因子

mathematical biosciences 影响因子摘要:1.介绍数学生物科学及其影响因子2.数学生物科学的重要性3.数学生物科学的影响因子4.我国在数学生物科学领域的发展正文:数学生物科学(Mathematical Biosciences)是一门跨学科研究领域,结合生物学、数学和计算机科学,旨在研究生命现象中的数学规律。
在这个领域中,影响因子(Impact Factor, IF)是一个衡量学术期刊影响力的重要指标,其数值越高,说明该期刊在学术界的地位越高,影响力越大。
数学生物科学在近年来得到了广泛的关注,因为它在解决生物学问题、疾病治疗以及药物研发等方面具有重要意义。
通过数学建模和计算方法,研究者可以更好地理解生物现象,从而为生物学研究提供理论支持。
同时,数学生物科学在基因组学、蛋白质结构预测等领域也取得了显著成果,为人类健康事业做出了贡献。
在数学生物科学领域,影响因子较高的期刊有《数学生物科学》(Mathematical Biosciences)、《生物信息学与计算生物学》(Bioinformatics and Computational Biology)等。
这些期刊发表的文章代表了领域内的前沿研究,对学术界具有很高的指导价值。
我国在数学生物科学领域也取得了显著的发展。
政府高度重视该领域的研究,并为之提供了大量的资金支持。
我国的科研团队在数学生物科学领域的研究成果也逐渐崭露头角,发表在国际顶级期刊上的文章数量逐年增加。
同时,我国还建立了一批数学生物科学相关的研究机构和实验室,为该领域的研究提供了良好的平台。
总之,数学生物科学是一门具有广泛前景的跨学科领域,其影响因子在学术界具有重要意义。
【转载】揭开美国顶尖生物医学实验室成功的法宝

【转载】揭开美国顶尖生物医学实验室成功的法宝来源:向骏的日志2005年3月我有幸加盟了哈佛医学院布里根妇女医院(Brigham and Women’s Hospital)Stephen Elledge 实验室,在Elledge 教授直接领导下工作了整整六个年头。
Stephen Elle dge (后文皆称Steve)是美国生物医学界天才级科学家,他博士毕业于麻省理工学院(M IT)生物学系,在斯坦福大学生物化学系做的博士后。
1989年成为著名的贝勒医学院(Ba ylor Medical College )生物化学系的助理教授。
短短几年后便于1993年当选为霍华德休斯医学研究所的研究员(HHMI Investigator)。
2003 年他当选为美国科学院院士。
2003年初,他被美国哈佛医学院布里根妇女医院特聘为遗传学冠名终身教授。
他在多个研究领域,如细胞周期调控、DNA 损伤应答机制、肿瘤细胞生物学、泛素连接酶的组成与调控、新型生物技术的开发与利用以及病毒的感染机制方面均有杰出贡献。
他发现肿瘤抑癌基因TP53的直接下游靶点为P21,他发现DNA 损伤后ATM、ATR蛋白激酶激活下游CHK1、CHK2等信号传导通路,他发现抑癌基因REST、PTPN12等,揭示泛素连接酶F-box 家族,优化了酵母双杂交系统(Yeast two hybrid system)、Magic DNA 载体高通量转换系统、全蛋白组水平分析蛋白稳定性的GPS 系统及与Gregory Hannon 首创小发卡核苷酸干扰文库(s hRNA library)。
50岁出头的他,光在Cell 、Nature 、Science 杂志上就已经发表了二十几篇文章,其数量与质量就是在哈佛医学院这样大师云集的地方也名列前茅。
Steve 的科研思维与科研能力当属超一流,他堪称科学家中的科学家。
在Steve 手下先后工作的中国同胞为数不少,其中很多人颇有成就,但能够回归祖国并将Steve 实验室成功经验总结出来的人不多。
鼠尾胶原对过氧化氢所致体外心肌细胞氧化损伤的影响

Journal of Mathematical Medicine Vol.28No.12015收稿日期:2014-08-13通讯作者:李晓梅△基金项目:国家自然科学基金(81060021)自由基是人体新陈代谢的中间产物,通过氧化其他分子从而破坏细胞结构,影响机体的生理功能。
胶原蛋白现已证实具有抗氧化活性,适当摄入可以降低体内自由基的水平,帮助机体抵抗疾病[1]。
鼠尾胶原的主要成分是I 型胶原蛋白,自提取以来主要用于促进细胞贴壁和组织工程中支架结构的构建。
近年来随着对鼠尾胶原的研究发现,鼠尾胶对细胞的生长分化、组织的愈合以及促进凝血等发挥重要的作用[2,3]。
虽然目前关于胶原蛋白的抗氧化作用已有报道,但主要是关于食物和美容方面,而在细胞水平的研究甚少,在此我们探索鼠尾胶原在体外培养心肌细胞氧化应激损伤中是否能发挥保护作用。
本实验通过用不同浓度的H 2O 2刺激体外培养的乳鼠心肌细胞来建立氧化损伤模型,利用鼠尾胶原预处理培养皿,通过检测心肌细胞存活率、凋亡率以及Bax 、Bcl-2的表达来验证鼠尾胶原对体外心肌细胞的氧化损伤具有保护作用。
1材料与方法1.1实验动物:新生1~3天SD 大鼠乳鼠,雌雄不限,由新疆医科大学实验动物中心提供。
实验方案获得新疆医科大学实验动物伦理委员会批准。
1.2主要仪器与试剂:多功能酶标仪(Thermo ),倒置荧光显微镜(LEICA ),蛋白电泳系统(Invitrogen )。
胰蛋白酶、II 型胶原酶、溴脱氧尿甘、青-链霉素、3%H 2O 2均由美国Sigma 公司提供,DMEM 培养基、胎牛血清均为美国Gibco 公司产品。
Annexin-V试剂盒(Roche ),Bax 、Bcl-2单克隆抗体(Abcam )。
1.3鼠尾胶原的制备和铺板:取大鼠尾巴洗净,75%酒精浸泡5min 后将尾巴剪开、去掉皮毛,并剪成小段,抽出银色的尾键。
将尾腱剪断置于平皿中,用生理盐水浸泡后吸去生理盐水,将尾腱称重。
mathematical biosciences影响因子 -回复

mathematical biosciences影响因子-回复影响因子是一个衡量学术期刊的影响力的指标,被广泛应用于各个学科领域。
数学生物科学是一门关于生物学现象和过程建模、分析和解释的跨学科领域。
数学生物科学领域的学者们会发表大量的研究成果在各种学术期刊上,并希望能够发表在影响因子较高的期刊上以提高自己研究的曝光度和影响力。
本文将逐步回答关于数学生物科学期刊《mathematical biosciences》的影响因子及其重要性的问题。
第一步:认识《mathematical biosciences》期刊《mathematical biosciences》是国际著名的数学生物科学领域学术期刊,由Elsevier出版。
该期刊创刊于1967年,以发表关于数学和计算方法在生物学中应用的研究成果为主。
期刊的内容广泛涵盖了从生物化学到遗传学、生态学等各个生物学领域。
第二步:了解影响因子(Impact Factor)的概念影响因子是一个衡量学术期刊影响力的指标,它代表了该期刊的发文数量和被引用次数之间的关系。
影响因子的计算基于过去两年内该期刊发表的论文数和这些论文被引用的次数。
影响因子越高,说明该期刊发表的论文受到其他学者的关注并被引用的可能性越大,影响力也就越大。
第三步:如何计算《mathematical biosciences》的影响因子《mathematical biosciences》的影响因子是根据每年该期刊的引用数据和发表的论文数量来计算的。
具体计算方法为,将过去两年该期刊发表的所有论文被引用的总次数除以过去两年该期刊发表的论文数量,即得到该期刊的影响因子。
影响因子一般每年的6月份会公布,它代表了过去两年的发文和引用情况。
第四步:《mathematical biosciences》的影响因子的重要性影响因子是衡量一个学术期刊影响力的重要指标,对于数学生物科学领域的学者们来说,发表在影响因子较高的期刊上可以增加他们的研究成果被引用的机会。
2018年中科院数学SCI期刊分区

SIAM JOURNAL ON CONTROL AND OPTIMIZATION SIAM JOURNAL ON CONTROL AND OPTIMIZATION JOURNAL OF DIFFERENTIAL GEOMETRY Scandinavian Actuarial Journal Scandinavian Actuarial Journal Annals of Applied Statistics APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION NUMERICAL ALGORITHMS SIAM JOURNAL ON MATHEMATICAL ANALYSIS INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY MATHEMATICS AND COMPUTERS IN SIMULATION MATHEMATICS AND COMPUTERS IN SIMULATION MATHEMATICS AND COMPUTERS IN SIMULATION Communications in Mathematical Sciences ADVANCES IN COMPUTATIONAL MATHEMATICS BIT NUMERICAL MATHEMATICS BIT NUMERICAL MATHEMATICS COMPUTATIONAL OPTIMIZATION AND APPLICATIONS COMPUTATIONAL OPTIMIZATION AND APPLICATIONS JOURNAL OF GLOBAL OPTIMIZATION JOURNAL OF GLOBAL OPTIMIZATION COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS ADVANCES IN MATHEMATICS Extremes Extremes JOURNAL OF ALGEBRAIC GEOMETRY BERNOULLI Bulletin of Mathematical Sciences JOURNAL OF FUNCTIONAL ANALYSIS Selecta Mathematica-New Series Selecta Mathematica-New Series ZAMM-Zeitschrift fur Angewandte Mathematik und Mechanik ZAMM-Zeitschrift fur Angewandte Mathematik und Mechanik NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS INSURANCE MATHEMATICS & ECONOMICS INSURANCE MATHEMATICS & ECONOMICS APPLIED NUMERICAL MATHEMATICS JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS MATHEMATISCHE ANNALEN ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS Kinetic and Related Models Kinetic and Related Models JOURNAL OF CLASSIFICATION COMPUTATIONAL STATISTICS & DATA ANALYSIS COMPUTATIONAL STATISTICS & DATA ANALYSIS APPLIED MATHEMATICS AND OPTIMIZATION Journal of Dynamics and Differential En Applied Mathematics and Computational Science Communications in Applied Mathematics and Computational Science ANNALS OF PROBABILITY JOURNAL OF BUSINESS & ECONOMIC STATISTICS JOURNAL OF NONLINEAR SCIENCE JOURNAL OF NONLINEAR SCIENCE JOURNAL OF NONLINEAR SCIENCE PSYCHOMETRIKA INTERNATIONAL STATISTICAL REVIEW SIAM JOURNAL ON NUMERICAL ANALYSIS SIAM JOURNAL ON SCIENTIFIC COMPUTING NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS PROBABILITY THEORY AND RELATED FIELDS JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY INVERSE PROBLEMS INVERSE PROBLEMS NONLINEARITY NONLINEARITY STATISTICS AND COMPUTING STATISTICS AND COMPUTING ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE IMA JOURNAL OF NUMERICAL ANALYSIS STUDIES IN APPLIED MATHEMATICS JOURNAL OF SCIENTIFIC COMPUTING GEOMETRIC AND FUNCTIONAL ANALYSIS JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS Analysis and Applications Analysis and Applications ANNALS OF APPLIED PROBABILITY JOURNAL OF DIFFERENTIAL EQUATIONS MATHEMATICS OF COMPUTATION JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS Analysis & PDE Analysis & PDE CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK SIAM JOURNAL ON APPLIED MATHEMATICS JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS Advances in Calculus of Variations Advances in Calculus of Variations BIOMETRIKA BIOMETRIKA BIOMETRIKA Advances in Data Analysis and Classification JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS Journal of the Institute of Mathematics of Jussieu CALCOLO CALCOLO
南京大学新的SCI论文奖励政策(试行)---精品管理资料

南京大学新的SCI论文奖励政策(试行)
说明:为提高我校SCI论文质量和师生的科研创新能力,根据校长联
席会议精神,在各院系推荐的基础上,对原有的SCI论文奖励政策进行
了调整,现予公布执行,执行日期自2006年1月1日始。
1、SCI期刊分层方案和奖励标准
注:SCI论文只有article与letter奖励配套经费;其他皆作扩大版对待,每篇只奖励700元现金。
2、超一流期刊目录
超一流期刊
3、一级学科顶级期刊综合版目录
a.NATURE子系列(约26种)
b.影响因子大于20的期刊(根据06年影响因子,去除SCIENCE、NA TURE、NATURE系
列,则为16种)
c。
P NATL ACAD SCI USA(Proceedings of the National Academy of Sciences of the United States of America,06年IF=9.643)
4、一级学科顶级期刊目录
5、二级学科一流期刊目录
数学
物理学
化学
天文学
(2)天体测量与天体力学
地理学
大气科学
地质学
地球物理学
地质资源与地质工程
水科学
材料科学与工程
电子科学与技术
计算机科学与技术
环境科学与工程
生命科学
医学
6、学术榜论文奖及配套经费发放登记表
院系名称: 时间:年月日
总计:现金:元科研经费:元院系领导签字:院系盖章:
领款人签字:科技处领导签字:科技处盖章:
经办人:
注:上报时需附论文首页复印件。
本表请复印使用二OO 年月
40。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Journal of Mathematical Biology manuscript No.(will be inserted by the editor)James W.Anderson,Keith R.Fox and Graham A.NibloA fast algorithm for the construction of universal footprinting templates in DNA Received:date/Revised version:date–c Springer-Verlag2005Abstract.We introduce and give a complete description of a new graph to be used for DNA sequencing questions.This graph has the advantage over the classi-cal de Bruijn graph that it fully accounts for the double stranded nature of DNA, rather than dealing with single strands.Technically,our graph may be thought of as the quotient of the de Bruijn graph under the natural involution of sending a DNA strand to its complementary strand.However,this involution hasfixed points,and this complicates the structure of the quotient graph which we have therefore modified herein.As an application and motivating example,we give an efficient algorithm for constructing universal footprinting templates for n-mers.This problem may be formulated as the task offinding a shortest possible segment of DNA which con-tains every possible sequence of base pairs of somefixed length n.Previous work by Kwan et al has attacked this problem from a numerical point of view and generated minimal length universal footprinting templates for n=2,3,5,7,to-gether with unsubstantiated candidates for the case n=4.We show that their candidates for n=4are indeed minimal length universal footprinting templates.1.Introduction and statements of resultsMany compounds,ranging from small molecules to proteins,bind to double stranded DNA in a sequence specific fashion,recognizing unique combina-tions of DNA base pairs,which they access from either the major or minor groove.Several techniques are widely used for studying the strength and specificity of these interactions,including bandshift assays(EMSA)and footprinting[2],[3],[4].However these methods generally use DNA sub-strates of200base pairs or shorter and therefore require that the preferred binding sites are already known,so as to ensure that they are present within First and Third Authors:School of Mathematics,University of Southampton, Southampton SO171BJ,ENGLANDSecond Author:School of Biological Sciences,University of Southampton, Southampton SO167PX,ENGLANDSend offprint requests to:James W.AndersonKey words:DNA sequencing–universal footprinting template–de Bruijn graph –Eulerian graphs2James W.Anderson,Keith R.Fox and Graham A.Niblo the fragments.This is not a problem for agents that only recognise one or two base pairs but,as the selectivity of a compound increases,the chance of finding the best target sites in a given DNA fragment becomes more remote.For a target site of n base pairs there are124n combinations if n is odd and1 2(4n+4n/2)combinations if n is even.As a result,there are10differentdinucleotides,32trinucleotides,136tetranucleotides,512pentanucleotides and2080hexanucleotides.Even if the preferred binding site for a ligand is present within a given fragment,a proper analysis of its specificity should examine the binding to related sequences,which differ by one or two bases, and these may not be present.The problem is such that many potential drug or protein binding sites may therefore be overlooked or ignored.We are therefore interested in designing DNA fragments that contain as many different nucleotide sequences of length n as possible,and ideally wish to have an effective algorithm to determine shortest possible fragments that can contain all possible nucleotide sequences of length n.The purpose of this note is to define and discuss the basic properties of a new graph that is of interest to researchers working on DNA,for attacking this question and others.As an application,we use this graph to formulate an effective algo-rithm for producing universal footprinting templates(UFTs)for n-mers.There have been two previous empirical attempts to design such DNA segments.Thefirst approach[6]manually produced a DNA segment of length166containing all136tetranucleotide sequences,while at the same time minimising the occurrence of oligopurine/oligopyrimidine tracts and long blocks of AT or GC base pairs.The second approach[5]used random computer searches to generate DNA segments containing all possible2-,3-, 4-,5-,and7-mer targets.Minimal length segments containing odd numbers of base pairs were easily found,and were produced within0.01(for n=3), 0.3(for n=5)and104(for n=7)min of CPU time,respectively.In contrast,for n=4,no139base pair solution was found in more than 150h of CPU time,though segments that were a few bases longer(144 base pairs)were easily generated.Our approach allows us to explain this dichotomy between the cases of n even and n odd below.We note that our graph theoretic approach combines the strengths of the two previous attacks on this problem.It yields a fast algorithm which can generate many different minimal universal footprinting templates,while at the same time allowing some control over the internal structure of the UFTs.We do not need the details of the chemical structure of DNA in order to describe our algorithm.For our purposes,it suffices to view a segment of DNA as two intertwined complementary strings of the nucleotides adenine (A),cytosine(C),guanine(G),and thymine(T),so that a segment of DNA is described as a pair of strings in the alphabet A={A,T,C,G}.The two strings are related by a complementing operation which pairs A with T and which pairs C with G.Since the natural reading directions along the two strings making up a segment of DNA are opposite to one another,the complementing operation also reverses the order of letters in a string.Algorithmic construction of universal footprinting templates3 Formally,given a letter X in the alphabet A,we denote its complement by X c,so that A c=T,T c=A,C c=G and G c=C.This complementing operation extends to strings in the alphabet A in the following way:given a string W=X1X2...X n,where each X j is a letter in the alphabet A,its complementary string is W c=X c n...X c2X c1.In order to simplify notation, if a string W consists of a single letter X repeated n times,we sometimes write W=X n.Unless otherwise stated,we write strings so that the5 end is to the left and the3 end is to the right,so that the reading direction is left to right.Given a string W of length n,we call the pair{W,W c}of the string and its complement an n-mer.There is a one-to-one correspondence between n-mers and distinct DNA segments consisting of n base pairs.We note that generally the pair of strings in an n-mer is unordered,so that{W,W c}and {W c,W}are the same n-mer.If a string W of length n is self-complementary (so that W c=W),then its corresponding n-mer{W,W c}contains only a single string of length n,which we sometimes write{W}.(In[5],these strings are referred to as palindromic.)As an example,consider the stringS=AAAT CCGT GCCCT AT GGT AACAGAGT CGCT T CAA.Its complement is the stringS c=T T GAAGCGACT CT GT T ACCAT AGGGCACGGAT T T.Given this pairing through the complementing operation,the entire DNA segment is determined by either of the two strings comprising it. Hence,the data we need to specify a DNA segment is a string of letters in the alphabet A.It is through these strings of letters that we describe the algorithm.The length of a string in the alphabet A is the number of letters it contains.As described in the introduction,the task of interest is to construct DNA segments which allow experimentalists to simultaneously examine the behaviour of multiple DNA segments of a given length n.Such a DNA segment should satisfy the following two conditions:Every possible DNA segment of length n appears at least once in the segment;and the DNA segment is as short as possible among all DNA segments containing all DNA segments of length n.Any DNA segment containing all DNA segments of length n is known as a universal footprinting template(UFT)for n-mers.(In [5],these strings are referred to as n-complete DNA sequences.)If the DNA segment is shortest possible among all universal footprinting templates for n-mers,we shall call it a minimal universal footprinting template for n-mers.As the essential data needed to describe a DNA segment is a string in the alphabet A,we reformulate this condition in terms of such strings.A string in the alphabet A is a universal footprinting template for n-mers if it contains at least one string from each n-mer.A string in the alphabet A is a minimal universal footprinting template for n-mers if it contains at least one string from each n-mer,and has minimal length among all such strings.4James W.Anderson,Keith R.Fox and Graham A.Niblo Consider the case n=1.There are two1-mers,namely{A,T}and {C,G}.There are two DNA segments of length1:namely,A↔T and C↔G,where↔indicates the bond between the two complementary nucleotides making up a base pair.Hence,the string ACGT corresponds to a universal footprinting template for1-mers:it corresponds to the DNA segment5 –A C G T–33 –T G C A–5However,this DNA segment contains each of the two1-mers twice,and so is not shortest possible.A shortest possible such DNA segment,and hencea minimal universal footprinting template for1-mers,is5 –A C–33 –T G–5This DNA segment corresponds to the string AC(or its complement, the string GT).Hence,the string AC is a minimal universal footprinting template for1-mers.The other minimal UFTs for1-mers are the strings GA or its complement T C,CA or T G,and AG or CT.Fix n≥1.A string S of length k≥n contains k−(n−1)substrings of length n,where the substrings of length n are formed by taking blocks of n contiguous letters in S.It follows that if we let K n denote the number of distinct n-mers,and if we assume that the string W contains at least one string from each n-mer,then the length,length(W),of W satisfies length(W)≥K n+(n−1).Hence a minimal UFT for n-mers must have length at least K n+n−1.Consider the case n=2.There are K2=10distinct2-mers:{AA,T T}, {AC,GT},{CC,GG},{CG},{GC},{CA,T G},{GA,T C},{AG,CT}, {AT},and{T A}.The string W=AACCGCAGAT A contains exactly one string from each of the ten possible2-mers,and hence gives rise to a universal footprinting template for2-mers.To see that W is a minimal universal footprinting template for2-mers,we note that length(W)=11= K2+1=K2+(2−1),and so W has the minimal possible length among all strings containing each string of length2or its complement.In order to determine the length of a minimal universal footprinting template for n-mers,we compute the number K n of distinct n-mers for each n.(Compare[5].)There are4n distinct strings of length n in the alphabet A={A,C,G,T}.When n is odd,each string W of length n is distinct from its complement,since W c differs from W in their middle letters as no letter is its own complement.Since no string of odd length is self-complementary, each n-mer contains two strings,and so the number of n-mers is equal toAlgorithmic construction of universal footprinting templates 5half the number of strings of length n .Hence,there are K n =124n n -mers when n is odd.When n is even,a string can equal its complement,and so some n -mers contain only a single string.(For example,(AT )c =T c A c =AT .)A self-complementary string must take the form W =UU c where U is a string oflength 12n ,and so the number of self-complementary strings is equal to the number of strings of length 12n ,which is 4n/2.These yield 4n/2n -mers each consisting of a single self-complementary string.The remaining 4n −4n/2strings come in complementary pairs,and so yield 12(4n −4n/2)distinct n -mers.Hence there are K n =12(4n +4n/2)n -mers when n is even.Hence the naive estimate,naive(n ),for the length of a minimal universal footprinting template for n -mers is naive(n )=K n +n −1= 124n +n −1for n odd ,12(4n +4n/2)+n −1for n even.If there exists a string containing one and only one string from each n -mer,then this string will have length equal to naive(n ).Note that this estimate holds for the two cases considered so far,namely that n =1with naive(1)=2,and n =2with naive(2)=11.In both cases,there is a universal footprinting template for n -mers of length naive(n ),and so such a string must be a minimal universal footprinting template for n -mers.Consider the case n =3.We calculate that there are thirty-two 3-mers,and so the shortest possible string containing a string from every 3-mer musthave length at least naive(3)=1243+3−1=34.The following string oflength 34contains one and only one string from every 3-mer,and therefore represents a minimal universal footprinting template for 3-mers:AAAT CCGT GCCCT AT GGT AACAGAGT CGCT T CAAOur first main result is that this behavior persists for all odd n .Theorem 1.For n odd (and n ≥3),there exists a minimal universal foot-printing template for n -mers of length naive(n )=124n +n −1.We will give the proof of Theorem 1in Section 5.When n is even the problem is considerably less tractable.As evidence for this claim we point to the experimental results of [5],as described in the introduction.That experimental approach found no UFT for 4-mers of length less than 144depite the naive lower bound being ing our tech-nique we will show that in fact a minimal universal footprinting template for 4-mers must have length 144.Our algorithm is sufficient to construct such a string;indeed,the following example of a minimal universal footprinting template for 4-mers was constructed by hand using the algorithm:ACGT ACCGACCT CACGCACT CCCGCGCCT GAAGT AAGGAAT GACGGCCGGACT AACT GCCCT AT CAAGCGAGAGCT AGCAAAT AT AAAGAACCAACGAAAACAAT T AAT CCACACCCCAGACAGCCAT GCAT ACAT CGAT CT AC6James W.Anderson,Keith R.Fox and Graham A.Niblo The analysis in the case of n even is complicated by the existence of self-complementary n-mers.While it should be possible to give an explicit formula for the length of a minimal universal footprinting template for n-mers for n even using the algorithm described below,it is more efficient to construct them for each n by a combination of our Eulerian path meth-ods and heuristic search.The complexity of the search is bounded by the following result.Theorem2.For n even(and n≥4),the length of a minimal universalfootprinting template for n-mers is at least min(n)=124n+4n/2+n−4and at most max(n)=124n+n4n/2−1.We complete the proof of Theorem2in Section6.The gap,which we define to be the difference between the upper and lower bounds in Theorem2,is(n−4)(2n−2−1)so for n=2or n=4the gap is0and the bounds are tight.In particular,any universal footprinting template for4-mers,such as the one constructed above(or the examples constructed in[5])of length144is then a minimal universal footprinting template for4-mers.We note in passing that for n=6the gap is30,while for n=8the gap is only252,which is small compared with a lower length of32903for a minimal UFT for8-mers.We prove Theorem1and Theorem2using the same basic technique, by converting the problem offinding a universal footprinting template for n-mers or a minimal universal footprinting template for n-mers into the question of the existence of Eulerian paths in a certain graph.Of primary importance is the observation that the graphical solution to this problem yields a fast algorithm for constructing many distinct minimal universal footprinting template for n-mers.The paper is organised as follows.In Section2,we present the basic graph theoretic terminology and the machinery we employ.In Section3,we define our basic object of study,the graph G n whose edges are n-mers,whose vertices are(n−1)-mers,and in which universal footprinting templates for n-mers correspond to paths that cover all edges in the graph.We will show how to interpret DNA segments as paths in the graph G n satisfying an admissability criterion,so that minimal universal footprinting templates for n-mers correspond to admissable paths covering all edges of G n having minimal length.We close Section3with a discussion of the connection between G n and the classical de Bruijn graph.In Section4,we discuss the structure of G n at its vertices.We state and prove Proposition1,characterizing standard loops and lollipop loops in G n.We state Proposition2,discussing in detail the structure of G n at its vertices for odd n,and give a detailed illustration of the possibilities arising for the case n=3;the proof of Proposition2is given in Section7.We state Proposition3,discussing in detail the structure of G n at its vertices for odd n,and give a detailed illustration of the possibilities arising for the case n=4;the proof of Proposition3is given in Section8.Algorithmic construction of universal footprinting templates7 We present the algorithm for constructing universal foootprinting tem-plates for n-mers for the cases of n odd and n even separately.We begin with the case n odd,which contains fewer technical complications.In Section 5,we present an algorithm for constructing minimal universal footprinting template for n-mers for n odd,including a detailed discussion of the im-plementation of the algorithm in the case n=3.We also give the proof of Theorem1.In Section6,we present the extra step needed to implement the algo-rithm for the construction of universal footprinting templates for n-mers in the case of n even,including a detailed discussion of the implementation of this additional step in the case n=4.We also give the proof of Theorem2.2.Graph theoretic preliminariesIn this Section,we describe the basic machinery from graph theory we will employ.We use[1]as our basic reference for graph theory facts and results.A graph G is a mathematical abstraction,afigure containing a set of vertices and a set of edges.The vertices can be anything.The edges join the vertices.An edge can be unordered,so that there is no preferred direction of travel along the edge,or ordered,so that there is a preferred direction of travel along the edge.For the time being,we assume that the edges are unordered.We allow the possibility that an edge joins a vertex to itself (which we refer to as a loop),and we also allow the possibility that there is more than one edge joining a given pair of vertices.Given a vertex v of a graph G,define the valency of v to be the number of edges in G that have v as an endpoint(and so are incident to v).We adopt the convention that if e is a loop based at v(so that both endpoints of e are at v),then e contributes2to the valency of v.A path in a graph G is an ordered sequence P={e1,...,e n}of edges of G,so that each consecutive pair e j and e j+1of edges appearing in P are incident to a common vertex.Note that a given edge may appear several times in a path.Working within the restrictions of our motivating problem, we assume that all graphs appearing in this paper are connected,so that given any pair of distinct vertices of G,there exists a path in G beginning at one and ending at the other.A path in G is a circular path if it begins and ends at the same vertex.A path P in a graph G is Eulerian if P contains each edge of G exactly once.A graph G admits an Eulerian path precisely when it has either zero or two vertices of odd valency.If G has zero vertices of odd valency,then the Eulerian path can begin at any vertex of G and will necessarily be a circular path.If G has two vertices of odd valency,then the Eulerian path must begin at one of them and end at the other.There is a standard(fast)algorithm for constructing an Eulerian path P in a graph G(necessarily containing either zero or two vertices of odd valency).We note that the complexity of this algorithm is linear in the number of edges of the graph.We willfirst discuss the algorithm when G is assumed to have the property that every vertex has even valency.8James W.Anderson,Keith R.Fox and Graham A.Niblo Wefirst choose a pairing between the edges incident to each vertex.By this,we mean that at each vertex v of G,we divide the edges of G incident to v into two equal sets,and we associate each edge in one set to one and only one edge in the other set.Starting at any vertex v0,choose any edge e1incident to v0,and mark it as used.The edge e1is incident to the vertex v0and to another vertex v1 (we allow the possibility that v0=v1,in the case that e1is a loop).At v1, the edge e1is paired with an edge e2,which is incident v1and to another vertex v2.If e2has not yet been used,we follow it to the vertex at its other endpoint,where it is paired with an edge e3.We continue in this way for as long as possible,marking each edge as used as we cross it,until we come to an edge e n whose pair has already been used.Because of the construction, thisfinal edge e n must be incident to the initial vertex v0,where it must be paired with the intial edge e1.(All the other edges that we have marked as used have been paired.)So,we have constructed a circular path P1in G which crosses each edge at most once,but may not have crossed every edge.If all of the edges of G are marked as used at this stage,then every edge in G appears once and only once in P1,and so P1is the desired Eulerian path.If there are unused edges in G,choose a vertex v 0that is incident to an unused edge,choose an unused edge e1incident to v 0,and repeat the con-struction above,crossing only unused edges to construct a second circular path.We continue in this manner until all edges of G are marked as used.We are left with a collection P1,...,P k of circular paths in G which together cross each edge of the graph exactly once and each circular path may be traversed in either direction,starting at any vertex on it.We now plumb these circular paths together to get an Eulerian path in G.This plumbing operation can be described as follows.Since G is con-nected,two of the circular paths,say P1and P2,contain edges incident to a common vertex v.Rewrite P1and P2so that both begin and end at the vertex v,by cyclically reordering the edges of G that occur in each;we again call these rewritten circular paths P1and P2.We then construct a new path byfirst following P1,and then following P2.Each pair of circular paths that pass through a common vertex of G can be plumbed together in this way. Since G is connected,we are able to plumb together all of the circular paths P1,...,P k to obtain a single circular path P.Since each edge of G appears exactly once in one and only one of the P k,the path P is an Eulerian path.Now we consider the case where G has exactly two vertices u,v of odd valency.Since G is connected,we can choose a path P1joining u to v which crosses each edge at most once.We remove these edges from the graph G to obtain a new graph G which contains no vertices of odd valency.This new graph G is not necessarily connected,but each connected component admits a circular Eulerian path that can be constructed as described above. Label these Eulerian paths as P2,...,P k.We now plumb them onto the path P1as before to produce an Eulerian path in G from u to v.Algorithmic construction of universal footprinting templates9 We close this Section by noting that,even if we are unable to construct an Eulerian path in a graph G because it does not satisfy the appropriate condition on the valencies of its vertices,we can still implement a modifi-cation of this algorithm to construct a path that crosses every edge of G at least once,at least in the case that there are an even number of vertices of odd valency.Begin by pairing the vertices of odd valency,and connect the vertices in each pair with a path in G.Traverse each of these paths twice, from one end to the other and then back again,to obtain a collection of cir-cular paths.Removing each of these short circular paths from G,we obtain a graph G in which each vertex has even valency,and therefore admits the required edge pairing.We then use the algorithm described above to pro-duce a collection of Eulerian paths in the graph G ,one for each connected component in G .Plumbing these Eulerian paths with the short circular paths joining pairs of vertices of odd valence yields a circular path in the original graph G which crosses each edge at least once and that crosses some edges twice.Every circular path in G which crosses each edge at least once can be described in this way;hence,to construct a shortest path in G which crosses every edge at least once,we only need tofind a collection of paths joining the odd valency vertices,in pairs,of shortest total length.3.The problem posed in graphical formIn this Section,we formulate the question offinding a(minimal)univer-sal footprinting template for n-mers as a graph theoretic question.Fix an integer n≥2,and define the graph G n as follows.The vertices of G n are the(n−1)-mers,so each vertex consists of a complementary pair{V,V c}of strings of length n−1in the alphabet A={A,C,G,T}.The edges of G n are the n-mers,so each edge consists of a complementary pair{W,W c}of strings of length n in the alphabet A.De-pending on the parity of n,the graph G n will have either self-complementary vertex(n−1)-mers or self-complementary edge n-mers.The incidence relation for vertices and edges is straightforward.Given a string W=X1...X n of length n,where X1,...,X n are letters in the alpha-bet A={A,C,G,T},there are two natural strings of length n−1associated to W:its initial substring X1...X n−1,consisting of itsfirst n−1letters,and its terminal substring X2...X n,consisting of its last n−1letters.So,the n-mer{W,W c}has naturally associated to it four strings:the initial sub-string X1...X n−1and the terminal substring X2...X n of W,and the initial substring X c n...X c2and the terminal substring X c n−1...X c1of W c.These strings are organized into the two(n−1)-mers{X1...X n−1,X c n−1...X c1} and{X2...X n,X c n...X c2}.In the graph G n,the edge n-mer{X1...X n,X c n ...X c1}joins the two vertex(n−1)-mers{X1...X n−1,X c n−1...X c1}and {X2...X n,X c n...X c2}.We note that for each n≥2,the graph G n contains loops.While G2 contains multiple edge2-mers joining a given pair of vertex1-mers,this does not occur in G n for n≥3:in G n for n≥3,there is at most one edge n-mer joining any given pair of vertex(n−1)-mers.10James W.Anderson,Keith R.Fox and Graham A.NibloFig.1.The2-mer graph G2As an example,consider the graph G2.The edge2-mers{AT},{AA,T T}, and{T A}join the vertex1-mer{A,T}to itself,and so are loops incident to{A,T}.The edge2-mers{CG},{GC},and{CC,GG}are loops incident to the vertex1-mer{C,G}.The four edge2-mers{AC,GT},{AG,CA}, {CA,T G},{GA,T C}join the vertex1-mers{A,T}and{C,G}.The valency of the vertex{A,T}is10:there are four2-mer edges join-ing the vertex1-mer{A,T}to the vertex1-mer{C,G},each of which contributes1to the valency of{A,T},and there are three loops at{A,T}, namely the2-mers{AA,T T},{AT},and{T A},each of which contributes 2to the valency of G2at{A,T}.Using a similar argument,the valency of {C,G}is10.We spend the remainder of this Section discussing the connection be-tween strings in the alphabet A={A,T,C,G}and paths in G n.A string S in the alphabet A={A,T,C,G}of length k≥n gives rise to a path P S in G n in a natural way,where the consecutive n-mers in the path correspond to consecutive substrings of n contiguous letters in S. Specifically,set S=X1...X k,where each X j is a letter in the alphabet A={A,T,C,G}.Define W j to be the substring W j=X j X j+1...X n+j−1 of S consisting of n contiguous letters starting at X j.This breaks S up into a sequence of overlapping substrings of length n,so that the edge n-mers containing the strings W j and W j+1are both incident to the ver-tex(n−1)-mer containing the string X j+1...X n+j−1.The path P S={{W1,W c1},...,{W k−n+1,W ck−n+1}}is the desired path arising from S.Consider the case n=2.The string S=AAAT CCGT gives rise to the following path P S in G2:{{AA,T T},{AA,T T},{AT},{T C,GA},{CC,GG},{CG},{GT,AC}}.In this language,a string S is a universal footprinting template for n-mers if its associated path P S covers every edge of G n.Furthermore,if the string S contains one and only one string from each n-mer,then its corresponding path P S contains each edge n-mer of G n exactly once,and so S is a minimal universal footprinting template for n-mers.The main technical issue in this paper arises from the fact that passing from paths in G n to strings in the alphabet A={A,T,C,G}is not as。